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Abstract: This study presents the control of a variable-speed wind energy conversion system based on a brushless
doubly fed reluctance machine. The control objectives are the tracking of the maximum power conversion point
and the regulation of the reactive power injected by the generation system into the grid. The control design is
approached using multi-input second-order sliding techniques which are specially appropriate to deal with non-
linear system models in the presence of disturbances and model inaccuracies. The controller synthesised through
this theoretical framework presents very good robustness features, a finite reaching time and a chattering-free
behaviour. The performance of the closed-loop system is assessed through representative computer simulations.
1 Introduction
During the last few decades, wind energy conversion has been
the renewable power generation source that has experienced
the fastest growth. It is expected that this tendency remains
for a long time [1]. Traditionally, the main control
objective on large wind turbines has been to reduce the
cost-effective utilisation of this kind of energy aiming at
quality and reliability in the electricity delivery [2, 3]. In
this context, among the different existing wind conversion
system structures, variable-speed (VS) topologies are
continuously increasing their market share because they can
maintain the optimal power generation on variable wind
speed regimes [4].

One of the most popular topologies used to implement VS
wind energy conversion systems (WECS) comprises a doubly
fed induction generator (DFIG) directly connected to the
local utility grid by stator and a back-to-back four-quadrant
ac–dc–ac power converter used to link the rotor windings
and the grid. This configuration, usually called slip power
recovery topology, is efficient and flexible in the energy
conversion process and presents the advantage of only
needing a fractionally rated converter. Compared to WECS
using synchronous generators, the wind conversion
technology based on DFIG has several advantages such as
four-quadrant active and reactive power capabilities, lower
converter costs and lower power losses. However, in spite
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of its popularity in uses with reduced VS ranges, the DFIG
presents some important drawbacks originated in the
presence of slip rings, brushes and a wounded rotor [5, 6].

In the last few years, the brushless doubly fed reluctance
machine (BDFRM) emerged in the specialised literature as
an attractive option to replace DFIGs in grid-connected
variable-speed constant frequency (VSCF) power-
generation systems [7, 8]. On the basis of cost and
robustness criteria, its use results specially appropriate in
large power applications with restricted VS capability such
as pumps and wind turbines [9–11]. Within these kinds of
applications, the BDFRM allows one to retain the main
advantages of using wound rotor induction machines,
increasing the system reliability and reducing the
maintenance expenses because of its brushless and cageless
rotor structure [5, 12].

This work develops a decoupled active and reactive power
controller for a fixed pitch VS-WECS based on a BDFRM,
connected in the slip power recovery topology shown in
Fig. 1. Constructively, the BDFRM presents two standard
sinusoidally distributed stator windings of different
numbers of poles and a reluctance rotor that provides the
magnetic coupling between them, presenting half the total
numbers of stator poles [9]. The control action is applied
via the bidirectional PWM static converter placed at the
terminals of the secondary windings. This last device allows
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driving the magnitude and angular frequency of the
secondary spatial voltage vector, indirectly controlling the
total active power and the primary reactive power produced
by the generator. The complexity of the control design task
lies on the highly non-linear nature of the dynamic model
of the system, on its multi-input multi-output (MIMO)
structure, and on the existence of model uncertainties and
external disturbances. On the other hand, it is important to
note that the control technique employed must synthesise a
continuous control action that can be adequately
implemented through the PWM converter. In this context,
the control design is faced using second-order sliding mode
(SOSM) techniques. This theoretical framework is
especially appropriate for coping with the described control
difficulties [13–15]. Besides, the resultant controller
presents some additional and attractive features such as
finite time reaching phase, a chattering free sliding mode
behaviour [16] and a reduced computational cost.

The article is organised as follows: Section 2 introduces the
general control strategy; Section 3 is devoted to present the
dynamic model of the BDFRM-WECS; Section 4
presents a brief introduction to multi-input SOSM
techniques, introduces the control objectives in terms of
sliding variables and deals with the controller design; in
Section 5 the performance of the proposed closed-loop
system analysed through representative simulations and

Figure 1 VSCF-WECS in a slip power recovery topology
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compared with the results of using a traditional PI design
and finally in Section 6 conclusions are presented.

