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Abstract A natural generalization of the well known generalized linear models is to
allow only for some of the predictors to be modeled linearly while others are mod-
eled nonparametrically. However, this model can face the so called “curse of dimen-
sionality” problem that can be solved by imposing a nonparametric dependence on
some unknown projection of the carriers. More precisely, we assume that the obser-
vations (yi,xi , ti ), 1 ≤ i ≤ n, are such that ti ∈ R

q , xi ∈ R
p and yi |(xi , ti ) ∼ F(·,μi)

with μi = H(η(αTti )+ xT
i β), for some known distribution function F and link func-

tion H . The function η : R → R and the parameters α and β are unknown and to be
estimated. This model is known as the generalized partly linear single-index model.

In this paper, we introduce a family of robust estimates for the parametric and
nonparametric components under a generalized partially linear single-index model.
It is shown that the estimates of α and β are root-n consistent and asymptotically
normally distributed. Through a Monte Carlo study, we compare the performance of
the proposed estimators with that of the classical ones.
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1 Introduction

Generalized linear models (GLM, McCullagh and Nelder 1989) extend linear models
to allow for parametrically modeling the relation between a transformation of the
mean response and some covariates. They assume that the observations (yi,xi , ti ),
1 ≤ i ≤ n, xi ∈ R

p , ti ∈ R
q , are independent such that the conditional distribution of

yi |(xi , ti ) ∼ F(·,μi) belongs to the canonical exponential family. In this situation,
the mean μi = μ(xi , ti ) = E(yi |(xi , ti )) is modeled linearly through a known link
function, H , i.e., μi = H(βTxi + αTti ).

However, in some situations, the relationship between the response and covariates
may be so complex that the linear relation stated by the GLM is not enough to capture
it. Different approaches were given to face this lack of linearity and to solve prob-
lems arising when a misspecified model is fitted. A fully nonparametric model can
be considered, but, as is well known, this model faces the so called “curse of dimen-
sionality”. In an attempt to solve this problem and to preserve, in some sense, the
easy interpretation of the generalized linear models, Hastie and Tibshirani (1990) in-
troduced the generalized additive model (GAM) by assuming that a transformation of
the mean response can be written as a sum of nonparametric components of the pre-
dictors. Hence, under a GAM we have μi = H(β0 +∑p

j=1 νj (xij ) +∑q

�=1 η�(ti�))

where νj : R → R and η� : R → R are smooth functions with E(νj (xij )) = 0 and
E(η�(ti�)) = 0. This model provides a helpful generalization of the usual generalized
linear model and a way of modeling data that does not conform the linear assumption
present in the GLM.

Even if the generality of the GAM is attractive, one should keep in mind that the
practitioner may lose some precision and power if a nonparametric component is
adopted when a linear or other parametric term is appropriate. In this case, semi-
parametric models provide a solution. To improve the efficiency of the generalized
additive models but still keeping some flexibility, Severini and Staniswalis (1994) and
Härdle et al. (1998) studied generalized partially linear models which allow model-
ing, through the link function H , the mean of the response linearly on some of the car-
riers and nonparametrically on the remaining ones. To be more precise, generalized
partially linear models assume that ti ∈ R, i.e., q = 1 and that μi = H(βTxi +η(ti )).
The function η : R → R and the parameters β are unknown and to be estimated.
These models offer a flexible alternative to generalized linear models but they may
be insufficient to explain the relationship between the response variable and its asso-
ciated covariables if more than one covariate enters into the model nonlinearly.

A natural generalization is to study estimators under a generalized partially lin-
ear model when the carriers t take values in R

q , in which case, one may consider
similar estimators to those defined when t ∈ R. However, as in a fully nonparamet-
ric model, this approach involves a smoothing procedure in a q-dimensional space
and so, the nonparametric components are subject to the “curse of dimensionality”
and can only accommodate low dimensional covariates t. Hence, to reduce the di-
mensionality of the nonparametric part and to mimic the generalized additive model,
one may consider a model in which the dependence on t = (t1, . . . , tq)T ∈ R

q is ex-
plained nonparametrically by each of the components of the vector. In this situation,
μi = H(βTxi +η(ti )) but the nonparametric dependence on the carriers t satisfies the
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388 G. Boente, D. Rodriguez

additive model η(t) =∑q

�=1 η�(t�) with η� : R → R smooth functions. These mod-
els usually called generalized additive partially linear models are an extension of the
generalized additive models because some covariates can be modeled linearly and we
refer to Härdle et al. (2006) for a discussion on estimation procedures.

As with generalized additive models, the flexibility of the generalized additive
partially linear models has the disadvantage of introducing a loss of efficiency when
the dependence on the covariates t can be done through a smaller number of projec-
tions. To remedy this, the generalized partially linear single-index model (GPLSIM),
introduced by Carroll et al. (1997), provides a dimension reduction model since it
assumes that the influence of the covariate t can be collapsed to a single index, αTt.
These models follow similar ideas to those considered by Friedman and Stuetzle
(1981) in projection pursuit regression that involves a small number of nonparamet-
ric functions of linear combinations αT

� t of the covariates t. In this way, the GPLSIM

allows some reduction in the dimensionality of the space in which the nonparamet-
ric estimation is carried out. To be more precise, generalized partially linear single-
index models assume that y|(x, t) ∼ F(·,μ(x, t)) with μ(x, t) = H(βTx + η(αTt))
and VAR(y|(x, t)) = V (μ(x, t)) where H is a given link function, V is a known func-
tion while β ∈ R

p , α ∈ R
q are unknown parameters and η is an unknown continuous

function. These models are useful to make inference on the effects x, by making min-
imal assumptions on t, when the covariates t have large dimension and are of little
interest. In this situation, the component η(αTt) may be seen as a nuisance parameter.
On the other hand, since a smooth function η is applied to the index αTt, interactions
between theses covariates can be modeled. Thus, generalized partially linear single-
index models are a useful alternative to generalized additive partially linear models,
which also reduce dimensionality but do not incorporate interactions.

