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Partial disorder—the microscopic coexistence of long-range magnetic order and disorder—is a rare
phenomenon that has been experimentally and theoretically reported in some Ising- or easy plane-spin
systems, driven by entropic effects at finite temperatures. Here, we present an analytical and numerical
analysis of the S ¼ 1=2 Heisenberg antiferromagnet on the
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shows that its quantum ground state has partial disorder in the weakly frustrated regime. This state has a
180° Néel ordered honeycomb subsystem coexisting with disordered spins at the hexagon center sites.
These central spins are ferromagnetically aligned at short distances, as a consequence of a Casimir-like
effect originated by the zero-point quantum fluctuations of the honeycomb lattice.
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Introduction.—Zero-point quantum fluctuations in con-
densed systems are responsible for a wide variety of
interesting phenomena, ranging from the existence of liquid
helium near zero temperature to magnetically disordered
Mott insulators [1,2]. It is in the quantum magnetism arena,
precisely, where a plethora of control factors are available
for tuning the amount of quantum fluctuations. Among
these factors, space dimensionality, the lattice coordination
number, the spin value S, and frustrating exchange inter-
actions are the most relevant [3,4].
While folk wisdom visualizes zero-point quantum fluc-

tuations like a uniform foam resulting from an almost
random sum of states, in some cases, these fluctuations
contribute to the existence of very unique phenomena.
These phenomena include semiclassical orders [3], order
by disorder [5], effective dimensionality reduction [6,7],
and topological orders associated with quantum spin liquid
states [1], among others. Another role for quantum fluc-
tuations is to allow the emergence of complex degrees of
freedom from the original spins, like weakly coupled
clusters or active spin sublattices decoupled from orphan
spins. The latter has been proposed to explain the spin
liquid behavior of the LiZn2Mo3O8 [8]. Here, the system is
described by a triangular spin-1=2 Heisenberg antiferro-
magnet, which is deformed into an emergent honeycomb
lattice weakly coupled to the central spins.
Besides spin liquids, the presence of weakly coupled

magnetic subsystems can lead to partial disorder, that is, the
microscopic coexistence of long-range magnetic order and
disorder. This rare phenomenon has been experimental and
theoretically reported in different localized or itinerant Ising-
or XY-spin highly frustrated systems [9–25], and it is driven
by entropic effects at finite temperature. In general, it is
believed that some amount of spin anisotropy is needed to get
partial disorder, and that the disordered subsystembehaves as

a perfect paramagnet, with its decoupled spins then justifying
the denomination of orphan spins.
In this work, we present an isotropic frustrated magnetic

system for which the ground state exhibits partial disorder,
originated by zero-point quantum effects, in contrast to the
entropic origin of the so-far known cases. Specifically, we
compute the ground state of the S ¼ 1=2 antiferromagnetic
Heisenberg model in the
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lattice (Fig. 1) by means of the linear spin wave theory
(LSWT) and the numerically exact density matrix renorm-
alization group (DMRG). For the weakly frustrated
0 ≤ J0=J ≲ 0.18 range, we find a novel partial disorder
state, without semiclassical analog, that consists of the
coexistence of a Néel order in the honeycomb sublattice
and disordered central spins. In addition, the spins of the
disordered sublattice are ferromagnetically aligned at short
distances: a correlated behavior induced, as we will show,
by a Casimir-like effect due to the “vacuum” quantum
fluctuations inherent in the quantum Néel order of the
honeycomb lattice.
At the heart of the decoupling mechanism is the

competition between the exchange energy favored by larger

FIG. 1.
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-distorted triangular lattice, with two different

exchange interactions J and J0. The arrows correspond to the spin
directions of the semiclassical magnetic order.
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coordination numbers and the zero-point quantum fluctua-
tions. This can be roughly illustrated by simple toy models.
For example, we can resort to the triangle and the hexagon
with a central spin of Fig. 2, which present ground state
energy level crossings at J0=J ¼ 1 and J0=J ¼ 0.63, respec-
tively. For small J0, the strongly connected spins form
singlets, leaving the central spin completely decoupled.
Model and methods.—Under this distortion, the original

triangular lattice is split into a honeycomb subsystem and a
sublattice of spins at the center of each hexagon (see
Fig. 1). Naturally, two different nearest-neighbor exchange
interactions arise, and the Heisenberg Hamiltonian turns
out