2 Control strategy
Traditionally, the primary control objective for large WECS
has been to reduce the cost per kilowatt hour. This means to
maximise the power conversion only limited by the rated
power of the generator [2]. On the other hand, modern
WECS are expected to exhibit other control features like
the control of the reactive power absorbed from or injected
into the grid [17]. In this sense, this work deals with the
design of a MIMO controller that allows one to
simultaneously fulfil the aforementioned objectives in a
decoupled way. With this purpose in mind, this section is
devoted to obtain adequate active and reactive power
references.

The power captured by a wind turbine of blade length r
facing an airflow of speed v and density r can be expressed
by [18]

Pt(l) = 1

2
prr2Cp(l)v3 (1)

where Cp(l) is a non-linear function of the tip speed ratio, l,
defined as l = rvtm/v where vtm is the rotational speed of
the shaft on the turbine side. This function, commonly
referred to as ‘turbine power coefficient’, characterises the
mechanical conversion efficiency of a turbine. A typical
profile of this function for a fixed pitch horizontal three-
blade turbine is depicted in Fig. 2.

It can be observed that this function presents a unique
maximum at l = lopt where the turbine extracts the
maximum energy from the wind. Therefore conversion
efficiency maximisation is achieved by tracking the turbine
optimal tip speed ratio lopt, which implies to adequately
drive the rotational speed in accordance with wind speed
variations.

A suitable approach to avoid the utilisation of wind speed
measurements in the control law is to synthesise a torque
reference function corresponding to the optimal generation
Figure 2 Typical three-blade turbine conversion efficiency function
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locus in the torque–shaft speed plane [19]. From (1), it
is straightforward to obtain the expression of the turbine
torque

Tt(l) = Pt

vtm

= 1

2

prr2Cp(l)

vtm

v3 = 1

2
prr3

Cp(l)

l
v2 (2)

Then, evaluating this expression on the optimal generation
locus (l = lopt and v = rvtm/lopt), the mentioned torque
reference function can be written as

Ttref (vtm) = Koptv
2
tm (3)

with Kopt = prr5Cp(lopt)/2l3
opt. To track this reference is

equivalent to track a filtered version of the optimal
operation point, where variations produced by wind gusts
and other high-frequency components of the equivalent
wind are neglected.

It is important to note that this reference can be followed
up to the point where the generator develops its rated power.
Beyond that point, the active power generation must be
bounded in order to avoid damages to the system. This
operation strategy is sketched in Fig. 3 in terms of active
power and the corresponding reference torque for different
wind speeds.

Unlike the active power case, the reactive power injected by
the primary winding into the grid does not present a close
and direct correlation with the actual operational point of
the wind turbine. Thus, its reference value (Q1ref (t)) can be
temporally specified according to the directives of a more
general control level that regulates the whole grid operation
[2]. However, it is important to note that although this
reference value can be fixed by this higher control level, its
value must instantaneously comply with the limit imposed
by the minimum power factor allowed for the primary
winding functioning.

Figure 3 Active power generation: operation strategy
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3 Dynamic model of the
WECS-BDFRM
The BDFRM-WECS in the slip power recovery topology
depicted in Fig. 4 has the p1-pole primary winding of the
generator directly linked to the utility grid. Therefore the
line imposes its voltage and electrical frequency on it
(v1 = VL; v1 = vL). The remaining winding, usually called
secondary or control winding, presents p2 poles and is
connected to the grid via a bidirectional PWM converter.
This last device drives the secondary voltage (v2) and its
angular frequency (v2) indirectly controlling the operational
point of the whole system.