Note that when α = α0 is assumed to be known, the GPLSIM becomes the GPLM

with covariates (x,αT
0 t)T. On the other hand, when η is the identity function, the

GPLSIM is the GLM. Clearly, to identify the parameter α and the function η, some
restrictions need to be introduced. As in Carroll et al. (1997) where estimators for β ,
α and η under a GPLSIM are defined, we will assume that ‖α‖ = 1 where ‖ · ‖ stands
for the Euclidean norm. Moreover, as is usual in partially linear models, we will
assume that the vector 1n is not in the space spanned by the column vectors of x, that
is, we do not allow β to include an intercept so that the model is identifiable. Due to
the generality of the GPLSIM, identifiability implies that only “slope” coefficients can
be estimated. Moreover, we do not allow any linear combination of x to be predicted
by t, otherwise, the model will be purely nonparametric and β will not be identifiable
(see Robinson 1988). For further discussion on models related to the generalized
partially linear single-index model, we also refer to Xia et al. (1999), Delecroix et
al. (2003), Xia and Härdle (2006), Yi et al. (2009) and Wang et al. (2010), among
others.

As is well known, in generalized linear models, large deviations of the response
from its mean, as measured by the Pearson residuals, or outlying points in the covari-
ate space can have a large influence on the classical estimators based on the quasi-
likelihood. Robust estimators in GLM were considered by Stefanski et al. (1986),
Künsch et al. (1989), Bianco and Yohai (1995), Cantoni and Ronchetti (2001), Croux
and Haesbroeck (2002) and Bianco et al. (2005).
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Robust estimates in generalized partially linear single-index models 389

As in generalized linear models, in a semiparametric setting, outliers can also
have a devastating effect. In this setting, extreme points on the carriers can easily af-
fect the scale and the shape of the function estimate of η, leading to possible wrong
conclusions on β . Robust proposals for generalized partial linear models were intro-
duced by Boente et al. (2006) and Boente and Rodriguez (2010). On the other hand,
a robust generalized estimating equations approach, for generalized partially linear
models with clustered data, using regression splines and Pearson residuals was given
in He et al. (2002) while a robust proposal for generalized additive models was re-
cently considered in Azadeh and Salibian-Barrera (2011). Since they are based on
a quasi-likelihood approach, the estimators introduced in Carroll et al. (1997) may
be sensitive to outliers, in particular, when high leverage points in the covariates x
are present. This sensitivity to outliers in the covariates is illustrated in Sect. 5 under
a logistic model. The goal of this paper is to introduce robust procedures under a
generalized partially linear single-index model to provide reliable estimators of the
parameters β and α and the function η, when outliers are present in the sample.

This paper is organized as follows. The robust proposal is described in Sect. 2. In
Sect. 3, we state results related to the consistency of the estimators while the asymp-
totic distribution of the estimators of the regression parameter β and the index pa-
rameter α are derived in Sect. 4. The results of a Monte Carlo study are summarized
in Sect. 5, while proofs are relegated to the Appendix.

2 The proposal

Let (yi,xi , ti ) ∈ R
p+q+1 be independent observations such that yi |(xi , ti ) ∼ F(·,μi)

with μi = H(η(αTti ) + xT
i β) and VAR(yi |(xi , ti )) = V (μi) for some known func-

tion V . Let η0(t), β0 and α0 denote the true parameter values and E0 the expectation
under the true model, thus E0(y|(x, t)) = H(η0(α

T
0 t) + xTβ0).

Let wi : R
p → R for i = 1,2 be weight functions to control leverage points on the

carriers x and ρ : R
2 → R a loss function. We define for each α, β and any continuous

function v : R → R the functions

R(α,β, a,u) = E0
[
ρ
(
y,xTβ + a

)
w1(x)

∣
∣αTt = u

]
, (1)

G(α,β, v) = E0
[
ρ
(
y,xTβ + v

(
αTt

))
w2(x)

]
. (2)

Denote by ηα,β (u) = argmina∈R R(α,β, a,u). Throughout the paper, we will
assume Fisher consistency, i.e., that w2(·) and ρ(·) are such that (α0,β0) =
argmin(α,β)∈Rp+q G(α,β, η0) being the unique minimum. Conditions ensuring Fisher
consistency under the generalized linear model have been studied by several authors
such as Cantoni and Ronchetti (2001), Croux and Haesbroeck (2002) and Bianco
et al. (2005). Under a generalized partially linear model, when t1 ∈ R, i.e., q = 1,
Boente et al. (2006) and Boente and Rodriguez (2010) showed that if

P
(
xT

1β = γ
∣
∣t1 = τ

)
< 1 , (3)

for any (β, γ ) �= 0 and τ in the support of t1, Fisher consistency holds under the same
regularity conditions on the loss function stated for generalized linear models by the
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above mentioned authors. Standard arguments allow one to show that under (3) Fisher
consistency still holds under a GPLSIM for the families of loss functions studied in
Bianco and Yohai (1995) and Croux and Haesbroeck (2002) for the logistic model
and by Bianco et al. (2005) for the gamma model. Note that (3) does not allow β0
to include an intercept, so that the model will be identifiable, as mentioned in the
Introduction. On the other hand, as is well known, when H(u) = u, i.e., under the
partially linear single index model yi = xT

i β0 + η0(α
T
0 ti ) + εi , the standard choice

for the loss function is ρ(y,u) = ρ0(y − u) with ρ0 : R → R a loss function. In this
situation, Fisher consistency holds if, for instance, the errors εi have a symmetric
distribution and the score function ψ0(u) = (∂ρ0)/(∂u) is odd.

Boente et al. (2006) proposed two classes of loss functions ρ. The first one aims
to bound the deviances, while the second one introduced by Cantoni and Ronchetti
(2001) bounds the Pearson residuals. We refer to Boente et al. (2006) or Boente and
Rodriguez (2010) for their definition.

