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a b s t r a c t

We deal with some generalizations of the graph coloring problem on classes of perfect
graphs. Namely we consider the µ-coloring problem (upper bounds for the color on each
vertex), the precoloring extension problem (a subset of vertices colored beforehand),
and a problem generalizing both of them, the (γ , µ)-coloring problem (lower and upper
bounds for the color on each vertex). We characterize the complexity of all those problems
on clique-trees of different heights, providing polynomial-time algorithms for the cases
that are easy. These results have interesting corollaries. First, one can observe on clique-
trees of different heights the increasing complexity of the chain k-coloring, µ-coloring,
(γ , µ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known
example of a class of graphswhereµ-coloring is polynomial-time solvable and precoloring
extension is NP-complete, thus being at the same time the first example where µ-coloring
is polynomially solvable and (γ , µ)-coloring is NP-complete. Last, we show that the
µ-coloring problem on unit interval graphs is NP-complete. These results answer three
questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity
boundary between coloring and list-coloring, Annals of Operations Research 169 (1)
(2009) 3–16].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A coloring of a graph G is a labeling of its vertices. A coloring satisfying the additional requirement that adjacent vertices
have distinct colors is a proper coloring. A k-coloring is a labeling that maps the vertex set into a set of size k. In this paper,
we regard a k-coloring of a graph G as a function f : V (G) → N such that f (v) ≤ k for every v ∈ V (G). A graph is k-colorable
if it admits a proper k-coloring.

The vertex coloring problem (also known as k-colorability problem or k-coloring problem) takes as input a graph G
and consists of deciding whether G is k-colorable. This well-known problem is a basic model for scheduling, frequency
assignment, and resource allocation problems.

In order to take into account particular constraints arising in practical settings, more elaborate models of vertex coloring
have been defined in the literature. A hierarchy of such models was studied in [4]. Two generalizations of the k-coloring
problem are precoloring extension [2] and µ-coloring [3].

The precoloring extension problem takes as input a graph G, a subset W ⊆ V (G), a natural number k, a proper k-coloring
f ′ of the subgraph of G induced byW , and consists of decidingwhether G admits a proper k-coloring f such that f (v) = f ′(v)
for every v ∈ W . In other words, a prespecified vertex subset is colored beforehand, and the goal is to extend this partial
proper coloring to a proper k-coloring of the whole graph.

∗ Corresponding author at: Dipartimento di Informatica, Sistemi e Produzione, Università di Roma ‘‘Tor Vergata’’, Rome, Italy.
E-mail addresses: fbonomo@dc.uba.ar (F. Bonomo), faenza@math.unipd.it (Y. Faenza), oriolo@disp.uniroma2.it (G. Oriolo).

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.03.019



Author's personal copy

2028 F. Bonomo et al. / Discrete Mathematics 312 (2012) 2027–2039

Fig. 1. Scheme of generalizations among these coloring problems.

Given a graph G and a function µ : V (G) → N, the µ-coloring problem consists of deciding whether G is µ-colorable,
that is, whether there exists a proper coloring f : V (G) → N such that f (v) ≤ µ(v) for every v ∈ V (G). This model arises in
resource allocation problems with conflict between users [3], as well as in train scheduling [6].

A problem generalizing the latter two is the (γ , µ)-coloring problem [4], where also lower bounds for the color of each
vertex are specified: given a graph G and functions γ , µ : V (G) → N such that γ (v) ≤ µ(v) for every v ∈ V (G), the
(γ , µ)-coloring problem consists of deciding whether there exists a µ-coloring f where additionally γ (v) ≤ f (v) for every
v ∈ V (G).

Finally, a model generalizing all of the previous problems is the list-coloring problem [21], which considers a prespecified
set of available colors for each vertex. Given a graph G and a finite list L(v) ⊆ N for each vertex v ∈ V (G), the list-coloring
problem asks for a L-coloring of G, that is, a proper coloring f such that f (v) ∈ L(v) for every v ∈ V (G).

The scheme of generalizations, summarized in Fig. 1, implies that all the problems in this hierarchy are polynomially
solvable in those graph classes where list-coloring is polynomial and, on the other hand, all the problems are NP-complete
in those graph classes where vertex coloring is NP-complete.

The complexity of this family of problems over different classes of graphs has been studied, and there are several
examples of classes where k-coloring is polynomial-time solvable but precoloring extension and µ-coloring are NP-
complete, like bipartite graphs [3,10], interval graphs [2,4,7] and distance hereditary graphs [4,9]. For the class of split
graphs, in contrast precoloring extension is polynomial-time solvable but (γ , µ)-coloring is NP-complete [11,4]. Finally,
there are also examples of classes where (γ , µ)-coloring is polynomial-time solvable but list-coloring is NP-complete, like
complete bipartite graphs and complete split graphs [4,13]. Note that, however, to the best of our knowledge, so far no class
of graphs where (γ , µ)-coloring is NP-complete while µ-coloring is polynomially solvable was known, and finding such a
class is mentioned as an open problem in [4].

The problems of precoloring extension and µ-coloring are not directly related; neither is a generalization of the other.
Nevertheless, for almost all the graph classes where the complexity of these two problems is known, they are on the
same side of the dichotomy ‘‘polynomial-time solvable vs. NP-complete’’. The class of split graphs is the only known class
where precoloring extension is polynomial-time solvable [11] while µ-coloring is NP-complete [4]. Again, to the best of our
knowledge, so far no class of graphs where µ-coloring is polynomially solvable and precoloring extension is NP-complete
was known; finding such a class is mentioned as another open problem in [4].

In this work, we study the complexity of these coloring problems on a class of perfect graphs called clique-trees. A graph
G is a clique-tree if the graph T (G) one obtains from G after identifying true twins is a tree, and its height is the radius of
T (G) (we refer to Section 2 for formal definitions).

We characterize the complexity of each problem on clique-trees of different heights, providing polynomial-time
algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of
different heights the increasing complexity of the chain k-coloring, µ-coloring, (γ , µ)-coloring, and list-coloring. In fact,
the size of a maximum clique of a clique-tree, and thus its chromatic number, is the maximum sum of the multiplicities of
two adjacent vertices that are not twins. Thus, the k-coloring problem can be solved in strongly polynomial time for this
class of graphs. On the other side, clique-trees of height 0 are complete graphs, and the list-coloring problem on a complete
graph can be modeled as a maximum matching problem on a bipartite graph and thus solved in polynomial time, while it
is known that the list-coloring problem is NP-complete for clique-trees of height 1, even when the reduced tree consists
of a root and two children [12] and when the multiplicity of all the vertices but the root is 1 [13]. However, as we show in
Section 2, (γ , µ)-coloring, and therefore µ-coloring and precoloring extension, are still easy for clique-trees of height 1.

For clique-trees of height 2, we show that onlyµ-coloring (and, of course, k-coloring) is easy. This class of graphs gives, to
the best of our knowledge, the first known example where µ-coloring is polynomially solvable while precoloring extension
(and thus (γ , µ)-coloring) is NP-complete: this answers the questions above from [4].

For height 3 or more, also µ-coloring becomes hard, even when the height is fixed. Table 1 summarizes these results.
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Table 1
A summary of the complexity results for clique-trees. New results
from this paper are bold-faced.

Problem Height Fixed p ≥ 3
0 1 2

k-coloring P P P P
µ-coloring P P P NP-c
Precoloring P P NP-c NP-c
(γ , µ)-coloring P P NP-c NP-c
List-coloring P NP-c NP-c NP-c

We also study the complexity of the µ-coloring problem on another class of perfect graphs, the class of unit interval
graphs. Both the precoloring extension problem and the µ-coloring problem were motivated by and arise in the context of
scheduling problems, like job scheduling [2], classroom allocation [3] and train scheduling [6]. Therefore, one of the classes
of interest for these problems is the class of interval graphs and, in particular, the class of unit interval graphs.