The complete dynamic model of this system is composed
of the electrical dynamics of the brushless machine and the
mechanical dynamics of the rotating parts. Viewed from
two quadrature dq reference frames rotating, respectively, at
angular speeds v1 and v2, the former can be expressed by [8]

l̇1d = −R1i1d + v1l1q + v1d (4)

l̇1q = −R1i1q − v1l1d + v1q (5)

l̇2d = −R2i2d + (vr − v1)l2q + v2d (6)

l̇2q = −R2i2q − (vr − v1)l2d + v2q (7)

l1d = L1i1d + L12i2d (8)

l1q = L1i1q − L12i2q (9)

l2d = L2i2d + L12i1d (10)

l2q = L2i2q − L12i1q (11)

where the variables v1d , v1q, v2d and v2q represent the
quadrature components of the primary and secondary
winding voltages; i1d , i1q, i2d and i2q correspond to
the current components and l1d , l1q, l2d and l2q are
the concatenated flux components. On the other hand, the
parameters R1 and R2 represent the stator winding
resistances, L1 and L2 their self-inductances, and L12 the
mutual inductance between windings.

Figure 4 Schematic connection topology of the BDFRM-WECS
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Neglecting the friction terms, the mechanical dynamic
behaviour of the BDFRM-WECS can be written as

v̇rm = 1

J
(T ′

t + Te) (12)

where vrm represents the mechanical angular speed of the
generator, J is the inertia of the rotating parts, T ′

t is the
torque produced by the blades of the wind turbine (referred
to the generator side using the gear box constant Kgb) and
Te is the electromagnetic torque developed by the BDFRM.

The torque produced by the generator can be described by
the expression (Te , 0 as generator) [8]

Te =
3

2

L12

L1

pr(l1d i2q + l1qi2d ) (13)

where pr is the number of poles in the reluctance rotor that,
by construction, corresponds to half the total stator poles
(pr = (p1 + p2)/2). At this point, it is important to stress
that to produce torque this machine has to rotate at a
mechanical angular speed vrm given by the expression [8]

prvrm = v1 + v2 = vr (14)

being vr the electrical angular speed of the reluctance rotor.
Then replacing (13) and (14) in (12), the mechanical
dynamic behaviour of the WECS can be rewritten as

v̇r =
pr

2J

rpr3

Kgb

Ctv
2 + 3L12

L1

pr(l1d i2q + l1qi2d )

( )
(15)

where Ct = Cp/l is the turbine torque coefficient. Therefore
the WECS-BDFRM results are completely described by the
fifth-order dynamic model given by (4)–(11) and (15).

3.1 Reduced order model

The dynamic model introduced in the previous subsection
can be adequately simplified to obtain a reduced order
model specially suitable for control design purposes. In this
sense, assuming that the d-axis of the primary reference
frame is aligned with the primary flux spatial vector, the
primary flux dynamic equations (4) and (5) can be
rewritten as

l̇1d = −R1i1d + v1d (16)

0 = −R1i1q − v1l1d + v1q (17)

Next, considering that the voltage and frequency of the grid
remain approximately constant and that the primary winding
resistance is negligible (R1 � 0) [7, 20], the primary flux
components can be written as l1d = VL/vL and l1q = 0.
It should be noted that this consideration implies to reduce
the order model in two degrees of freedom (l̇1d = 0 and
l̇1q = 0). Then, including the last expressions of l1d and
482
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l1q in (6), (7) and (15), and replacing the flux variables by
(8)–(11), the reduced order model can be expressed in
terms of the secondary currents and the electrical angular
speed as

i̇2d = −L1R2

L2
eq

i2d − (vL − vr)i2q +
L1

L2
eq

v2d (18)

i̇2q =
L12VL

v1L2
eq

+ i2d

( )
(vL − vr) −

L1R2

L2
eq

i2q +
L1

L2
eq

v2q (19)

v̇r =
pr

2J

rpr3

Kgb

Ctv
2 + 3L12

L1

VL

vL

pri2q

( )
(20)

where the primary current components are related to these
variables through

i1d = VL

v1L1

− L12

L1
i2d (21)

i1q =
L12

L1

i2q (22)

In this context, the torque developed by the BDFRM and the
primary reactive power injected by the system into the grid
can be written as [7]

Te = − 3

2

L12

L1

VL

vL

pri2q (23)

Q1 = 3

2
VL

L12

L1

i2d − VL

vLL1

( )
(24)

For control purposes, it is useful to express this model under a
non-linear affine structure. Thus, from (18)–(20) it is
straightforward to write the reduced model as

ẋ = F(x) + G(x)u =
f1(x)
f2(x)
f3(x)