In order to define consistent estimators of the parametric and nonparametric com-
ponents, let us consider the empirical versions of the objective functions (1) and (2),
respectively, as

Rn(α,β, a,u) =
n∑

i=1

Wα, i (u)ρ
(
yi,xT

i β + a
)
w1(xi ), (4)

Gn(α,β, v) = 1

n

n∑

i=1

ρ
(
yi,xT

i β + v
(
αTti

))
w2(xi ), (5)

where v is any continuous function v : R → R, the functions w1, w2 and ρ are chosen
to guarantee Fisher consistency and Wα, i (u) are weights depending on the closeness
between u and the projection of t on the direction α, i.e., between u and αTt. For the
sake of simplicity, throughout this paper, Wα, i (u) will be taken as the kernel weights,
i.e.,

Wα, i (u) = K

(
αTti − u

h

){ n∑

j=1

K

(
αTtj − u

h

)}−1

.

The estimation procedure to estimate α0, β0 and η0 can thus be defined as follows.

Step 1: Compute an initial robust consistent estimator of β0 and an initial robust
consistent and equivariant by orthogonal transformations estimator of α0, denoted,
respectively, β̂R and α̂R1. Let α̂R = α̂R1/‖α̂R1‖.

Step 2: Define the estimator η̂α̂R,β̂R
(u) of η0 as

η̂α̂R,β̂R
(u) = argmin

a∈R

Rn(α̂R, β̂R, a,u). (6)

Step 3: Define estimators (α̂, β̂) of (α0,β0) as

(α̂, β̂) = argmin
α,β

Gn(α,β, η̂α̂R,β̂R
). (7)

Author's personal copy
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The estimation procedure involves initial estimators of the parametric components
that might be inefficient. However, they need to be robust, consistent and, in the
case of the projection index, equivariant by orthogonal transformations. To guarantee
their existence we will introduce an estimation procedure based on a robustified pro-
file method. Profile likelihood procedures were studied by van der Vaart (1988) and
applied to generalized partially linear models by Severini and Wong (1992) and Sev-
erini and Staniswalis (1994). The estimators defined in Boente et al. (2006) for the
GPLM correspond to a robustified profile method. As noted by Boente and Rodriguez
(2010), the main disadvantage of the estimators proposed by Boente et al. (2006) is
that their asymptotic covariance matrix depend on the derivatives of the robust profile
regression function with respect to β making difficult its estimation. For the GPLSIM,
the robustified profile method can thus be defined as

Step P1: For each fixed β and α, with ‖α‖ = 1, let

η̂α,β(u) = argmin
a∈R

Rn(α,β, a,u). (8)

Step P2: Define the estimators (α̂PR, β̂ PR) of (α0,β0) as

(α̂PR, β̂PR) = argmin
‖α‖=1,β∈Rp

Gn(α,β, η̂α,β). (9)

Rodriguez (2008) studied some properties of these estimators, such as consistency
and equivariance by orthogonal transformations, leading to robust initial estimators
as required in Step 1. Throughout the paper, we will only focus on the asymptotic
properties of the estimators defined through Steps 1 to 3.

When ρ is continuously differentiable, let us denote by Ψ (y,u) = ∂ρ(y,u)/∂u

and by

R(1)(α,β, a,u) = E0
(
Ψ
(
y,xTβ + a

)
w1(x)

∣
∣αTt = u

)
,

R(1)
n (α,β, a,u) =

n∑

i=1

Wα, i (u)Ψ
(
yi,xT

i β + a
)
w1(xi ).

Then, ηα,β (u) and η̂α̂R,β̂R
(u) satisfy the differentiated equations R(1)(α,β,

ηα,β (u),u) = 0 and R
(1)
n (α̂R, β̂R, η̂α̂R,β̂R

(u),u) = 0, respectively. Besides, using

the fact that ‖α0‖ = 1 and ‖α̂‖ = 1, we see that (α0,β0) and (α̂, β̂) satisfy
G(1)(α0,β0, ηα0,β0) = 0 and G

(1)
n (α̂, β̂, ηα̂R,β̂R

) = 0, respectively, with

G(1)(α,β, v) = E0

(

Ψ
(
y,xTβ + v

(
αTt

))
w2(x)

(
x

v′(αTt)t

))

+ θ

(
0
α

)

, (10)

G(1)
n (α,β, v) = 1

n

n∑

i=1

Ψ
(
yi,xT

i β + v
(
αTti

))
w2(xi )

(
xi

v′(αTti )ti

)

+ θn

(
0
α

)

, (11)

where θ and θn are the Lagrange multipliers.
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392 G. Boente, D. Rodriguez

Remark 2.1 It is easy to see that the estimators of the projection index α are equiv-
ariant by orthogonal transformations. More precisely, we see that, if t̃i = Γ ti is an
orthogonal transformation of the predictors ti , then the projection index for the trans-
formed variables (y1,x1, t̃1) is α̃0 = Γ α0 while the linear regression parameter re-

mains unchanged. It is easy to see that if we compute the estimators ( ˆ̃α,
ˆ̃
β) of (α̃0,β0)

based on the new sample (yi,xi , t̃i ), then ˆ̃α = Γ α̂ and ˆ̃
β = β̂ . The proof of this as-

sertion can be found in Rodriguez (2008).

3 Consistency

In this section, we will derive, under some regularity conditions, the consistency
of the estimators defined in Sect. 2 through Steps 1 to 3. We will assume that
t ∈ T ⊂ R

q . Let T0 ⊂ T be a compact set and define the set U (T0) = {αTt : t ∈ T0,

‖α‖ = 1}. For any continuous function v : U (T0) → R denote ‖v‖0,∞ =
supu∈U (T0)

|v(u)|. From now on, S1 will stand for the unit ball in R
q , i.e., S1 =

{α ∈ R
q ‖α‖ = 1}.

D1. ρ(y, a) is a continuous and bounded function. Moreover, w1 and w2 are non-
negative bounded functions.

D2. The kernel K : R → R is an even, nonnegative, continuous and bounded func-
tion, with bounded variation, satisfying

∫
K(u)du = 1,

∫
u2K(u)du < ∞ and

|u|K(u) → 0 as |u| → ∞.
D3. The bandwidth sequence hn is such that hn → 0, nhn/ log(n) → ∞ when

n → ∞.
D4. (i) The marginal density fT of t1 is a bounded function in T .