H ¼ J
X
hiji

Si · Sj þ J0
X
½ik�

Si · Sk; ð1Þ

where hiji runs over nearest-neighbor spins belonging to
the honeycomb lattice (with equivalent sublattices A and
B), whereas ½ik� links the honeycomb and central spins C
that interact with energy J0. Throughout this work, we take
J ¼ 1 as the energy unit, whereas J0 is the only varying
parameter, which we consider in the range [0, 1].
Almost two decades ago, this model was proposed in the

context of the honeycomb reconstruction of the metallic
surface of Pb=Geð111Þ [26]. On the other hand, the
complementary range of J0 ≥ 1 has been considered
[27,28] and, very recently, the uniform magnetization in
the regime J0 ≤ 1 has been computed by exact diagonal-
ization [29].
Related stacked triangular lattice XY antiferromagnets

have been extensively studied in the context of the
magnetic properties of hexagonal ABX3 compounds with
space group P63cm [12,19,30].
This model has two very well known limits: (i) for

J0 ¼ 1, we recover the Heisenberg model on the isotropic
triangular lattice, with its three equivalent sublattices and a
120° Néel ordered ground state [31,32]; whereas (ii) for
J0 ¼ 0, we have a honeycomb Heisenberg model with its
180° Néel ordered ground state [33], and the orphan
(completely decoupled) spins at the centers of the hexagons.
The classical ground state of Eq. (1) is a simple three-

sublattice order [34], as depicted in Fig. 1, characterized
by the magnetic wave vector Q ¼ 0 and by the angles
ϕA ¼ −ϕB ¼ − arccosð−J0=2Þ that the spin directions on

sublattices A and B make with the spin direction in
sublattice C. This ground state evolves continuously from
the honeycomb (plus orphan C spins) to the isotropic
triangular classical ground states, and it is a ferrimagnet for
0 < J0 < 1. The Lacorre parameter [38], whose departure
from the unity quantifies the degree of magnetic frustration,
is ð2þ J02Þ=ð2þ 4J0Þ, and so the maximal frustrated case
corresponds to the isotropic triangular lattice.
In this work, we solve Eq. (1) by means of comple-

mentary analytical and numerical techniques–the semi-
classical linear spin wave theory [34] and the density
matrix renormalization group [39]–in order to highlight the
quantum behavior without the classical counterpart of the
model. The DMRG calculations were performed on ladders
of dimension Lx × Ly [40], with Ly ¼ 6 and Lx up to 15,
imposing cylindrical boundary conditions (periodic along
the y direction). We use up to 3000 DMRG states [34] in
the most unfavorable case to ensure a truncation error
below 10−6 in our results.
Linear spin wave results.—The LSWT yields the same

ground state magnetic structure as the classical one (see
Fig. 1), with a semiclassically renormalized local magneti-
zation mα (α ¼ A, B, C) for each sublattice [34], which is
displayed in the inset of Fig. 3. As the A and B sublattices
are equivalent, their order parameters coincide, whereas
they are different from the central spin local magnetization
mC. For J0 ¼ 0, the central spins are decoupled from the
honeycomb lattice and, consequently, mC can take any
value from 0 to 1=2. As soon as J0 is turned on, the
sublattice C takes a large magnetization value, which is
more than 80% of its classical value, whereas mA varies
continuously.
Another interesting feature that can be seen is that the

increase of the frustrating interaction J0 leads to an
enhancement of the local magnetization in the honeycomb
lattice, up to a broad maximum around J0 ¼ 0.35 (see the
darker curve in the inset of Fig. 3). This (apparent)

FIG. 2. Hexagon and triangle toy models with one spin
connected to the remaining ones by a different exchange
interaction J0 (dashed lines).