⎡⎣ ⎤⎦+
g11 g12

g21 g22

g31 g32

⎡⎣ ⎤⎦ v2d

v2q

[ ]
(25)

with x = [i2d i2q vr]
T, g11 = g22 = L1/L2

eq, g12 = g21 =
g31 = g32 = 0, L2

eq = L1L2 − L2
12, and

f1(x) = −L1R2

L2
eq

i2d − (vL − vr)i2q

f2(x) = L12VL

v1L2
eq

+ i2d

( )
(vL − vr) −

L1R2

L2
eq

i2q

f3(x) = pr

2J
rpr3Ctv

2 + 3L12

L1

VL

vL

pri2q

( )

4 SOSM design
This article presents a simple multi-input controller that
allows one to fulfil the control objectives introduced in
Section 2 when the system is operating in a perturbed
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
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environment. Its design is based on high-order sliding mode
(HOSM) techniques for multi-input systems. This
theoretical framework has proved to be specially appropriate
to cope with non-linear systems, presenting robust features
with respect to system parameter uncertainties and external
disturbances [13, 14]. On the other hand, HOSMs allow
one to completely reduce the chattering effect (inherent to
traditional sliding mode implementations) decreasing the
mechanical stress on the WECS. This control feature is
accomplished because the discontinuous control action is
applied on higher-order time derivatives of the sliding
manifold [15].

To date, there are few HOSM theoretical results for multi-
input systems that hold the simplicity of the original
approach for single-input single-output (SISO) systems.
The main results known in this field have been obtained by
Bartolini et al. [21] and by Levant [22]. In this article, the
controller design has been faced following the approach of
Levant, using an SOSM super-twisting algorithm which
presents the additional advantage of needing information
only of the sliding surface and not of its time derivatives. It
is important to remark that the implementation of the
proposed controller implies an online computational cost
similar to that of a linear PI + D controller.

4.1 Design of MIMO-SOSM controllers

We consider a multi-input non-linear dynamic system model
expressed under the affine structure

ẋ = F(x) + DF(x, t) + (G + DG(t))u + j(t) (26)

where x [ <n and u [ <m. In (26), the addition of F and
DF(x, t) represents the system drift vector field. The
former term corresponds to the drift vector of the nominal
system whereas the latter is an explicitly time-dependent
drift vector originated in slow temporal parameter
variations. On the other hand, the factor composed by the
addition of G and DG(t) represents the system control
matrix. Its first term is considered constant and
corresponds to the nominal control system matrix whereas
the second one, as in the previous case, takes into account
the action of temporal parameter variations on the former.
Finally, j(t) is a continuous vector field representing the
influence of external perturbations.

To proceed with the SOSM control design, it is necessary
to define an m-order sliding manifold S = [s1 s2 . . . sm]T that
represents the desired control objectives and has a vectorial
relative degree [1 1. . .1]. Then, its first time derivative can
be written as

Ṡ = ∂S

∂x
(F(x) + DF(x, t) + j(t))︸















︷︷















︸

L(F+DF+j)S

+ ∂S

∂x
(G + DG(t))︸







︷︷







︸

L(G+DG)S

u + ∂S

∂t

(27)
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Provided that L(G+DG)S is invertible (see vectorial relative
degree condition), (27) can be manipulated according to
the following variable exclusion Gauss procedure

˜̇si = ṡi − ṡi

(L(G+DG)S)i1j

(L(G+DG)S)i1j1

∀i = i1 first step

˜̇si =˜̇si −˜̇si

(L(G+DG)S)ikj

(L(G+DG)S)ikjk

∀i = i1, . . . , ik−1, ik

k = 2 . . .m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

to obtain a new expression given by

˜̇S = L̃(F+DF+j)S + L̃(G+DG)Su + ∂̃S

∂t
(29)

where L̃(G+DG)S presents an upper-triangular form associated
with an input/output matrix assignment given by

i1 i2 · · · im

j1 j2 · · · jm

( )
(30)

It should be noted that this last matrix presents in its columns
the position (ik, jk) corresponding to the successive elements
of the matrix L(G+DG)S used as pivots during the execution of
the Gauss procedure.