(ii) Given any compact set T0 ⊂ T , there exists a positive constant A1(U (T0))

such that A1(U (T0)) < fα(u) for all u ∈ U (T0) and ‖α‖ = 1, where fα is
the marginal density of αTt1.

D5. The function R(α,β, a,u) satisfies the following equicontinuity condition:
given T0 ⊂ T and K ⊂ R

p compact sets, for any ε > 0 there exists δ > 0 such
that for any u1, u2 ∈ U (T0); α1,α2 ∈ S1 and β1,β2 ∈ K,

|u1 − u2| < δ,‖β1 − β2‖ < δ and ‖α1 − α2‖ < δ

⇒ sup
a∈R

∣
∣R(α1,β1, a,u1) − R(α2,β2, a,u2)

∣
∣< ε.

D6. The function R(α,β, a,u) is continuous and ηα,β (u) is a continuous function
on (α,β, u).

D7. The initial estimators (α̂R, β̂R) are consistent estimators of (α0,β0).

Remark 3.1

– Assumption D1 is fulfilled for the score functions usually considered to obtain
robust estimators in generalized linear models, such as the function introduced
by Croux and Haesbroeck (2002) for the logistic model and the Tukey’s bisquare
function used in Bianco et al. (2005) for the Gamma model.
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– Assumptions D2 and D3 are standard conditions in the nonparametric setting. The
first one is fulfilled, for instance, for the Epanechnikov kernel K(u) = (3/4)(1 −
u2)I[−1,1](u) and also for the Gaussian kernel while the latter is satisfied, for in-
stance, if hn = n−α for α > 0. Besides, assumption D3 ensures that for each fixed
a, α and β we have convergence of the kernel estimates Rn(α,β, a,u) to their
mean, while D5 guarantees that the bias term converges to 0.

– Assumption D4 is a standard condition in semiparametric models. D4(ii) holds, for
instance, if fT(t) > B1(T0) ∀t ∈ T0. As mentioned in Boente et al. (2006), in the
classical case and for generalized partially linear models, i.e., when α is known, it
corresponds to Condition (D) of Severini and Staniswalis (1994, p. 511).

– Assumption D5 is fulfilled under D1 if the conditional distribution of x|αTt = u

is continuous with respect to (u,α) and if the following equicontinuity condition
holds: for any ε > 0 there exist compact sets K1 ⊂ R and Kp ⊂ R

p such that for
any u ∈ U (T0), P((y,x) ∈ K1 × Kp|αTt = u) > 1 − ε, for any α ∈ S1 which holds
for instance if, for 1 ≤ i ≤ n and 1 ≤ j ≤ p, xij = φj (ti ) + uij , where φj are
continuous functions and uij are i.i.d. and independent of ti .

– Under D1, assumption D6 is fulfilled if the conditional distribution of x|αTt = u is
continuous with respect to (u,α). Moreover, if besides ρ is a continuously differ-
entiable function, the implicit function theorem implies that ηα,β (u) is continuous.

If we considered the initial estimators defined through Steps P1 and P2, D7 is
satisfied, see Rodriguez (2008).

Lemma 3.1 Let K ⊂ R
p and T0 ⊂ T be compact sets and assume that there

exists δ0 > 0 such that Tδ0 ⊂ T , where Tδ0 stands for the closure of a δ0-
neighborhood of T0. Assume that D1 to D6 hold and that the family of functions
F = {f (y,x) = ρ(y,xTβ + a)w1(x),β ∈ K, a ∈ R} has a covering number satisfy-
ing supQ N(ε, F ,L1(Q)) ≤ Aε−W , for any 0 < ε < 1 and some positive constants A

and W where Q stands for any probability measure for (y,x). Then, we have

(a) sup
a∈R,α∈S1,β∈K

∥
∥Rn(α,β, a, ·) − R(α,β, a, ·)∥∥0,∞

a.s.−→ 0.

(b) If inf
α∈S1, β∈K,u∈U (T0)

[
lim|a|→∞R(α,β, a,u) − R

(
α,β, ηα,β (u),u

)]
> 0,

then sup
α∈S1, β∈K

‖η̂α,β − ηα,β‖0,∞
a.s.−→ 0.

Remark 3.2 The requirement

inf
α∈S1, β∈K, u∈U (T0)

[
lim|a|→∞R(α,β, a,u) − R

(
α,β, ηα,β (u),u

)]
> 0 (12)

in Lemma 3.1(b) is a natural extension to generalized partially linear single-index
models of the condition stated in Boente et al. (2006) for generalized linear models.
It ensures that the infimum of objective function (1) is not attained at infinite. The
uniformity on α,β and u is needed to attain uniform convergence of η̂α,β to ηα,β .
For the score functions usually considered in robustness such as those defined in
Croux and Haesbroeck (2002) for the logistic model and by Bianco et al. (2005)
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394 G. Boente, D. Rodriguez

for the Gamma model, it is easy to see that �(α,β, u) = lim|a|→∞ R(α,β, a,u) −
R(α,β, ηα,β (u),u) > 0. Using that �(α,β, u) is a continuous function and the fact
S1, K and U (T0) are compact sets, it follows that (12) is fulfilled.

Lemma 3.2 Let α̂, β̂ be defined in (7) where η̂α,β satisfies

sup
α∈S1,β∈K

‖η̂α,β − ηα,β‖0,∞
a.s.−→ 0. (13)

Assume that D1 and D7 hold and that G(α,β, η0) has a unique minimum at (α0,β0).
Then, we have

(a) supa,α∈S1;b,β∈K |Gn(α,β, η̂a,b) − G(α,β, ηa,b)| a.s.−→ 0 for any compact set K.

(b) If, in addition, there exists a compact set K1 such that limm→∞ P(
⋂

n≥m β̂ ∈
K1), then α̂

a.s.−→ α0 and β̂
a.s.−→ β0.