It is well known that the chromatic number of an interval graph G can be determined in time O(|V (G)| + |E(G)|). While
the NP-completeness of precoloring extension on interval graphs was proved in 1992 [2], it took more than ten years, and a
quite involved reduction, in order to prove that the problem is hard also for unit interval graphs [14]. Analogously, in [4] it
was proved that theµ-coloring problem is NP-complete on interval graphs, and the question of the complexity ofµ-coloring
on unit interval graphs was raised. We also settle this question and show, via a nontrivial reduction, that this problem is
NP-complete.

The paper is organized as follows: we close this section with some notation. In Section 2 we introduce the class of clique-
trees and the related notion of height, characterizing the complexity of the aforementioned coloring problems on clique-
trees of different heights. In Section 3, we present a (quite involved) proof of the NP-completeness of theµ-coloring problem
on unit interval graphs.

We shall consider finite, simple, loopless, undirected graphs. Let G be a graph. Denote by V (G) its vertex set and by E(G)
its edge set. Given a vertex v of G, denote by NG(v) the set of neighbors of v in G and by NG[v] the set NG(v) ∪ {v}, and
generalize it to a set of verticesW ⊆ V (G) as follows: NG(W ) =


w∈W NG(w) \W , and NG[W ] = NG(W ) ∪W . A graph G is

a tree if it is connected and |E(G)| = |V (G)|−1. A rooted tree is a pair (G, r) consisting of a tree G together with a designated
vertex r ∈ V (G). Vertices v and w of G are true twins if either v = w or NG[v] = NG[w], that is, they are adjacent and they
have the same neighbors.

For each W ⊆ V (G), denote by G[W ] the subgraph of G induced by W . When H is an induced subgraph of G, denote by
G \ H the graph G[V (G) \ V (H)].

Given graphs G1 and G2 with V (G1) ∩ V (G2) = ∅, denote by G1 ∪ G2 the graph such that V (G1 ∪ G2) = V (G1) ∪ V (G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2). Given two vertices v and w in a graph G, contracting v and w means replacing them with
a new vertex whose neighborhood is NG(v) ∪ NG(w) − {v, w}. Note that v and w need not be adjacent in G.

For a positive integer k, let [k] = {1, 2, . . . , k}.
Given two vertices a, b ∈ V (G), an (a, b)-path of length k in G is a list (v0, v1, . . . , vk) of distinct vertices such that

v0 = a, vk = b, and for 1 ≤ i ≤ k, (vi−1, vi) ∈ E(G). The distance d(a, b) between a and b in G is the minimum length among
all (a, b)-paths in G.

A clique is a set of pairwise adjacent vertices. A stable set is a set of pairwise nonadjacent vertices. Let A, B ⊆ V (G). We
say that A is complete to B if every vertex of A is adjacent to every vertex of B, and that A is anticomplete to B if no vertex of A
is adjacent to a vertex of B.

The chromatic number of a graph G is the minimum k such that G is k-colorable. A graph is perfect [1] if for every induced
subgraph H , the chromatic number of H equals the size of a maximum clique in H . The k-coloring problem is known to be
polynomial-time solvable on perfect graphs [8].

Throughout the paper, an instance of the µ-coloring problem is a pair (G, µ), where µ : V (G) → N. An instance of the
(γ , µ)-coloring problem is a triple (G, γ , µ), where µ, γ : V (G) → N with γ (v) ≤ µ(v) for each v ∈ V (G). An instance of
the precoloring extension problem is a 4-tuple (G,W , f ′, k) whereW ⊆ V (G), k ∈ N, and f ′

: W → [k] is a proper coloring
of G[W ]. Finally, an instance of the list-coloring problem is a pair (G, L), where L : V (G) → 2(N), that is, L(v) is finite for each
v ∈ V (G).

2. Clique-trees

A graph G is a clique-tree if the graph G′ obtained by iteratively contracting its true twins is a tree. It is immediate to check
that G′ does not depend on the order of the contractions, so it is well defined.

The radius of a graph G is the value minv∈V (G)(maxu∈V (G) d(u, v)), while the center of G is the set of vertices v ∈ V (G)
such that maxu∈V (G) d(u, v) equals the radius. The height of a clique-tree G is the radius of the tree obtained from G by
identifying true twins. We denote this tree by T (G) and call root any specific vertex from the center of T (G). (We remark
that Brandstädt and Bang Le [5] showed that the class of clique-trees is equivalent to 3-leaf power of trees, a class of graphs
introduced for phylogenetic problems [16].) Given a vertex v of G, the multiplicity of v in G is the number of true twins of
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v in G (by definition, v is also counted). In this section we characterize the complexity of each problem on clique-trees of
different heights, providing polynomial-time algorithms for the cases that are easy. We refer to Table 1 for a summary of
those results and the already-known ones from the literature, and to the Introduction for a thoughtful discussion on them.

We start with some useful lemmas.

Lemma 1. For a positive integer n, let G be a complete graph with vertex set V ∪ V ′, where V = {v1, . . . , vn} and V ′
=

{v′

1, . . . , v
′
n}, V ∩ V ′

= ∅. Let µ : V (G) → N such that µ(vi) = µ(v′

i) = 2i for i in [n]. Let γ : V → N such that γ (vi) =

2i− 1 for i in [n]. If f is a solution to (G, µ), then its restriction to G[V ] is a solution to (G[V ], (γ , µ)). Conversely, each solution
to (G[V ], (γ , µ)) can be extended in polynomial time to a solution of (G, µ).

Proof. Consider a feasible solution to (G, µ), and let i ∈ [n]. Since G is complete and µ(vj) = µ(v′

j) = 2j for j ∈ [n], vertices
v1, . . . , vi, v

′

1, . . . , v
′

i use all the colors in [2i]. Thus, vertex vi+1 uses either color 2i + 1 or 2(i + 1), and the restriction to V
gives a solution to (G[V ], (γ , µ)). Conversely, a solution to (G[V ], (γ , µ)) leaves unused either 2i or 2i − 1 for each i ∈ [n],
so we can extend it to a solution of (G, µ) by assigning that free color to v′

i . �

The following lemma is implicitly proved in [4]; see Theorem 4.

Lemma 2. Let G be a complete graph and let γ , µ : V (G) → Nwith γ (w) ≤ µ(w) for w ∈ V (G). Let µmax = maxw∈V (G) µ(w).
Let C be a subset of natural numbers within the interval [1, µmax]. The graph G admits a (γ , µ)-coloring using only colors in C if
and only if, for every 1 ≤ i ≤ j ≤ µmax, |{w ∈ V (G) : i ≤ γ (w) ≤ µ(w) ≤ j}| ≤ |C ∩ [i, j]|.

2.1. Polynomial cases

Theorem 3. The (γ , µ)-coloring problem can be solved in polynomial time for clique-trees of height at most 1.

Proof. The statement is true for clique-trees of height 0, that is, complete graphs, since there the more general list-coloring
problem can be modeled as a maximummatching problem on a bipartite graph.

Suppose therefore that we are given a clique-tree G of height 1 and γ , µ : V (G) → N such that for every v ∈ V (G), γ (v)
≤ µ(v). Let µmax be the maximum value of µ over G. We may assume that every color in [µmax] belongs to the interval
[γ (v), µ(v)], for some v ∈ V (G). Furthermore, we may assume µ(v) − γ (v) ≤ |NG(v)| for every v ∈ V (G). It follows from
these assumptions that µmax ≤ n · maxv∈V (G) |NG(v)|.

Let A be the clique corresponding to the root of T (G) and B1, . . . , Br the cliques corresponding to the leaves of T (G). For
0 < j ≤ i ≤ µmax, let LA(i, j) = |{v ∈ A : j ≤ γ (v) ≤ µ(v) ≤ i}| and Lk(i, j) = |{v ∈ Bk : j ≤ γ (v) ≤ µ(v) ≤ i}|, for k in
[r]. We reduce the problem of finding a (γ , µ)-coloring of G to a linear programming feasibility problem. For j in [µmax], we
define the integer variable xj such that xj − x0 is the number of colors from the set [j] assigned to vertices of A and, based on
this definition, we consider the following linear program:

xi − xj−1 ≥ LA(i, j) ∀ i, j : 0 < j ≤ i ≤ µmax (1)

xi − xj−1 ≤ i − j + 1 − max
k∈[r]

Lk(i, j) ∀ i, j : 0 < j ≤ i ≤ µmax. (2)

Since µmax ≤ n · maxv∈V (G) |NG(v)|, the number of variables and constraints is polynomial in the size of G. All the
constraints take the form xj − xk ≥ αjk or xj = αj. Hence, the constraint matrix is totally unimodular, implying that the
associated polytope is integral (see for example [15]). To complete the proof, we verify that G is (γ , µ)-colorable if and only
if the linear program (1)–(2) is feasible.