In case of using the super-twisting algorithm, it is
proved [22] that if each control input is driven by the
controller

ujk
= −ljk

|sik
|1/2sign(sik

) + njk
jk = m · · · 1

ṅjk
=

−ujk
|ujk

| . Û jk

ajk
sign(sik

) |ujk
| ≤ Û jk

{
(31)

where the parameters ajk
, ljk

and Û jk
are chosen in the

reverse order (taking jk from m to 1) according to the
following inequalities [22]

K ik
ajk

. Cik
(32)

ljk
.

��������������
2

K ik
aik

− Cik

√
K ik

(K ik
aik

− Cik
)(1 − qik

)

K 2
ik

(1 − qik
)

(33)

0 , qik
, 1 (34)

0 , K ik
, (L(G+DG)S)ikjk

, K ik
(35)

˜̇L(F+DF+j)S + ∂2S̃

∂t2

( )
ik

∣∣∣∣∣∣
∣∣∣∣∣∣+∑

jk

|(̃L̇(G+DG)S)ikjk
|Ûjk

≤ Cik

(36)

L̃(F+DF+j)S + ∂̃S

∂t

( )
ik

/(̃L(G+DG)S)ikjk

∣∣∣∣∣∣
∣∣∣∣∣∣ , qik

Ûjk
(37)
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the system reaches the sliding manifold S in finite time and
stays on it without chattering. It should be noted that all
these inequalities are simple extensions of the ones
corresponding to the SISO case [15, 23].

It is important to remark that the controller (31) ensures
the convergence to the manifold S ¼ 0 for any operational
environment that preserves (34)–(37). This means that if
the second time derivatives of the sliding variables belong
to the differential inclusions

s̈ik
[ [−Cik

Cik
] + [K jk

K jk
]u̇j k = 1 · · ·m (38)

the dynamic system converges towards the manifold
S ¼ 0. As the inclusions involved in (38) do not
remember the original dynamic system, the super-twisting
controller is robust against any perturbation that preserves
them.

4.2 Application to the WECS-BDFRM
system

As it was previously mentioned, the control objective is to
maximise the total active power delivered by the system and
to simultaneously regulate the reactive power injected by
the primary winding into the grid. For the sake of
simplicity on the control design phase, the controller is
developed using the reduced dynamic order model obtained
in Section 3.1. Then, taking into account the power
references previously obtained in Section 2, the control
objectives can be expressed in terms of the following two
sliding variables

s1(x) =
Kopt

p2
r K 2

gb

v2
r +

3

2

L12

L1

VL

vL

pri2q (39)

s2(x) = Q1ref (t) − 3

2
VL

L12

L1

i2d − VL

vLL1

( )
(40)

At this point, it should be remembered that although (39)
is expressed in terms of torque values referred to the
generator side, this sliding variable allows to follow a
filtered version of the maximum conversion point and
therefore to maximise the active power conversion [19].
Besides, using a sliding variable in terms of torque
simplifies the controller tuning procedure because the
expression corresponding to the machine torque involves
only one state variable. On the other hand, it is
important to note that the sliding vector S = [s1 s2]T

presents the required vectorial relative degree to carry
out the MIMO-SOSM design method outlined in the
previous subsection. Then, including on the dynamic
model (25) all the uncertainties and perturbations
considered in the previous subsection, the time derivative
84
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of S can be written as

Ṡ =

3L12VL

2L1vL

(pr(f2 +Df2(t)+ j2(t))

+
2Koptvr

p2
r K 2

gb

(f3 +Df3(t)+ j3(t)))

−3L12VL

2L1

(f1 +Df1(t)+ j1(t))+ ∂Q1ref

∂t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸

























︷︷

























︸

L(F+DF+j)S+∂S
∂t

− 3L12VL

2L1

0 − pr

vL

L1

L2
eq

+Dg22(t)

( )
L1

L2
eq

+Dg11(t)

( )
0

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

︸































︷︷































︸
L(G+DG)S

u

(41)

L(G+DG)S being anti-diagonal it is not necessary to follow
the Gauss exclusion procedure. Each sliding variable is
related to only one control variable, determining a fixed
output/input matrix assignment.