4 Asymptotic distribution

In this section, we derive under mild conditions the asymptotic distribution of estima-
tors defined in Sect. 2 through Steps 1 to 3. In Rodriguez (2008), it is shown that the
estimators (α̂PR, β̂ PR) defined through Steps P1 and P2 are asymptotically normally
distributed. Indeed, these estimators can be written as

√
n

(
β̂ PR − β0

α̂PR − α0

)

= 1√
n

n∑

i=1

ϕ(yi,xi , ti ) + op(1), (14)

where the function ϕ : R
p+q+1 → R

p+q is such that E(ϕ(y1,x1, t1)) = 0. Thus, in
order to derive the asymptotic distribution of (β̂, α̂), we will assume that the initial
estimators (β̂R, α̂R) admit a Bahadur expansion, i.e.,

√
n(β̂R − β0, α̂R − α0) can be

written as in (14) for some function ϕ : R
p+q+1 → R

p+q .
Throughout this section we will assume that T is a compact set. We begin by

fixing some notation.
Denote by Kh(u) = (1/h)K(u/h), χ(y, a) = ∂Ψ (y,u)/∂u and χ1(y, a) =

∂2Ψ (y,u)/∂u2. Moreover, denote by τ = (α,β, u) and τ 0i = (α0,β0,α
T
0 ti ) and

define

Di(u) = A(u)−1Ψ
(
yi,xT

i β0 + η0(u)
)
w1(xi ), (15)

A(u) = E0
(
χ
(
y1,xT

1β0 + η0
(
αT

0 t1
))

w1(x1)|αT
0 t1 = u

)
. (16)

The following two functions will be used in assumption M6

m1(ν1,ν2) = E0
(
D1
(
αT

0 t2
)∣
∣(t1, t2) = (ν1,ν2)

)

= A−1(αT
0ν2

)
E0
(
Ψ
(
y1,xT

1β0 + η0
(
αT

0ν2
))

w1(x1)
∣
∣t1 = ν1

)
,

mis(ν1,ν2,ν3,ν4) = E0
([

Di

(
αT

0 tj
)− Di

(
αT

0 ti
)]

× [
Ds

(
αT

0 t�
)− Ds

(
αT

0 ts
)]∣
∣(ti , tj , ts , t�) = (ν1,ν2,ν3,ν4)

)
,
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while the matrices Γ and C below are related to the asymptotic covariance of the
estimators

Γ = E
[
wwT

]
, (17)

C = E0
[
χ
(
y1,xT

1β0 + η0
(
αT

0t1
))

w2(x1)λ1(τ 01)λ1(τ 01)
T
]
, (18)

where

w = Ψ
(
y1,xTβ0 + η0

(
αTt1

))
w2(x1)λ1(τ 01) + ϕ̃(y1,x1, t1),

ϕ̃(yi,xi , ti ) = E0

(

χ
(
y1,xT

1β0 + ηα0,β0

(
αT

0 t1
))

w2(x1)λ1(τ 01)

×
( ∂

∂β
ηα,β(s)|(α,β,s)=τ01

∂
∂α

ηα,β(s)|(α,β,s)=τ01

)T)

ϕ(yi,xi , ti )

+ Di

(
αT

0 ti
)
fα0

(
αT

0ti
)
γ̃ (ti )

= E

(

γ̃ (ti )
( ∂

∂β
ηα,β(u)|τ=τ0i

∂
∂α

ηα,β(u)|τ=τ0i

)T)

ϕ(yi,xi , ti )

+ Di

(
αT

0 ti
)
fα0

(
αT

0ti
)
γ̃ (ti ), (19)

λi (τ ) =
(

xi

∂
∂u

ηα,β(u)|τ ti

)

, (20)

γ̃ (t) = E0
(
χ
(
y1,xT

1β0 + ηα0,β0

(
αT

0 t1
))

w2(x1)λ1(τ 01)
∣
∣t1 = t

)
. (21)

For the sake of simplicity, denote

ν̂(α,β, u) = η̂α,β(u) − ηα,β(u), ν̂0(u) = ν̂(α0,β0, u), (22)

v̂j (α,β, u) = ∂ν̂(α,β, u)

∂βj

, v̂j,0(u) = v̂j (α0,β0, u), (23)

ŵ�(α,β, u) = ∂ν̂(α,β, u)

∂α�

, ŵ�,0(u) = ŵ�(α0,β0, u). (24)

We will consider the following set of assumptions:

M1. (a) The functions η̂α,β (u) and ηα,β (u) are continuously differentiable with re-
spect to (α,β, u). Moreover, η̂α,β (u) and ηα,β (u) are three times continu-
ously differentiable with respect to u.

(b) For any consistent estimate (α̂, β̂) of (α0,β0), ‖η̂α̂,β̂ − η0‖∞
p−→ 0.

(c) For each fixed t ∈ T , α ∈ R
q and β ∈ R

p , ν̂(α,β,αTt)
p−→ 0. Moreover,

(i) n
1
4 ‖ν̂0‖∞

p−→ 0

(ii) n
1
4 ‖v̂j,0‖∞

p−→ 0 for 1 ≤ j ≤ p

(iii) n
1
4 ‖ŵ�,0‖∞

p−→ 0, for 1 ≤ � ≤ q and

(iv) ‖∂kν̂0(u)/∂uk‖∞
p−→ 0, for k = 1,2,3.
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M2. Ψ , χ , χ1, w2 and ψ2(x) = xw2(x) are bounded and continuous functions. Be-
sides, w1 and w2 are nonnegative functions.

M3. E0{Ψ (y1,xT
1β0 + η0(t1))|(x1, t1)} = 0.

M4. E0(w2(x1)‖x1‖2) < ∞.
M5. fα0 , the marginal density of αT

0 t1, is a bounded continuously differentiable func-
tion with bounded continuous derivative and such that inft∈T fα0(α

T
0 t) > 0.

M6. (a) m1(ν1, ν2), m′
1(ν1, ν2) = ∂m1(ν1, ν2)/∂ν2 and m′′

1(ν1, ν2) =
∂2m1(ν1, ν2)/∂ν2∂νT

2 are bounded and continuous functions.
(b) mis(ν1, ν2, ν3, ν4), m′

is,�(ν1, ν2, ν3, ν4) = ∂mis(ν1, ν2, ν3, ν4)/∂ν� and

m′′
is,�r (ν1, ν2, ν3, ν4) = ∂2mis(ν1, ν2, ν3, ν4)/∂ν�∂νT

r are bounded contin-
uous functions.