Suppose first that G is (γ , µ)-colorable. Let x0 = 0 and, for j in [µmax], let xj be the number of colors from [j] assigned to
vertices of A. Since A is a clique, at least LA(i, j) colors from [j, i] are assigned to the vertices of A, hence constraints (1) hold.
Analogously, for each k ∈ [r], at least Lk(i, j) colors from [j, i] are assigned to the vertices of Bk; since each Bk is complete to
A, constraints (2) hold. Thus, if G is (γ , µ)-colorable, then the linear program (1)–(2) has a feasible solution.

Conversely, suppose that the linear program (1)–(2) is feasible and let x be an integer solution, which exists since the
associated polytope is integral. We shall verify that G admits a (γ , µ)-coloring. Let C = {j : 1 ≤ j ≤ µmax and xj −xj−1 = 1}.
By (1), C and A satisfy the hypothesis of Lemma 2, so there is a (γ , µ)-coloring of A using the colors in C . By (2), for each k in
[r], the clique Bk and the set of colors [µmax] \ C satisfy the hypothesis of Lemma 2, so there is a (γ , µ)-coloring of Bk using
the colors in [µmax] \ C . Putting things together, there exists a (γ , µ)-coloring of G; note that this coloring may be found by
solving r + 1 bipartite matching problems. �

Even though the algorithm from theproof of the previous theoremrelies on linear programming, one can solve the (γ , µ)-
coloring in a clique-tree of height atmost 1 using only combinatorial routines. Indeed, it iswell-known (see e.g. [20]) that the
feasibility of a linear program whose only constraints are upper bounds on the difference of variables (like the one defined
by (1)–(2)) is equivalent to testing for the existence of a negative cycle in an appropriate directed graph. In our case, this
digraph is complete, has vertices v0, . . . , vµmax , and for i, j : 0 < j ≤ i ≤ µmax the cost of the edge (vi, vj−1) is −LA(i, j)
and the cost of the edge vj−1vi is i − j + 1 − maxk∈[r] Lk(i, j). Given an instance of (γ , µ)-coloring on a clique-tree G of
height 1, finding a negative cycle in that auxiliary directed graph would lead to a (maybe proper) subgraph H of G such that
the (γ , µ)-coloring problem is already infeasible restricted to H .
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Since the (γ , µ)-coloring problem is a generalization of the precoloring extension and the µ-coloring problem, we have
the following corollary.

Corollary 4. The precoloring extension and the µ-coloring problem can be solved in polynomial time for clique-trees of height at
most 1.

Theorem 5. The µ-coloring problem can be solved in polynomial time for clique-trees of height at most 2.

Proof. Let (G, µ) be an instance of µ-coloring, where G is a clique-tree of height 2. We shall show that (G, µ) can be
polynomially reduced to an instance (G′, (γ , µ)) of the (γ , µ)-coloring problem, where G′ is a clique-tree of height 1. Thus,
we can invoke Theorem 3.

Let A be the clique of G corresponding to the root of T (G), {Bk}k∈[r] be the cliques of G corresponding to the vertices in
level 1 of T (G), and let {C j

k}k∈[r],j∈[sk] the cliques of G corresponding to the leaves of T (G), where for each k in [r] and each
j in [sk], C

j
k is complete to Bk. The graph G′ is obtained from G by deleting the cliques corresponding to vertices of level 2 in

T (G), that is, G′
= G[A


k∈[r] Bk]. Thus, G′ is a clique-tree of height 1.

As for the vector γ , it requires some more definitions. Let µmax be the maximum value of µ over G and, for every
i ∈ [µmax] and k ∈ [r], let lik = max1≤j≤sk |{v ∈ C j

k : µ(v) ≤ i}|. Also we assume that Bk = {w1
k , . . . , w

|Bk|
k }, with µ(w1

k )

≤ · · · ≤ µ(w
|Bk|
k ), for k ∈ [r]. For each k ∈ [r] and j ∈ [|Bk|], we let γ (w

j
k) = h, where (h − 1) is the largest index

i ∈ [µmax] : lik + j > i. Meanwhile, we let γ (v) = 1 for every v ∈ A.
We claim that the resulting γ -vector is such that |{v ∈ Bk : γ (v) ≤ i}| ≤ i − lik for i ∈ [µmax]. Indeed, fix i and suppose

first i− lik < |Bk|. Forw = w
i−lki +1
k , . . . , w

|Bk|
k , it follows that γ (w) ≥ i+1, so the statement holds. Conversely, if i− lik ≥ |Bk|,

then the statement holds since |{v ∈ Bk : γ (v) ≤ i}| is a subset of Bk.
We finally show that every solution of (G′, (γ , µ)) can be extended to a solution of (G, µ) and, conversely, every solution

to (G, µ) is, restricted to V (G′), a solution of (G′, (γ , µ)). Let f be a (γ , µ)-coloring of G′. It is, in particular, a µ-coloring of
G′. For each k ∈ [r], let f (Bk) = {f (v), v ∈ Bk} and let Qk = [µmax] \ f (Bk). We claim that, for each k ∈ [r] and j ∈ [sk], there
exists a µ-coloring of C j

k that uses only colors from Qk. From Lemma 2, it is enough to show that, if i ≤ µmax, then |{v ∈ C j
k :

µ(w) ≤ i}| ≤ |Qk ∩ [i]| = i − |f (Bk) ∩ [i]|. Since |f (Bk) ∩ [i]| ≤ |{v ∈ Bk : γ (v) ≤ i}| ≤ i − lik ≤ i − |{v ∈ C j
k : µ(v) ≤ i}|,

we are done.
Conversely, let f be a µ-coloring of G. Since µ(wi

k) ≤ µ(wi+1
k ) and vertices in Bk are twins when k ∈ [r], we can permute

colors of vertices in Bk to obtain f (w1
k ) < · · · < f (w|Bk|

k ), without affecting the feasibility of the problem.We claim that f now
induces a (γ , µ)-coloring of G′. Note that we only need to show that, for each k ∈ [r] and j ∈ [|Bk|] we have γ (w

j
k) ≤ f (wj

k).
Suppose the contrary and let h = γ (w

j
k) > f (wj

k) for some j. By definition of γ (w
j
k), it follows that lh−1

k + j > h − 1,
i.e. j > h − 1 − lh−1

k , and, since w1
k , . . . , w

j
k have a color in [h − 1], this is a contradiction with f being a feasible µ-coloring

of G. �

2.2. NP-complete cases

Theorem 6. For each integer p ≥ 3, the µ-coloring problem is NP-complete on clique-trees of height p and the precoloring
extension problem is NP-complete on clique-trees of height p − 1.

Proof. Wedivide the proof in three steps, each corresponding to a claim.We first reduce 3-Sat to an instance of list-coloring
on a clique-tree of height 1, having certain special properties. Next, we reduce that instance of list-coloring to an instance
of precoloring extension on a clique-tree of height 2, again with some special features. It suffices to show that precoloring
extension is NP-complete on clique-trees of height 2, and the extension to heights p ≥ 3 is trivial, so we omit it. Finally,
we reduce this latter instance to an instance of µ-coloring on a clique-tree of height 3. This shows that µ-coloring is NP-
complete on clique-trees of height 3, and again the extension to bigger heights is trivial (and thus omitted).

Claim 1. There is a polynomial-time reduction from a 3-Sat instance with n variables and k clauses to a list-coloring instance
(G, L), such that V (G) = V0 ∪ V1, where V0 is a clique of size n, V1 is a stable set complete to V0, L(v) = [2n] for each v ∈ V0,
and L(v) ⊆ [2n] for each v ∈ V1. Note that G is a clique-tree of height 1.