In order to choose the controller parameters ai, li and Û i

for i ¼ 1, 2, it is necessary to obtain the analytic expressions
corresponding to the second time derivative of the sliding
surfaces. Next, after long but straightforward algebraic
manipulations bounds (34)–(37) are obtained regarding the
operational limits and the maximum levels of perturbations
and unmodelled dynamics acting on the system. After this
analytic procedure, the controller parameters are selected
according to (32) and (33) to obtain a good reaching
performance. This last tuning phase can be realised
analytically or using simulation tools. In this case, the
controller parameter values chosen for the VSCF-BDFRM
generation system were obtained following the latter
procedure and are specified in the Appendix. For the sake
of clarity, it is important to remark that the bounding
constants and the controller parameters are computed
offline only once during the controller tuning procedure.

Figure 5 Schematic closed-loop system
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
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Therefore computational online operation of the control
algorithm (31) is very simple.

Finally, a schematic block diagram showing the closed-
loop system topology is presented in Fig. 5. It should be
noted that the controller implementation only requires the
measurement of the secondary current components, the
rotational speed (also necessary to calculate the dq
transformations) and the utility grid voltages.

5 Simulation results
To demonstrate the chattering-free controller behaviour, its
good robustness properties against unknown disturbances and
unmodelled dynamics and its very good tracking performance,
computer-aided simulations were performed and are presented
in this section. Furthermore, simulations using a traditional
linear control scheme based on proportional-integral-
derivative (PID) controllers (having a similar computational
cost to the SOSM approach) are presented in this section in
order to establish a basis for performance comparisons.

To recreate the system operation under realistic conditions,
simulations were carried out with the controller synthesised
T Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
i: 10.1049/iet-cta.2009.0437
in Section 4.2 driving the BDFRM-WECS represented
by its complete dynamic model. It should be noted that
this controller was designed considering the reduced
order system model. External variables, references and
disturbances were included through representative time
profiles which are separately depicted in Figs. 6 and 7. In
particular, Fig. 6 shows the wind speed time profile (v) and
the primary reactive power reference (Q1ref ). The former
includes wind speed variations within the partial-load
operation zone, that is, wind speeds below the value where
the generator develops its rated power. On the other hand,
the latter presents a stepped feature that represents sudden
changes imposed by a high-level grid operation controller
according to reactive line compensation necessities.

External disturbances and model uncertainties owing to
parameter variations are considered on the dynamic model
through the terms j and DF 2 DG, respectively (see (26)).
Fig. 7 shows the time profiles corresponding to the external
disturbances used in the simulations. These variations are
presented using a percentage scale that takes the maximum
value of the corresponding drift field vector element (fi max)
as reference. On the other hand, model uncertainties were
included considering the parameter variations depicted in
Figure 6 External variables

a Wind speed v
b Primary reactive power reference Q1ref

Figure 7 Disturbance components j1, j2 and j3
2485

& The Institution of Engineering and Technology 2010



24

&

www.ietdl.org
Fig. 8. It should be noted that these variations are also shown
in a percentage scale that takes the respective nominal values
as references. Remember that L1 = Llp + Lm, L2 = Lls + Lm

and L12 = Lm, where Llp and Lls are the leakage inductances
of the primary and secondary winding, respectively, and Lm is
the magnetising inductance.

The closed-loop system performance can be analysed
through the behaviour of the sliding variables s1 and s2.
Their profiles, presented in Fig. 9, prove that the designed
controller is capable of strictly maintaining the condition
si = ṡi = 0, i ¼ 1, 2, without chattering even in the
perturbed environment recreated for these simulations. For
comparison purposes, this figure also includes the
simulations corresponding to a PI-based control scheme
that has given the best results. This last control scheme is
composed by two independent PI controllers whose
parameters have been selected by linearising the system
(around the mean wind speed and a primary reactive power
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equal to zero) and tuning the controllers using simulation
tools to obtain the fastest tracking speed without overshot.
The decision of using two independent PI controllers
instead of a MIMO-PI version is justified by the Bristol’s
interaction index obtained for the previous linearised
system (lBI = 1.015) [24, 25]. This index (a simplification
of the Bristol’s relative gain array for two-input two-output
systems) is a simple measure of interaction between the
control loops for low-frequency signals. A Bristol’s index
equal to 1 implies no interaction between loops whereas
small or negative values indicate that there are interactions.