M7. The kernel K : R → R is an even, nonnegative bounded function with
bounded variation. Moreover, it satisfies a Lipschitz condition of order one and∫

K(u)du = 1,
∫

uK(u)du = 0 and
∫

u2K(u)du < ∞.
M8. The matrix C1 ∈ R

(p+q−1)×(p+q−1) in non singular, where C1 is the left supe-
rior square submatrix of C defined in (18).

M9. Γ 1 ∈ R
(p+q−1)×(p+q−1), the left superior square submatrix of Γ , is non singu-

lar.

Remark 4.1

– The continuous differentiability of the kernel K and the implicit function theorem
entail that η̂α,β (u) is a continuously differentiable function of u. Moreover, the
uniform consistency required in M1 can be derived through analogous arguments
as those considered in Boente et al. (2006), under mild conditions such as

(a) K is continuously differentiable with derivative K ′ bounded and with bounded
variation.

(b) For any compact sets K ∈ R
p and K1 ∈ R

sup
t∈T

E0

(
sup

β∈K,a∈R

∣
∣χ
(
y1,xT

1β + a
)∣
∣‖x1‖

∣
∣t1 = t

)
< ∞,

sup
t∈T

E0

(
sup

β∈K,a∈R

∣
∣χ1
(
y1,xT

1β + a
)∣
∣‖x1‖

∣
∣t1 = t

)
< ∞,

inf
β∈K,a∈K1

t∈T

E0
(
χ
(
y1,xT

1β + a
)∣
∣t1 = t

)
> 0.

– Assumptions M2, M8 and M9 are standard conditions on the score function, in
particular, M8 and M9 are a common requirement in robust regression in order to
get root-n estimators of β and α. As noted in Boente et al. (2006), for the score
functions considered by Bianco and Yohai (1995), Croux and Haesbroeck (2002)
and Cantoni and Ronchetti (2001), M3 is satisfied. This condition is the conditional
Fisher-consistency property as stated in the generalized linear regression model by
Künsch et al. (1989).
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– It is worth noting that M4 can be replaced by E0(supβ∈K,a∈R |χ1(y1,xT
1β +

a)|‖x1‖2w2(x1)) < ∞.
– Finally, M5, M6 and M7 and the convergence requirement in M1(b) are standard

conditions in nonparametric estimation.

In order to show that α̂ and β̂ are asymptotically normally distributed, we will
need the following lemma whose proof follows using similar arguments to those con-
sidered in Lemma 4.1 of Boente and Rodriguez (2010).

Lemma 4.1 Assume that M1, M2, M5 and M7 hold. If, in addition, w1(x)‖x‖3 is
bounded, A(u) �= 0 for any u and inft∈T A(αT

0 t) > 0 where A(u) is defined in (16),
limn→∞ nh4 = 0 and limn→∞ nh2/log2 (1/h) = +∞, we have

sup
t∈T

∣
∣
∣
∣
∣
η̂α0β0

(
αT

0 t
)− η0

(
αT

0 t
)− 1

nfα0(α
T
0 t)

n∑

j=1

Kh

(
αT

0 tj − αT
0 t
)
Dj

(
αT

0 t
)
∣
∣
∣
∣
∣
= op

(
n−1/2),

where Dj(u) is defined in (15).

Theorem 4.1 Let us assume that the ti have compact support T and that M1 to M9
hold. Let (α̂, β̂) be a solution of (11) providing a consistent estimator of (α0,β0). If
limn→∞ nh4 = 0, the conclusion of Lemma 4.1 holds and the initial estimators, α̂R

and β̂R, satisfy (14), we have

(a)
√

n
( β̂ − β0

α̂(q−1) − α
(q−1)
0

) D−→ N(0,C−1
1 Γ 1C−1

1 ) where C1 and Γ 1 are given in M8 and

M9, respectively, and α̂(q−1) = (α̂1, . . . , α̂q−1), α
(q−1)

0 = (α01, . . . , α0q−1).

(b)
√

n(α̂q − α0q)
p−→ 0.

5 Monte Carlo study

This section contains the results of a simulation study conducted with the aim of
comparing the performance of the proposed estimators with the classical ones under
a logistic and a Gamma partially linear single index model. Under a logistic model,
the responses are bounded and so, the effect of the outliers on the estimators of β and
α is mainly observed when introducing high leverage points. Under this setting, the
performance of our proposal is compared with the estimators defined in Carroll et al.
(1997) which are based on the quasi-likelihood and also with those defined using as
loss function the deviance. The Gamma model allows us to introduce also large val-
ues in the responses which will lead to a large effect on the classical estimators of the
nonparametric function η. Under a Gamma model, due to the effect of outliers on the
quasi-likelihood estimators already observed in the logistic model, we only compare
our proposal with the estimators obtained minimizing the deviance that correspond to
the classical counterpart of the robust estimators considered. In the reported Tables,
the robust estimators introduced in this paper are indicated as ROBc where c denotes
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the tuning constant of the loss function used while the classical estimators are indi-
cated as DEV and QAL. The estimators DEV correspond to the estimators based on the
deviance while those denoted by QAL are based on the quasi-likelihood, as defined
in Carroll et al. (1997). On the other hand, the robust estimators ROBc correspond
to those controlling large values of the deviance together with large values on the x
covariate space. The weight functions w1 and w2 used to control high leverage points
were taken as the Tukey’s biweight function with tuning constant cw = 4.685 while
for the classical estimators, w1 = w2 ≡ 1. In the smoothing procedure, the Epanech-
nikov kernel K(t) = (3/4)(1 − t2)I[−1,1](t) was selected.

5.1 Logistic model

As mentioned above, this section summarizes the results of a simulation study under
a logistic partly linear model. The robust estimators ROBc control large values of the
deviance using as ρ function the score function defined in Croux and Haesbroeck
(2002) with tuning constant c = 0.5. To estimate the nonparametric component, both
the estimators ROBc and DEV used as bandwidths h = 0.15 and h = 0.30 in Steps 1
and 2, respectively, while for the QAL estimators the bandwidth h = 0.30 was con-
sidered. We have performed NR = 1000 replications with samples of size n = 200.