Proof of Claim 1. We are given a 3-Sat instance with variables x1, . . . , xn and clauses c1, . . . , ck. Without loss of generality
we assume that there is no clause cj where both xi and x̄i appear.

Our task is to produce a list-coloring instance (G, L) such that there exists a feasible coloring for (G, L) if and only if there
exists a feasible solution to the 3-Sat instance. This goes as follows. Define a bijection ϕ from the set


i{xi, x̄i} to [2n] such

that: ϕ(xi) = 2i − 1 and ϕ(x̄i) = 2i. The list-coloring instance (G, L) is defined as follows: V (G) = {A ∪ B ∪ C} with
A = {v1, . . . , vn}, B = {v′

1, . . . , v
′
n}, C = {w1, . . . , wk}, where A is a clique, B ∪ C is a stable set and A is complete to B ∪ C .

Let L(vi) = [2n] and L(v′

i) = {2i− 1, 2i} = {ϕ(xi), ϕ(x̄i)} for i ∈ [n], and L(wj) = {ϕ(xi)| xi ∈ cj} ∪ {ϕ(x̄i)| x̄i ∈ cj} for j ∈ [k].
It is clear that (G, L) satisfies the conditions in the statement of Claim 1.
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Consider now a solution S to the 3-Sat instance: if xi is true (resp. x̄i is true) in S, then color vi with ϕ(x̄i) (resp. ϕ(xi)) and
v′

i with ϕ(xi) (resp. ϕ(x̄i)). As for the vertices of C , let cj be any clause and suppose xi (resp. x̄i) makes cj true in S. The color
ϕ(xi) (resp. ϕ(x̄i)) is not used in A, so it can be used to color wj: thus, we obtain a feasible coloring for (G, L). Conversely,
every feasible coloring f to (G, L) induces a true/false assignment to the variables x1, . . . , xn such that the Boolean formula
is satisfied: namely, make xi true (resp. x̄i true) if and only if the color of v′

i is ϕ(xi) (resp. ϕ(x̄i)). �

Claim 2. There is a polynomial-time reduction from a list-coloring instance (G, L) satisfying the conditions of Claim 1 to a
precoloring extension instance (G′,W , f ′, 2n), where G′ is a clique-tree of height 2 of at least n vertices and each vertex from
W has no true twins.

Proof of Claim 2. Let (G, L) be a list-coloring instance satisfying the conditions of Claim 1, i.e., V (G) = V0 ∪ V1, where V0 is
a clique of size n, V1 is a stable set complete to V0, L(v) = [2n] for each v ∈ V0 and L(v) ⊆ [2n] for each v ∈ V1. V (G′) is
made of vertices from V (G) plus some sets of additional vertices, which we define below, that are disjoint with each other
and with the set V (G). For v ∈ V1, define the set Dv of 2n − |L(v)| vertices. Also, let V2 =


v∈V1

Dv . The graph G′ is the
unique graph with the following properties: V (G′) = V0 ∪ V1 ∪ V2, V0 ∪ V1 induces G, V2 is a stable set, and NG′(Dv) = {v}

for each v such that Dv is nonempty. Note that G′ is a clique-tree of height 2, where V2 are the vertices in the last level. Let
W = V2 and let f ′ be a precoloring such that, for each v in V1, all vertices of Dv are given distinct colors from [2n] \ L(v).
Note that (G′,W , f ′, 2n) satisfies the ‘‘structural’’ requirements from the claim.

It is easy to see that every precoloring extension ofG′, restricted to V0∪V1, is a solution for the list-coloring instance (G, L)
and, conversely, every solution of (G, L) can be combined with the precolored vertices in V2, obtaining a valid 2n-coloring
of G′. Moreover, the size of G′ is a polynomial in the size of G. �

From Claims 1 and 2, the precoloring extension problem is NP-complete on clique-trees of height 2.

Claim 3. There is a polynomial-time reduction from a precoloring extension instance (G′,W , f ′, 2n), where G′ is a clique-tree of
height p of at least n vertices and each vertex from W has no true twins, to a µ-coloring instance on a clique-tree of height at
most p + 1.

Proof of Claim 3. Let (G′,W , f ′, 2n) be a precoloring extension instance where G′ is a clique-tree of height p of at least n
vertices, and each vertex fromW has no true twins.

We now define an instance (G′′, µ) of the µ-coloring problem such that G′′ is a clique-tree of height at most p + 1,G′

is an induced subgraph of G′′, a solution of (G′′, µ) restricted to V (G′) is a solution of (G′,W , f ′, 2n), and every solution of
(G′,W , f ′, 2n) can be extended to a µ-coloring of G′′.

Again, all sets of vertices we add are pairwise disjoint and disjoint from V (G′). For each vertex v ∈ W , let Ev be a clique
of size f ′(v) − 1. The edge set of G′′ is the union of the following two sets: the set of edges of G′ and, for each v ∈ W such
that Ev is non-empty, (i) the set of edges joining v and Ev and (ii) all edges within vertices of Ev . Since each v ∈ W has no
true twins, G′ is a clique-tree of height at most p + 1.

The function µ is defined by µ(v) = 2n for each v ∈ V (G′) \ W , µ(v) = f ′(v) for each v ∈ W , and µ(v) = f ′(v) − 1
for each v ∈ Ev . In every µ-coloring of G′′, for each v such that f ′(v) > 1, the vertices of Ev are assigned all the colors in
[f ′(v)−1], since Ev is a clique of size f ′(v)−1. Hence, each vertex v ∈ W is colored f ′(v). Therefore, everyµ-coloring of G′′,
restricted to V (G′), is a solution for the precoloring extension instance (G′,W , f ′, 2n). It is also easy to see that, conversely,
every solution of (G′,W , f ′, 2n) can be extended to a µ-coloring of G′′. Moreover, the size of G′′ is a polynomial in the size
of G′. �

From Claims 1–3, we conclude that the µ-coloring problem is NP-complete on clique-trees of height 3. �

Since the (γ , µ)-coloring problem is a generalization of the precoloring extension problem, we have the following
corollary.

Corollary 7. For each integer p ≥ 2, the (γ , µ)-coloring problem is NP-complete on clique-trees of height p.

3. Unit interval graphs

A graph G is an interval graph if it is the intersection graph of a set of intervals over the real line. A unit interval graph is the
intersection graph of a set of intervals of length 1, while a proper interval graph is the intersection graph of a set of intervals
where no interval is properly contained in another. A claw is the complete bipartite graph K1,3.

Theorem 8 ([19]). The classes of unit interval graphs, proper interval graphs, and claw-free interval graphs coincide.

Let v1, . . . , vn be an ordering of the vertices of a graph G. The ordering is consistent if there is no triple i < j < k such that
vkvi ∈ E(G) and vkvj ∉ E(G). If, in addition, there is no triple i < j < k such that vivk ∈ E(G) and vivj ∉ E(G) (equivalently,
the reverse ordering is also consistent), then the ordering is called proper consistent.

Theorem 9 ([17,18]). A graph is an interval graph if and only if its vertices admit a consistent order, while it is a unit interval
graph if and only if its vertices admit a proper consistent order.
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The main result of this section is the following.

Theorem 10. The µ-coloring problem is NP-complete on unit interval graphs.

Our proof is based on a reduction from 3-Sat. Recall that in such a problem, we are given a t-variable Boolean formula φ
in conjunctive normal form with k clauses such that each variable x1, . . . , xt appears in at least two clauses but not twice in
the same clause, each clause contains two or three literals, and the goal is to find a satisfying truth assignment or show that
none exists.

Given a 3-Sat instance φ, we denote by sizeφ the number of bits required for a binary encoding of φ. The definition is
quite standard, and we refer the reader to textbooks for details (see for example [15]). For the sake of clarity, we start with
reducing 3-Sat to a list-coloring problem with some parity constraints, which we call Parity list coloring (PLC in short). We
then show how to complete the proof, linking PLC to the µ-coloring problem on unit interval graphs.
Parity list coloring (PLC)
Input: A graph G, a finite list L(v) ⊆ N for each vertex v ∈ V (G), and a partition F of V (G) into classes.
Goal: Find an L-coloring of G such that all the vertices in a same class are assigned colors with the same parity.