FIG. 3. Local magnetization of sublattices A and C as a
function of J0, calculated with the DMRG (main panel, where
lines are merely a guide to the eye) and with the LSWT (inset).
The DMRG results correspond to the Ly ¼ 6, Lx ¼ 12 cluster.
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paradoxical result can be explained by the increase of the
effective coordination number induced by J0, which drives
the system closer to its classical behavior. Alternatively, it
can be thought that, as J0 is turned on, the honeycomb feel
the C subsystem as a uniform Weiss magnetic field B ¼
mCJ0 that, through the suppression of quantum fluctua-
tions, contributes to the increase of the local magnetization
mA (¼ mB), as it was found in other frustrated systems [41].
It is worth noticing that, for any J0, the larger-order
parameter belongs to the sublattice C, which can be
considered to be the sublattice with the smaller effective
coordination number: zCeff ≈ 6J0=J ≤ zAeff ≈ 3þ 3J0=J. This
is in agreement with the fact that, in lattices with inequi-
valent sites or bonds, the order parameter is lower in the
sites with larger coordination numbers [42].
DMRG results.—For all the considered range 0 ≤ J0 ≤ 1,

the computed spin correlations hSi · Sji exhibit a three-
sublattice pattern, which is in full agreement with the
semiclassical approach. Thus, if a given sublattice is
ordered, all its spins will point out in the same direction
(ferromagnetic order) and its local magnetization can be
evaluated using the expression [43]

m2
α ¼

1

NαðNα − 1Þ
X
i;j∈α
i≠j

hSi · Sji; ð2Þ

where α denotes the sublattice (A, B, or C), and Nα is its
number of sites. The calculatedmA andmC are shown in the
main panel of Fig. 3 for the Ns ¼ 12 × 6 cluster (for other
cluster sizes, we have obtained a similar result [34]).
The most eye-catching difference between the DMRG

and the semiclassical local magnetizations appears in the
weakly frustrated parameter region, which is close to the
honeycomb phase: 0 ≤ J0 ≲ 0.18. There, DMRG shows a
vanishing order parameter mC for the C sublattice along
with an almost constant honeycomb lattice local magneti-
zationmA. This corresponds to a partially disordered phase,
which is driven solely by quantum fluctuations (in com-
petition with frustration), because we are working at T ¼ 0.
Notice that, in general, partially disordered phases are
associated with entropic effects, and they appear at inter-
mediate temperatures between the lower- and higher-
energy scales of the system [11,20,22].
There is a critical value J0c ≃ 0.18 where the C sublattice

gets suddenly ordered because it happens at J0 ¼ 0þ in the
LSWT (inset of Fig. 3). Furthermore, beyond this critical
value, the DMRG calculations show a higher local mag-
netization in the central spin sublattice, which is in agree-
ment with the semiclassical expectation [42].
The local magnetization mA (¼ mB) of the honeycomb

spins decreases when J0 increases due to the frustration
introduced by the coupling with the central spins, until it
reaches its minimum value in the isotropic triangular
lattice, corresponding to the most frustrated case [44]. In
contrast with the spin wave results, mA does not exhibit a

clear maximum for intermediate values of J0 but shows an
almost constant region ranging from J0 ¼ 0 to 0.2. This
feature signals a negligible effect of the central spins on the
honeycomb ones.
As we have mentioned above, the semiclassical ground

state is ferrimagnetic for 0 < J0 < 1. So, in order to further
characterize the DMRG ground state magnetic structure,
we calculate the lowest eigenenergy in the different Sz
subspaces. In the case of J0 ¼ 0, the spins C are totally
disconnected from the honeycomb subsystem, and thus do
not contribute to the total energy. This results in a perfect
paramagnetic behavior of the central spin sublattice, with
a high degeneracy of the ground state, as EðSz ¼ 0Þ ¼
EðSz ¼�1Þ ¼ � � � ¼ EðSz ¼ Smax