Under the central model, denoted C0, we generate samples (yi, xi, ti ), 1 ≤ i ≤ n,
where yi |(xi, ti ) ∼ Bi(1,p(xi, ti )) with log(p(x, t)/(1 − p(x, t))) = x/2+ t1 −0.5+
sin(4πt1), i.e., β0 = 0.5, α0 = (1,0) η0(u) = (u − 1/2) + sin(4πu). The covariates
are such that (xi, ti ) ∼ N((0,1/2,1/2),Σ), 1 ≤ i ≤ n, with

Σ =
⎛

⎝
1 1/(6

√
3) 0

1/(6
√

3) 1/36 0
0 0 1/36

⎞

⎠

and the variable t was truncated so that t ∈ [1/4,3/4] × [1/4,3/4].
For each sample generated, we have considered the following contamination la-

beled C1 in Table 1 and Figs. 1 and 2. We have first generated a sample ui ∼ U (0,1),
1 ≤ i ≤ n, and then, the contaminated sample, denoted (yi,c, xi,c, ti), is defined by
(yi,c, xi,c) = (yi, xi) if ui ≤ 0.90 and (yi,c, xi,c) = (yi,new, xi,new) if ui > 0.90, where
xi,new is a new observation from a N(10,1) and yi,new is a new observation from a
Bi(1,0.05).

Table 1 gives summary measures for the different estimators. For the estimators
of β0, we have considered the following summary measures: bias, standard deviation
(SD) and mean square error (MSE) computed over replications. Besides, to assess the
performance of the estimators of α0, we have considered estimated angles θ̂ for which
we report bias, standard deviation (SD) and mean square error (MSE) computed over
replications. To study the behavior of the estimators, η̂, of the regression function η0

we have considered the average over replications of the mean square error MSE(η̂) =
(1/n)

∑n
i=1[η̂(α̂Tti ) − η(αT

0 ti )]2. Figures 1 and 2 give the boxplots of the estimators
of the regression parameter and of θ̂ , respectively. The horizontal lines indicate the
true value for the parameters.
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Table 1 Summary results for the estimators of β0, α0 and η0 for the logistic model. The performance of
α̂ was measured through its angle θ̂

Estimator Bias(β̂) SD(β̂) MSE(β̂) Bias(θ̂ ) SD(θ̂ ) MSE(θ̂) MSE(η̂)

C0 DEV 0.0532 0.1939 0.0404 0.0921 0.1289 0.0250 0.1564

QAL 0.0039 0.2019 0.0408 0.0081 0.2120 0.0450 0.7308

ROB0.5 0.0393 0.1944 0.0393 0.0915 0.1259 0.0242 0.1635

C1 DEV −0.6939 0.0526 0.4842 0.0629 0.0896 0.0120 0.1562

QAL −0.7136 0.0604 0.5129 −0.5253 1.7454 3.3224 1.2620

ROB0.5 0.0248 0.208 0.0439 0.0924 0.1268 0.0247 0.1708

Fig. 1 Boxplots of the estimators of the regression parameter β for the logistic model

Fig. 2 Boxplots of the estimators of the single index angle θ for the logistic model

Table 1 shows that, under C0, the mean square error of the robust estimator of
the regression parameter β is similar to that of the classical estimators. The situa-
tion changes under C1, where the mean square error of the classical procedures for
estimating β is more than ten times larger than that of the robust ones. With respect
to the estimation of α, the classical estimators based on the deviance and the robust
ones show a similar behavior even under contamination. On the other hand, for the
uncontaminated samples, the mean square error of the quasi-likelihood procedure is
slightly larger than that of the procedures using the deviance while, under C1 it in-
creases significantly due to an increase of both the bias and variance. With respect
to the estimation of η, again, the quasi-likelihood estimator shows a poor behavior
compared to those based on the deviance since its mean square error is more than
four times larger, under C0 and more than nine times larger, under contamination.
The fact that both the classical estimators of α and η based on the deviance and the
robust ones show similar behavior under C1 may be due to the fact that under the
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logistic model the responses are bounded. In the next section, this situation changes
since large outliers in the responses may occur.

5.2 Gamma model

In this section we summarize the results of a simulation study designed to compare
the performance of the proposed estimators with the classical ones under a model
with unbounded responses such as the Gamma model. As mentioned above, in the
reported tables, the robust estimators introduced in this paper are indicated as ROBc

where c denotes the tuning constant used while their classical counterparts are indi-
cated as DEV, since they correspond to the estimators based on the deviance. To be
more precise, the robust estimators correspond to those controlling large values of the
deviance as described in Bianco et al. (2005). They were computed using the Tukey’s
biweight score function with tuning constants c = 1.5, 2, 2.3, 2.5, 2.8 and c = 3. The
weight functions w1 and w2 used to control high leverage points were taken as the
Tukey’s biweight function with tuning constant cw = 4.685. On the other hand, the
classical estimators correspond to the choice w1 = w2 ≡ 1 and loss function equal to
the deviance. To compute the initial estimators, a bandwidth h = 0.15 was selected
while for the final estimator h = 0.3 was chosen. Other bandwidth values were tested
and they give quite similar results.

We have performed NR = 1000 replications with samples of size n = 100. The
central model denoted C0 in tables and figures corresponds to select (xi, ti ) inde-
pendent of each other such that xi ∼ N(0,1), ti ∼ U ((0,1) × (0,1)). The response
variable was generated following a log-gamma single-index model, i.e., yi |(xi, ti ) ∼
Γ (3,3/μ(xi, ti )), where E(yi |(xi, ti )) = μ(xi, ti ) with log(μ(xi, ti )) = β0xi +
η0(α

T
0 ti ), with β0 = 2, η0(u) = sin(2πu) and α0 = (1,1)/

√
(2) corresponding to

an angle θ0 = π/4.
For each sample generated we have considered two contaminations schemes la-

beled C1 and C2 in tables and figures that lead to contaminated samples (yi,c, xi,c, ti).
To obtain the contaminated samples, we have first generated a sample ui ∼ U (0,1)

for 1 ≤ i ≤ n and then, we have considered the following contamination schemes

– C1 introduces bad high leverage points in the carriers x, without changing the
responses already generated, i.e., yi,c = yi , 1 ≤ i ≤ n, while

xi,c =
{
xi if ui ≤ 0.90,
a new observation x�

i from a N(0,25) if ui > 0.90.