We say that a set F ∈ F is trivial if |F | = 1, nontrivial otherwise.

3.1. From satisfiability to parity list coloring

As we now show, PLC is NP-complete on complete graphs (recall that list-coloring is easy on such graphs). We first show
how to associate to some instance φ of 3-Sat an instance (G, L, F ) of PLC. We assume that we are given some ordering
c1, . . . , ck on the clauses of φ, and associate therefore to φ a string ℓ1 . . . ℓy of characters from the alphabet of literals. For
instance, if φ = (x1 ∨ x̄2)∧ (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x3), we associate to φ the string ℓ1 . . . ℓy ≡ x1x̄2x1x2x̄3x̄1x3. It follows from
the definition of 3-Sat that y ≤ 3k.

We consider a clause as a set of characters. Associate to each clause cj for j ∈ [k] the set α(cj) = {1 ≤ i ≤ y : ℓi ∈ cj} and
to each variable xi for i ∈ [t] the set β(xi) = {1 ≤ i ≤ y : ℓi ≡ xi or ℓi ≡ x̄i}. Referring again to the previous example, we
have that α(c1) = {1, 2}, α(c2) = {3, 4, 5}, α(c3) = {6, 7}, β(x1) = {1, 3, 6}, β(x2) = {2, 4} and β(x3) = {5, 7}.

We exploit some ideas from Jansen [12] and associate toφ an instance (Gφ, Lφ, Fφ) of parity list coloring, that is defined as
follows. The graph Gφ is a complete graph of y+k vertices. The vertices of Gφ are partitioned into two sets: T = {v1, . . . , vy}

and U = {vy+1, vy+2, . . . , vy+k}. The lists Lφ of feasible colors of V (Gφ) are defined as follows:
for p ∈ [y], Lφ(vp) = {2p, 2p + 1};
for j ∈ [k], Lφ(vy+j) = {2h : h ∈ α(cj) and ℓh ≡ xi, for some i ∈ [t]} ∪ {2h+ 1 : h ∈ α(cj) and ℓh ≡ x̄i, for some i ∈ [t]}.

(We remark that, for each j ∈ [k − 1], each color from Lφ(vy+j) is strictly smaller than each color in Lφ(vy+j+1).)
Finally, let Fφ = {{vi, i ∈ β(x1)}, . . . , {vi, i ∈ β(xt)}, {vy+1}, . . . , {vy+k}}.

Lemma 11. There exists a feasible PLC for (Gφ, Lφ, Fφ) if and only if there exists a feasible truth assignment for φ, and one can
construct one from the other in a time polynomial in sizeφ .

Proof. Sufficiency: let ν be a feasible assignment forφ. Consider a coloring f defined as follows: for p ∈ [y], set f (vp) = 2p+1
if the variable corresponding to ℓp is true in ν, and f (vp) = 2p otherwise; for j ∈ [k], we choose a literal ℓm of cj that is true
(there is at least one since ν is a feasible truth assignment), and set f (vy+j) = 2m+1 if ℓm corresponds to a negated variable,
f (vy+j) = 2m otherwise. It is straightforward to check that f is feasible for (Gφ, Lφ, Fφ).

Necessity: from a feasible PLC, we define a truth assignment ν as follows: a variable ν(xi) is true if each vertex vh with
h ∈ β(xi) has odd color, it is false otherwise. It is straightforward to check that ν is a feasible truth assignment. We conclude
by pointing out that both producing a feasible truth assignment from a feasible coloring and the converse operation can be
performed in time polynomial in sizeφ . �

As an immediate corollary of the previous lemma, we obtain that PLC is NP-complete on cliques.

3.2. From PLC to µ-coloring on unit interval graphs

Consider an instance of PLC (G,L, F ) defined as follows: we are given natural numbers t, y, k and a partition of [y] into
sets {β1, . . . , βt}, each of which has size at least 2. LetG be a complete graph such that the set V (G) is the disjoint union of
sets T and U , with T = {v1, . . . , vy} and U = {vy+1, . . . , vy+k}. The ground set of colors is [2y + 1]. The list associated to
each vertex vp ∈ T is {2p, 2p + 1}, while the lists L(vy+1), . . . , L(vy+p) are such that, for i ∈ [p − 1], each color from L(vy+i)

is smaller than each color from L(vy+i+1). Finally, we let F = {{vi : i ∈ β1}, . . . , {vi : i ∈ βt}, {vy+1}, . . . , {vy+k}}.
Note that each instance of PLC (Gφ, Lφ, Fφ) associated to a 3-Sat instance φ as in Section 3.1 fits the framework (G,L, F )

defined above. We now associate with each such instance of PLC (G,L, F ) an instance (G, µ) of µ-coloring, with G a unit
interval graph. We postpone the complete definition of (G, µ), that is rather technical, to Section 3.3, but give here some
crucial properties. Namely, (G, µ) is such that:
(P1) V (G) = U ∪ U ′

∪ T ∪ T ′
∪ {v⋆

}.
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(P2) G[U ∪ T ] is isomorphic toG.
(P3) G[T ∪ T ′

∪ {v⋆
}] (resp. G[U ∪ U ′

]) is a unit interval graph admitting a proper consistent order where the vertices of
T ∪ {v⋆

} (resp. U) are last (resp. first).
(P4) N(v⋆) = U ∪ T ;U ′ (resp. T ′) is anti-complete to T ∪ T ′ (resp. U ∪ U ′).
(P5) For each v ∈ U ∪ T , µ(v) = maxh∈L(v) h; µ(v⋆) = 1.
(P6) (G, µ) can be built in polynomial time.

Above and throughout this last section, when we write that a list of operations can be performed in polynomial time
without specifying with respect to which function, we mean polynomial in the size of (G,L, F ). Note that each function
that is polynomial in y, t, k is also polynomial in the size of (G,L, F ).

Lemma 12. G is a unit interval graph.

Proof. Observe that U is complete to T ∪ {v⋆
} and that there are no more edges from U ∪U ′ to T ∪ T ′

∪ {v⋆
}. The statement

then follows from (P3). �

It follows from Lemma 11 that, in order to prove Theorem 10, it is enough to prove the next lemma. Note that, with a
slight abuse, we often look atG as the subgraph ofG induced byU∪T . Moreover, if f is a coloring for a graph G and X ⊆ V (G),
we denote by f [X] the restriction of f to X .

Lemma 13. Let (G,L, F ) and (G, µ) be defined as above. If f is a µ-coloring for (G, µ), then f [V (GG)] is a feasible PLC for
(G,L, F ); conversely, every feasible PLC for (G,L, F ) can be extended in polynomial time to a feasible µ-coloring for (G, µ).

We divide the proof of Lemma 13 into the proof of two lemmas, whose statements need a few definitions.
Our first aim is to define a ‘‘restriction’’ of (G,L, F ) to G[U] and G[T ]. First, we letL[U] (resp.L[T ]) be the restriction ofL to U (resp. T ). We also consider the restriction of F to T and U: this deserves a few words. First note that the definition

of F is such that it does indeed induce a partition of U and a partition of T . Moreover, the partition of U is only composed
of singletons. Thus, the parity constraints associated to vertices of U can be neglected. Thus, F is essentially a partition of T
and, in the following, with a slight abuse, we also refer to F as a partition of T . Therefore, the restriction of (G,L, F ) to G[U]

is simply an instance (G[U],L[U]) of list-coloring, while the restriction of (G,L, F ) to G[T ] is an instance (G[T ],L[T ], F ) of
PLC.

Finally, we associate to an instance (G, µ) of the µ-coloring on G two ‘‘sub-instances’’ (G[U ∪ U ′
], µ) and (G[T ∪ T ′

∪

{v⋆
}], µ), where we are slightly abusing notations since we are identifying µ respectively with its restriction to U ∪ U ′ and

to T ∪ T ′
∪ {v⋆

}.