As it can be seen in Fig. 9, the SOSM controller shows
better robustness properties in an extended operation range
than its PI counterpart, having a similar computational
load. On the other hand, Fig. 10 shows the profile of the
maximum power available in the wind, Pw (in solid line),
and the electromagnetic power converted by the BDFRM,
Pg (in dashed line). It can be observed in this figure that
Figure 8 Parameter variations

a BDFRM winding inductance variations
b BDFRM winding resistance variations
c Grid voltage variation
d Grid frequency variation
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
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Figure 10 Active power generation

Figure 9 Sliding variables in

a Torque sliding surface, s1

b Primary reactive surface, s2
the controlled system is capable of closely following the
maximum power conversion point even when the proposed
controller is not measuring the wind speed. It is also
important to note that on periods where the wind speed
falls, the converted power is greater than the available
power in the wind. This is possible because during those
periods the system reduces its shaft speed in order to follow
the maximum power conversion point and therefore the
kinetic energy associated with this deceleration is converted
to electromagnetic power.
T Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
oi: 10.1049/iet-cta.2009.0437
To complete the analysis, Figs. 11 and 12 present the time
profiles of the system states and the control variables. In
particular, Fig. 11a shows the primary winding currents: i1d

and i1q. The stepped feature appreciated in the former is
inherently related to the time variation of the reactive
power reference. Fig. 11b depicts the secondary winding
currents: i2d and i2q. It should be observed that these
last profiles are closely related to the primary ones
(see approximations (21) and (22)). Finally, Fig. 11c
presents the time profile of vrm.
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Figure 12 Control voltages: v2d and v2q

Figure 11 System variables

a i1d and i1q

b i2d and i2q

c vrm
Figure 13 Reaching phase portrait of s1 and s2
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On the other hand, Fig. 12 shows the control variables
v2d and v2q. It is important to stress their smoothness
features determined by the use of SOSM control
techniques. This chattering-free characteristic is specially
attractive because it reduces the mechanical stress on the
system and because these voltages can be synthesised by the
bidirectional static converter placed at the secondary
winding terminals.

Finally, in Fig. 13, the phase portraits corresponding to the
system reaching phase are separately depicted. These plots
show the typical form that systems controlled by super-
twisting algorithms draw during convergence.

6 Conclusions
This paper presents the design of a MIMO-SOSM
controller that allows one to simultaneously maximise the
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2479–2490
doi: 10.1049/iet-cta.2009.0437
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active power generation of a BDFRM-WECS and to
regulate the reactive power injected by the generator into
the utility grid. In this way, the developed control allows
one to use the system not only as an active power generator
but also as a partial reactive line compensator.

The control was designed using an SOSM super-twisting
algorithm for multi-input systems, which is very appropriate
to deal with non-linear system models operating in
perturbed environments. The controlled closed-loop system
shows very good performance with additional attractive
features like a chattering-free behaviour, a finite reaching
time phase, and excellent robustness properties against
external disturbances and unmodelled dynamics. These
control features were corroborated through representative
simulations. Finally, it should be stressed that the
implementation of the proposed controller does not require
more computational cost than necessary to implement a
control scheme based on traditional PIDs.
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9 Appendix
Utility grid parameters

VL = 460 V v1 = 2p50 rad/s

Turbine parameters

r = 5.3 m r = 1.22422 kg/m3 lopt = 5.5

Cpopt = 0.4 Kgb = 8 J = 6.82 kg m2
0
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BDFRM parameters

P = 37 kW pr = 4 R1 = R2 = 0.012V

L1 = L2 = 0.0473 H L12 = 0.0465 H

SOSM controller parameters

a1 = 5000 l1 = 1.2 Û 1 = 500

a2 = 8000 l2 = 0.275 Û 2 = 100

PI controller parameters

Ti1 = 0.009 Kp1 = 0.072

Ti2 = 0.11 Kp2 = 0.044
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