z ¼�1=2×Ns=3Þ, where
Smax
z denotes the maximum value of Sz whose subspace

belongs to the ground state manifold, and Ns is the number
of sites of the cluster. For J0 ≠ 0, the situation changes: for
J0 ≤ J0c, there are no more orphan spins and Smax

z ¼ 0 [see
Fig. S2(a) [34] ], indicating that the partially disordered
phase is a (correlated) singlet. On the other hand, at the
critical value J0c, Smax

z jumps to a finite value, signaling a
first-order transition from the singlet to the ferrimagnetic
state (see Fig. S2(b) [34]). With further increase of J0, Smax

z
decreases until it vanishes for the isotropic triangular point
J0 ¼ 1, whose ground state again is a singlet. Therefore, the
DMRG magnetic order has a ferrimagnetic character for
J0c < J0 < 1. This behavior shows little finite size effects
[34] and it quantitatively agrees with the exact diagonal-
ization predictions [29].
Next, we calculate the DMRG angles between the local

magnetization in different sublattices. For this purpose, we
take into account that the large values of the DMRG local
magnetizations enable us to use a semiclassical picture of the
spins. Let us think of a three-spin unit cell built by spinsA,B,
and C of lengths mA, mB, and mC, respectively, as seen in
Fig. 1. We can assume that the Smax

z subspace corresponds to
theC spin pointing out in the z direction,whereas theA andB
spins make angles ϕA ¼ −ϕB with it. Then, we get the
equation ðNs=3ÞðmC þ 2mA cosϕBÞ ¼ Smax

z , for ϕB [26],
which finally leads to the angle θ between A and B spins

θ ¼ 2 arccos

�
1

2mA

�
mC −

3Smax
z

Ns

��
: ð3Þ

In Fig. 4, the angle θ is plotted as a function of J0. It can
be seen that the honeycomb 180° Néel order persists all
along the partially disordered phase where mc vanishes.
This result is a simple consequence of the singlet character
of the ground state for 0 < J0 < J0c [Smax

z ¼ 0 in Eq. (3)].
As a consequence, the canting behavior observed semi-
classically for any finite J0 moves to the region above J0c in
the strong quantum limit S ¼ 1=2 calculated with the
DMRG. That is to say that, when J0 is small, C spins
are disordered because the system gains zero-point quan-
tum energy from that disorder. For larger values of J0, the
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system chooses to gain (frustrated) exchange energy over
zero-point quantum fluctuation, and the C sublattice gets
ordered, canting simultaneously the A and B spins.
It is worth emphasizing that, even when the ground state

seems to undergo a first-order transition at J0c (Smax =rm
z

changes abruptly and the local magnetization mC sharply
rises), the angle θ between the A and B spins varies
continuously from its 180° value in the partially disordered
phase. This is similar to the spin wave behavior around
J0 ¼ 0, where the sublattice C is disordered, but as soon as
J0 rises, mC suddenly grows over mA without any abrupt
change in the magnetic order.
The quantitative agreement between the DMRG and

LSWT angles for J0 ≳ J0c, displayed in Fig. 4, is clear
evidence that, beyond the partially disordered phase present
in the weakly frustrated regime, the quantum ground state
of the model is very well described semiclassically.
Up to now, we have characterized the region between