Lemma 14. If f is aµ-coloring for (G[U∪U ′
], µ), then f [U] is anL[U]-coloring for (G[U],L[U]); conversely, everyL[U]-coloring

for (G[U],L[U]) can be extended in polynomial time to a µ-coloring for (G[U ∪ U ′
], µ).

Lemma 15. If f is aµ-coloring for (G[T ∪T ′
∪{v⋆

}], µ), then f [T ] is a feasible PLC for (G[T ],L[T ], F ); conversely, every feasible
PLC for (G[T ],L[T ], F ) can be extended in polynomial time to a µ-coloring for (G[T ∪ T ′

∪ {v⋆
}], µ).

Assume now that Lemmas 14 and 15 hold. As we show in the following, Lemma 13 holds too.
In order to prove the first statement of Lemma 13, we consider a µ-coloring f for (G, µ). The restrictions f [U ∪ U ′

] and
f [T ∪T ′

∪{v⋆
}] are trivially aµ-coloring for (G[U ∪U ′

], µ) and aµ-coloring for (G[T ∪T ′
∪{v⋆

}], µ), respectively. It follows
from Lemmas 14 and 15 that f [U] is anL[U]-coloring for (G[U],L[U]) and f [T ] is a feasibleL[U]-coloring for (G[T ],L[T ], F ).
We claim that f [U ∪ T ] determines a feasible PLC for (G,L, F ). That is easy to check, as soon as we observe that, f (u) ≠ f (t)
for u ∈ U and t ∈ T , since T ∪ U is a clique of G.

We now prove the second statement of Lemma 13. Consider a feasible PLC for (G,L, F ). Trivially, f [U] is anL[U]-coloring
for (G[U],L[U]), and f [T ] is a feasible coloring for (G[T ],L[T ], F ). It follows from Lemmas 14 and 15 that f [U] can be
extended to a µ-coloring f ′ for (G[U ∪U ′

], µ) and f [T ] can be extended to a µ-coloring f ′′ for (G[T ∪ T ′
∪{v⋆

}], µ). Observe
also that, for each vertex u ∈ U and t ∈ T , f (u) ≠ f (t), since T ∪ U is a clique ofG. Moreover, f ′′(v⋆) = 1 (since µ(v⋆) = 1)
and f (u) ≠ 1, for u ∈ U (color 1 does not belong toL(u)). Thus, it is easy to check that the union of f ′ and f ′′ determines a
µ-coloring for G, and that trivially it can be obtained in polynomial time given f ′, f ′′.

In the rest of the paper, we therefore build the graph G so as to satisfy properties (P1)–(P6), and prove Lemmas 14 and 15.

3.3. Building up the graph G

In this section we construct the graph G, describing explicitly the graphs G[U ∪ U ′
] and G[T ∪ T ′

∪ {v⋆
}] and a proper

consistent ordering of their vertices where vertices of U (resp. T ∪ {v⋆
}) are first (resp. last).

3.3.1. The graph G[U ∪ U ′
] and the proof of Lemma 14

Let D =


v∈U
L(v). Let U ′

= {w1, . . . , w2y+1}. G[U ∪ U ′
] is the graph whose edges are all and only the following: U,U ′

are cliques, wi is complete to U for i ∈ [2y + 1] \ D; for i ∈ D, v ∈ U is adjacent to wi if and only if i < minL(v).
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Fig. 2. A unit interval representation of the instance (G[U ∪ U ′
], µ) arising from an instance (G,L) with t = 3, y = 7, k = 3,L(v8) = {2, 5},L(v9) =

{6, 8, 11},L(v10) = {11, 14} (the values of µ for each vertex are shown on the left of the corresponding interval). Note that (G,L) is the PLC instance
associated to the 3-Sat instance φ = (x1 ∨ x̄2) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3).

The proposed order of the vertices starts with the vertices of U, vy+1, . . . , vy+k, followed by the vertices wi in U ′ with
i ∈ [2y + 1] \ D, and finally by the vertices wi in U ′ with i ∈ D, ordered by their index.

Recall that in the list-coloring instance (G[U],L), each color inL(vy+j+1) is strictly greater than all colors inL(vy+j) for
j ∈ [k − 1]. Thus, N[vy+1] = U ∪ {wi : i ∈ [2y + 1] \ D}, and N[vy+j+1] = N[vy+j] ∪ {wi : i ∈L(vy+j)}, for each j ∈ [k − 1].
Taking this into account, it is not hard to see that the order proposed above is a proper consistent order. Thus, G[U ∪ U ′

] is
a unit interval graph. An example can be seen in Fig. 2.

As we already mentioned, µ(v) = maxh∈L(v) h for each v ∈ U . Finally, we define µ over U ′ as µ(wi) = i for each
i ∈ [2y + 1].

Proof of Lemma 14. Consider a µ-coloring f of G[U ∪ U ′
]. First note that the vertices in U ′ form a clique, and µ(wi) = i for

each i ∈ [2y + 1]. This implies that f (wi) = i for each i ∈ [2y + 1]. Now, let v ∈ U . Since µ(v) ≤ 2y + 1, f (v) is a color
given to some vertex in U ′ nonadjacent to v. By definition of (G[U ∪U ′

], µ), a vertex wi ∈ U ′ is nonadjacent to v if and only
if either i > µ(v) or i ∈L(v). Since f is a µ-coloring, f (v) ∈L(v). Thus, f [U] is a feasible solution for (G[U],L). Conversely,
given a feasibleL[U]-coloring of (G[U],L[U]), we can extend it to a µ-coloring of (G[U ∪ U ′

], µ), by giving to each vertex w
of U ′ color µ(w). �

3.3.2. The graph G[T ∪ T ′
∪ {v⋆

}] and the proof of Lemma 15
G[T ∪ T ′

∪ {v⋆
}] is constructed through the following two intermediate steps: we start by building a gadget given by

the unit interval graph Hn, where n is any positive integer, and a list La,b over its vertices, with even integers a, b such that
a ≤ b ≤ n. Then, for each i ∈ [y − t], we build a graph H i

y and suitably connect those so as to form the unit interval graph
G. This will be G[T ∪ T ′

∪ {v∗
}]. We conclude the paragraph by showing that the latter graph satisfies Lemma 15.

Roughly speaking, the gadgetHn and the list La,b ensure that, in each feasible La,b-coloring to (Hn, La,b), two given vertices
are either given the (even) colors a and b, or the (odd) colors a + 1, b + 1. We shall use this to conclude that two vertices
from the same set of F (i.e. v, w from the same βi) are given colors with the same parity. Multiple copies of Hn ensure that
each pair within each set F ∈ F is given colors of the same parity.

We first deal with Hn. For each n ∈ N such that n ≥ 3,Hn is the graph on 4n + 8 vertices that is defined from
Fig. 3, where V (Hn) = {z1, . . . , z4n+8}. Ai

j, B
i
j for i ∈ {0, 1} and j ∈ {1, 2} are cliques with the following vertices A0

1 =

{z2, z3}, A0
2 = {z4, . . . , zn+1}, B0

1 = {zn+2, zn+3}, B0
2 = {zn+4, . . . , z2n+1}, B1

2 = {z2n+8, . . . , z3n+5}, B1
1 = {z3n+6, z3n+7}, A1

2 =

{z3n+8, . . . , z4n+5}, A1
1 = {z4n+6, z4n+7}. The other intervals represent single nodes vj whose subscript j is denoted on the left

of the corresponding interval.

Remark 16. Graph Hn is a symmetric proper interval graph, that is, the one-to-one correspondence zj → z4n+9−j is an
automorphism of Hn.

Let now n1, n2 ∈ N, such that n1 < n2 ≤ n/2. Define the integers a = 2n1 and b = 2n2 and consider the following
list-coloring constraints La,b:

• La,b(z1) = 1;
• La,b(z2) = La,b(zn+2) = {a, a + 1};
• La,b(z3) = La,b(zn+3) = {b, b + 1};
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Fig. 3. A unit interval representation of the graph Hn .

• for zj ∈ A0
2, La,b(zj) = La,b(zj+n) =


{2(j − 3), 2(j − 3) + 1} if j < n1 + 3
{2(j − 2), 2(j − 2) + 1} if n1 + 3 ≤ j < n2 + 2
{2(j − 1), 2j − 1} if n2 + 2 ≤ j;

• La,b(z2n+2) = {a + 1, b};
• La,b(z2n+3) = {b + 1, 2n + 2};
• La,b(z2n+4) = {1, a};
• La,b(zj) = La,b(z4n+9−j) for j ≥ 2n + 5.

Remark 17. Let n1, n2 ∈ N, such that n1 < n2 ≤ n/2, and (Hn, La,b) defined as above. For each j ∈ [n] \ {n1, n2}, there exists
a unique vertex v ∈ A0

2 (resp. B
0
2, A

1
2, B

1
2) such that La,b(v) = {2j, 2j+ 1}. Conversely, for each vertex v ∈ A0

2 (resp. B
0
2, A

1
2, B

1
2)

there exists a value j ∈ [n] \ {n1, n2} such that La,b(v) = {2j, 2j + 1}.

Let µ : V (Hn) → N be defined as µ(v) = maxh∈La,b(v) h.

Lemma 18. For a, b, µ defined as above, the following properties hold.

(1) Every solution of (Hn, µ) is a solution of (Hn, La,b) and conversely every solution of (Hn, La,b) is a solution of (Hn, µ).
(2) Let A0

= A0
1 ∪ A0

2 and A1
= A1

1 ∪ A1
2. There is no feasible La,b-coloring f of (Hn, La,b), such that there exist w, w′

∈ A0 (resp.
A1) such that f (w) = a, f (w′) = b + 1, or f (w) = a + 1, f (w′) = b.

(3) No pair of vertices of A0 and A1 share a color in each feasible La,b-coloring of (Hn, La,b).
(4) Each proper coloring of A0 (resp. A1) that does not violate constraints from La,b and from point (2) can be extended in time

polynomial in n to a La,b-coloring of (Hn, La,b).

Proof. (1) One direction is trivial. Thus, we only need to show that for each proper coloring f that is feasible for
(Hn, µ), f (v) ∈ La,b(v) holds true for each v ∈ V (Hn). Let f be a feasible coloring of (Hn, µ). Since µ(z1) = 1, we
have that f (z1) = 1. Recall that A0

1 ∪ A0
2 ∪ B0

1 ∪ B0
2 is a clique, and for each i ∈ [n] there are exactly two vertices of this

clique with µ = 2i + 1 (see Remark 17). As an immediate corollary of Lemma 1 (having excluded color 1, that none of
vertices from A0

1 ∪ A0
2 ∪ B0

1 ∪ B0
2 is colored with, being they adjacent to z1), f (w) ∈ La,b(w) for w ∈ A0

∪ B0
1 ∪ B0

2. Since Hn

is symmetric (cfr. Remark 17), the same holds for w ∈ A1
∪ B1

1 ∪ B1
2. Vertex z2n+4 is adjacent to the clique A0

2 ∪ B0
2 whose

a − 2 vertices can be colored with colors from 2 to a − 1, so f (z2n+4) ∈ {1, a} = La,b(z2n+4). Again by symmetry we
conclude that f (z2n+5) ∈ La,b(z2n+5). Vertex z2n+2 is adjacent to the clique A0

2 ∪ B0
2 that has a − 2 vertices colored with

colors from 2 to a− 1 and b− a− 2 colors in the interval [a+ 2, b− 1]. Hence z2n+2 can only be given colors 1, a, a+ 1
and b. Furthermore, it is adjacent to z2n+4 and z2n+5, so it cannot be colored with 1 and a as well. Thus, the only colors
left are those from its list. Again, a symmetric argument works for z2n+7. In order to conclude the proof, one can easily
show f (w) ∈ La,b(w) for w = z2n+3, z2n+6 by using similar arguments as those used above.

(2) From Remark 17, z2 and z3 are the only vertices from A0 that can be colored with a, a + 1, b, b + 1. In particular
La,b(z2) = {a, a + 1} and La,b(z3) = {b, b + 1}. Suppose first f (z2) = a and f (z3) = b + 1. Thus, f (zn+2) = a + 1 and
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f (zn+3) = b, which implies that vertex z2n+2 cannot be colored. Now suppose f (z2) = a+1 and f (z3) = b. The following
assignments of colors are implied: f (zn+2) = a, f (zn+3) = b + 1, f (z2n+3) = 2n + 2, f (z2n+6) = b + 1, f (z2n+4) = 1,
and f (z2n+5) = a. Since La,b(z2n+7) = {a+1, b}, either the pair of colors a, a+1 or b, b+1 are used by vertices adjacent
to z3n+6 and z3n+7, which then cannot be colored. The symmetric argument works for A1.

(3) Let f be a feasible La,b-coloring for (Hn, La,b). Recall that A0
= A0

1 ∪ A0
2; pick any color c such that f (w) = c for some

c ∈ A0
2, and recall that c ≠ a, a + 1, b, b + 1. Suppose first that c is even. By Remark 17, c ≠ a, a + 1, b, b + 1 and

there is a vertex w′
∈ B0

2 such that La,b(w′) = {c, c + 1}, so f (w′) = c + 1. Repeating the same argument, f (w′′) = c
for some w′′

∈ B1
2, and f (w′′′) = c + 1 for some w′′

∈ A1
2. Since by Remark 17 no other vertex of A1 can be given color

c , we conclude the proof for this case. Being the graph symmetric (cfr. Remark 16), we can reverse the argument and
settle the case when c is odd. Now pick any color c such that f (w) = c for some w ∈ A0

1 = {z2, z3} and recall that
c ∈ {a, a + 1, b, b + 1}. Since f is a feasible La,b-coloring for (Hn, La,b), by part (2) of the Lemma, either f (z2) = a and
f (z3) = b, or f (z2) = a+1 and f (z3) = b+1. Suppose the first holds. Since f is feasible for (Hn, La,b), the following colors
are implied: f (zn+2) = a+ 1, f (zn+3) = b+ 1, f (z2n+2) = b, f (z2n+3) = 2n+ 2, f (z2n+6) = b+ 1 and f (z2n+7) = a+ 1.
Moreover, note now that f (z2n+5) = 1, otherwise z3n+7 cannot be colored, so f (z2n+4) = a. Repeating the argument, we
obtain that f (z4n+6) = b+1 and f (z4n+7) = a+1. Thus, we showed that if f (z2) = a and f (z3) = b, then f (z4n+6) = b+1
and f (z4n+7) = a+ 1. Since z4n+6 and z4n+7 are the only vertices from A1 that can be colored with a, a+ 1, b, b+ 1, this
concludes the proof for this case. We are left to settle the statement for the case f (z2) = a + 1 and f (z3) = b + 1: note
that this is implied by the previous one, since Hn is symmetric.

(4) Let us settle the case for A0, since the case for A1 follows by symmetry. Analogously, let B0
= B0

1 ∪ B0
2 and B1

= B1
1 ∪ B1

2.
Repeating the arguments from the proof of part (3), we observe that in any extension of a proper coloring f of A0 the
following holds: B1 must use the same colors of A0, while B0 and A1 must use colors c + 1 for each color c used by A0

with c even, and colors c − 1 for each color c used by A0 with c odd. Moreover, following again the proof of part (3),
vertices z2n+2, . . . , z2n+7 can be assigned a color to make the proper coloring feasible. �

Consider y − t vertex disjoint copies H1
y , . . . ,H

y−t
y of Hy and for i ∈ [y − t] denote their vertex sets by V (H i

y) =

{z i1, . . . , z
i
4y+8}. Let G be defined as follows: starting from the graph

y−t
i=1 H i

y, for each i ∈ [y − t], add all edges joining
A1

∪ {z i4y+8} from H i and A0
∪ {z i+1

1 } from H i+1. Then, contract vertex z i4y+8 of H i with vertex z i+1
1 of H i+1.