J0 ¼ 0 and 0.18 as a singlet partially disordered phase. To
deepen the understanding of such disorder, in Fig. 5, the
average nearest and next-nearest neighbor (NN and NNN,
respectively) spin correlations [45] between the central
spins is shown as a function of J0. It can be seen that, even
though the sum over all the correlations in the C sublattice
is zero in the region of its null local magnetization [see
Eq. (2)], the NN correlation has an almost constant positive
value, close to 1=8, whereas the NNN correlation is close to
zero. This means that central spins exhibit (very) short-
range ferromagnetic correlations between them, suggesting
that the partial disordered phase may be thought of as a sort
of a resonating spin-triplet valence bond state [46]. In other
magnetic systems that exhibit partial disorder, mostly with
Ising or XY-like spins, the disordered subsystem is a perfect
paramagnet of orphan spins, with zero correlation between
them [11,12]. As there is no explicit exchange interaction
between the C spins, their correlation should be mediated
by the coexistent honeycomb Néel order.
In order to build up a qualitative argument about the

origin of the correlated character of the partially disordered
phase below J0c, we appeal to a Weiss molecular field
approach for the simplest toy model (see Supplemental
Material [34] for details). We consider a four-spin cluster

composed of two nearest-neighbor honeycomb spins
(1 and 2) interacting with the two closest C spins (3 and
4). After fixing the state of honeycomb spins 1 and 2 as a
“classical Néel order” plus zero-point quantum fluctuations
quantified by a parameter r, we arrive at an effective
Hamiltonian for central spins 3 and 4 that consists of a
Zeeman term associated with an effective uniform magnetic
field B ∝ rJ0 perpendicular to the honeycomb Néel order.
Hence, this toy model helps us to understand how the
ferromagnetic correlations between nearest-neighbor cen-
tral spins are built up under an effective interaction between
them, driven by the vacuum fluctuations of the honeycomb
Néel order; that is, the correlation between central spins can
be considered a Casimir-like effect. This argument is
further supported by the presence of nearest-neighbor anti-
ferromagnetic spin–spin correlations between the orphan
spins and the honeycomb ones (see Ref. [34]). This
treatment is valid whenever this Néel order is unaffected
by the feedback of spins 3 and 4. This seems to be the case
in the DMRG calculations for the lattice, as the local
magnetization mA changes only slightly by the coupling of
the C spins in the partially disordered phase (see Fig. 3).
Also, the toy model explains the almost constant nearest-
neighbor correlation between central spins that can be seen,
below J0c, in Fig. 5 (except for the nonmonotonic behavior
very close to J0 ¼ 0, which is probably due to numerical
inaccuracies). It should be mentioned that, due to the
singlet character of the DMRG ground state, the correla-
tions between the central spins are isotropic and not
perpendicular to a given direction, like in the toy model.
The absence of a long-range ferromagnetic order of theC

subsystem below J0c [47] can be roughly explained as
follows: in the previous Weiss mean-field argument, the
zero-point quantum fluctuations of the honeycomb sub-
system act as a magnetic field for the C spins. The direction
of this effective molecular magnetic field is “random”
because it depends on the phase fluctuations of the
departure from the Néel state. Therefore, while the near-
est-neighbor C spins are ferromagnetically correlated, the

FIG. 4. DMRG and LSWT angles θ between spins in the A and
B sublattices as a function of J0.

NN
NNN

FIG. 5. Average DMRG nearest-neighbor and next-nearest-
neighbor correlations between central spins as a function of J0.
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overall subsystem remains disordered due to the random-
ness of the zero-point quantum fluctuations.
Summary.—We have studied a S ¼ 1=2 Heisenberg

antiferromagnet with inequivalent exchange interactions
on a distorted triangular lattice that, in the weakly frustrated
regime 0 ≤ J0=J ≲ 0.18, exhibits a novel correlated partial
disordered phase driven by the competition between zero-
point quantum fluctuations and frustration. Even if partial
disordered phases were already known [9–25]—in aniso-
tropic systems at finite temperatures and with disordered
subsystems that behave as perfect paramagnets—here, we
uncover, for the first time, a partially disordered phase as
the ground state of a simple isotropic Heisenberg anti-
ferromagnet. This phase exhibits the coexistence of two
magnetic subsystems: one antiferromagnetically ordered,
and the other disordered with its spins ferromagnetically
correlated at short distances due to the zero-point quantum
fluctuations of the ordered subsystem via a Casimir-like
effect.
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