It is immediate to check that G has (4y + 7)(y − t) + 1 vertices, and

z11 , . . . , z
1
4y+8 = z21 , z

2
2 , z

2
3 , . . . , z

y−t
4y+8

is a proper consistent order of V (G). Thus, G is a unit interval graph (see Fig. 4 for a unit interval representation of G with
y = 3, t = 1). Moreover, for each i ∈ [y − t], the subgraph of G induced by {z i1, . . . , z

i
4y+8} is precisely H i

y. We denote by E i

and F i respectively the sets A0 and A1 from graph H i
y. Note that F i

= {z i3y+8, . . . , z
i
4y+7} and, with the order defined above,

the last vertices of the graphs are those from F y−t
∪ {zy−t

4y+8}, i.e. {z
y−t
3y+8, z

y−t
3y+9, . . . , z

y−t
4y+8}.

We now define a list L for the vertices of G. For a fixed j ∈ [t], we let yj = |βj| ≥ 2, and ∆j = (
j−1

ℓ=1 yℓ) − (j − 1); also,
denote by p1j , . . . , p

yj
j the elements of βj, with p1j < · · · < p

yj
j . Note that each i ∈ [y − t] can be written in a unique way as

∆j + ℓ, for some j ∈ [t] and ℓ ∈ [yj − 1]. For j ∈ [t] and ℓ ∈ [yj − 1], define L over {z
∆j+ℓ

1 , . . . , z
∆j+ℓ

4y+8 } as L2pℓ
j ,2p

ℓ+1
j

. Recall

that, for i ∈ [y − t − 1], we have z i4y+8 = z i+1
1 , and those are the only vertices on which L is defined twice. Moreover, we

have L(z i4y+8) = L(z i+1
1 ) = 1. Thus, L is well defined. Since z i4y+8 = z i+1

1 for i ∈ [y − t − 1], and those vertices can always be
colored with 1, L is well defined. For each i ∈ [y− t], for each vertex u of H i

y set µ(u) as in Lemma 18. Note that this implies
µ(u) = maxh∈L(u) h for each u ∈ V (G).

Lemma 19. For G, L, µ defined as above, the following holds.

(1) For i ∈ [y − t], E i and F i are cliques. For i ∈ [y − t − 1], z i4y+8 is complete to E i+1. For i ∈ {2, . . . , y − t}, z i1 is complete to
F i−1.

(2) For each i ∈ [y − t], p ∈ [y], there exists a unique vertex v ∈ E i (resp. F i) such that L(v) = {2p, 2p + 1}. Conversely, for
each vertex v ∈ E i (resp. F i) there exists a value p ∈ [y] such that L(v) = {2p, 2p + 1}.

(3) For each i, j ∈ [y − t], E i and F j share no color, and F i and F j share all colors in each feasible L-coloring of (G, L).
(4) Everyµ-coloring of G is a feasible L-coloring for (G, L). Conversely, every feasible L-coloring for (G, L) is a feasibleµ-coloring

of G.
(5) Every feasible L-coloring of (G, L) is such that, for each j ∈ [t], either set F y−t uses all colors from the set {2p1j , 2p

2
j ,

2p3j , . . . , 2p
yj
j }, and none from the set {2p1j + 1, 2p2j + 1, 2p3j + 1, . . . , 2p

yj
j + 1}, or it uses all colors from the latter set

and none from the former.
(6) Each feasible solution to (G[F y−t

], L) that satisfies conditions from (5) can be extended in polynomial time to a feasible
L-coloring for (G, L).
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Fig. 4. An example of Gwith y = 3, t = 1.

Proof. (1) and (2) are immediately shown true, by the very definition of G, L and Remark 17.

(3) From Lemma 18(3) applied to H1
y , in each feasible L-coloring f of (G, L), vertices of E1 share no color with vertices of F 1.

By Remark 17, there is exactly one vertex from F 1 and one from E2 whose list of feasible colors is {2p, 2p + 1}, for each
p ∈ [y]. Since both sets are cliques of size y, a color is used in F 1 if and only if it is not used in E2. We conclude that a color
is used in E1 if and only if it is not used in F 1, and if and only if it is used in E2. By repeatedly applying this argument, we
obtain the thesis.

(4) Trivially, every feasible L-coloring for (G, L) is aµ-coloring for (G, µ). Now let f be aµ-coloring for (G, µ). We only have
to check that f (v) ∈ L(v) for all v ∈ V (G). Note that f is a µ-coloring of (G[H i

y], µ), for each i ∈ [y − t]. Recall that each
i ∈ [y− t] can be written in a unique way as ∆j + ℓ, for some j ∈ [t] and ℓ ∈ [yj − 1]. Hence, from Lemma 18(1) and the
fact that L is defined over {z

∆j+ℓ

1 , . . . , z
∆j+ℓ

4y+8 } as L2pℓ
j ,2p

ℓ+1
j

, f is an L[H i
y]-coloring for (G[H i

y], L[H
i
y]), for each i in [y − t].

Thus, it is also an L-coloring for (G, L).
(5) Let f be a feasible L-coloring for (G, L) and pick any i ∈ [y− t]. Recall that there exist unique j and ℓ such that i = ∆j +ℓ,

and ℓ ∈ [yj − 1]. We first show that F i either uses both colors 2ℓpj, 2ℓ+1pj and neither 2ℓpj + 1 nor 2ℓ+1pj + 1, or
uses both colors 2ℓpj + 1 and 2ℓ+1pj + 1, and neither 2ℓpj nor 2ℓ+1pj. By part (2), F i never uses simultaneously 2ℓpj and
2ℓpj + 1 in f . From Lemma 18(2), F i uses either both 2ℓpj and 2ℓ+1pj or both 2ℓpj + 1 and 2ℓ+1pj + 1. By part (3), it
follows that, for each j ∈ [t], F∆j+1 either uses all colors from the set {2p1j , 2p

2
j , 2p

3
j , . . . , 2p

yj
j }, and none from the set

{2p1j + 1, 2p2j + 1, 2p3j + 1, . . . , 2p
yj
j + 1}, or it uses all colors from the latter set and none from the former. By using

again part (3), the thesis follows.
(6) Consider now a feasible L[F y−t

]-coloring f for (G[F y−t
], L[F y−t

]). From part (5), we know it satisfies the hypothesis from
Lemma 18(4) (with respect to the graph Hy−t

y and the list La,b, with a = 2pyt−1
t , b = 2pytt ). Thus, f can be extended to a

feasible L[Hy−t
y ]-coloring for all vertices of Hy−t

y . Repeating the argument used in the proof of claim (3), we can extend
that proper coloring to F y−t−1 by assigning in the only possible way the set of colors used by F y−t in f . This partial proper
coloring of Hy−t−1 respects the constraints of Lemma 18(4). Hence, we can repeat the argument used above. Iterating
over all i ∈ [y − t], we conclude that f can be extended to a feasible coloring for (G, L). It is immediate to check that it
can be done in polynomial time. �

Define G[T ∪T ′
∪{v∗

}] = G, where we identify T with F y−t and v⋆ with zy−t
8y+15. Lemma 19(2) and the definition of G allow

us to identify T with F y−t in such a way that, for each p ∈ [y], the vertex vp of T corresponds to the only vertex v in F y−t

satisfying L(v) =L(vp) = {2p, 2p + 1}. Also, µ(v⋆) = 1 and, in the proper consistent order of G given, T ∪ {v⋆
} are the last

vertices.

Proof of Lemma 15. Let f be a µ-coloring for (G[T ∪ T ′
∪ {v⋆

}], µ). By Lemma 19(4), it is also a feasible L-coloring for
(G, L). By Lemma 19(5), for each F ∈ F , vertices from F are given colors with the same parity. Thus, f is a feasible PLC for
(G[T ],L[T ],F).

Conversely, let f be a feasible PLC coloring for (G[T ],L[T ], F ). SinceL coincides with the restriction of L to F y−t , f is
also a feasible L-coloring for (G[F y−t

], L) and it satisfies the conditions from Lemma 19(5). Thus, by Lemma 19(6), f can be
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extended in polynomial time to a feasible L-coloring for (G, L). Finally, we use Lemma 19(4) to conclude that f is aµ-coloring
for G. �

In order to conclude the proof of Theorem 10, we are left to note that, by definition of (G, µ), properties (P1)–(P6) clearly
hold.
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