– C2 corresponds to increasing the variance of the carriers x and also to introduce
large values on the responses

xi,c =
{
xi if ui ≤ 0.90,
a new observation from a N(0,25) if ui > 0.90,

and

yi,c =
{
yi if ui ≤ 0.90,
y�
i if ui > 0.90,

where y�
i is a new observation from a Γ (3,3/1000).
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Table 2 Summary results for the estimators of β0, α0 and η0. The performance of α̂ was measured
through its angle θ̂

Estimator Bias(β̂) SD(β̂) MSE(β̂) Bias(θ̂ ) SD(θ̂) MSE(θ̂) MSE(η̂)

C0 DEV 0.0032 0.0621 0.0039 0.0119 0.1503 0.0227 0.0319

ROB1.5 −0.0967 0.9064 0.8309 −0.0905 0.5392 0.2989 0.6915

ROB2.0 0.0204 0.8924 0.7968 0.0134 0.5318 0.2830 0.7239

ROB2.3 0.0575 0.7233 0.5265 0.0437 0.5042 0.2561 0.6782

ROB2.5 0.0755 0.7972 0.6412 0.0239 0.4662 0.2179 0.7079

ROB2.8 0.0339 0.5790 0.3364 0.0342 0.4389 0.1938 0.6800

ROB3.0 0.0531 0.6133 0.3790 0.0388 0.4233 0.1807 0.6615

C1 DEV −1.4544 0.3740 2.2551 0.2249 0.4419 0.2459 1.9798

ROB2.8 0.0029 0.5829 0.3397 0.0303 0.4392 0.1938 0.6977

C2 DEV −1.9037 0.3355 3.7366 0.6108 0.5457 0.6709 18.7991

ROB2.8 0.0520 0.6772 0.4613 0.0279 0.4475 0.2010 0.7046

Fig. 3 Boxplots of the estimators of the regression parameter β

Table 2 summarizes the results obtained using the same summary measures as in
Sect. 5.1. Figures 3 and 4 give the boxplots of the estimators of the regression pa-
rameter and of the angle of the index parameter, respectively. The horizontal lines
indicate the true value for the parameters.

As expected, under C0 the classical estimators show their advantage. The robust
estimators show a high loss of efficiency in this case both for the regression param-
eter and for the angle of the index parameter. Among the several choices for the
tuning constant, the best performance for the estimators of β was attained by c = 2.8
both in bias and standard deviation. For the estimators of θ the best performance in
mean square error was obtained with c = 3. Taking into account that, when estimat-
ing α, the performance of the estimators θ̂ when using c = 2.8 is quite similar to
that obtained with c = 3, we only report the results for the contaminated samples
when c = 2.8. Under the selected contamination, the classical estimators of β and
θ show a poor behavior, in particular, with respect to bias. It is worth noticing, see
Fig. 4, that for some samples the robust procedure gives very low angles while the
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Fig. 4 Boxplots of the estimators of the single index angle θ

classical procedure tends to choose large values for θ̂ . On the other hand, for the
estimators of β the mean square error of the classical procedure is more than seven
times larger than that of the robust ones for both contaminations. Besides, the stan-
dard deviation of the classical estimator under both contaminations is such that a test
for the regression parameter would reject the null hypothesis β0 = 2. For the two
contaminations considered, the mean square errors of the classical estimators of η

are more than two and twenty times those of the robust procedure which are quite
close to the corresponding ones under C0. On the other hand, contaminating only
on the carriers multiplies by fifty the mean square error of the classical estimators η̂

while under C2 the MSE is five hundred times that under C0. Therefore, as expected
large responses affect the estimators of the nonparametric component even more than
leverage points.
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Appendix

A.1 Proof of the consistency results

Proof of Lemma 3.1 (a) Let R1n(α,β, a,u) = ∑n
i=1 Kh(α

Tti − u)ρ(yi,xT
i β +

a)w1(xi )/n, R0n(α, u) = ∑n
i=1 Kh(u − αTti )/n with Kh(u) = K(u/h)/h and

Rn(α,β, a,u) = R1n(α,β, a,u)/R0n(α, u). Then,

sup
α∈S1,β∈K

a∈R

∥
∥Rn(α,β, a, ·) − R(α,β, a, ·)∥∥0,∞

≤
[

sup
α∈S1,β∈K

a∈R

∥
∥R1n(α,β, a, ·) − E

(
R1n(α,β, a, ·))∥∥0,∞
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+ sup
α∈S1,,β∈K

a∈R

∥
∥E
(
R1n(α,β, a, ·))− R(α,β, a, ·)E(R0n(α, ·))∥∥0,∞

+ ‖ρ‖∞ sup
α∈S1

∥
∥R0n(α, ·) − E

(
R0n(α, ·))∥∥0,∞

]/
inf

α∈S1,u∈U (T0)
R0n(α, u),

where ‖ρ‖∞ = supy,a |ρ(y, a)|. For n large enough, we have

inf
α∈S1,u∈U (T0)

R0n(α, u) ≥ inf
α∈S1,u∈U (T0)

E
(
R0n(α, u)

)

− sup
α∈S1

∥
∥R0n(α, ·) − E

(
R0n(α, ·))∥∥0,∞.

Let δ < δ0 and define Uδ = {u + s : u ∈ U (T0), |s| ≤ δ}. Let R be such that∫
|v|≤R

K(v)dv > 1/2. Then, for h ≤ δ/R we have hv + u ∈ Uδ and so, using the
fact that Uδ is a compact set and D4, we get E(R0n(α, u)) = ∫

K(v)fα(hv +u)dv >
1
2A1(Uδ). Therefore, it is enough to show that

sup
α∈S1,β∈K

a∈R

∥
∥R1n(α,β, a, ·) − E

(
R1n(α,β, a, ·))∥∥0,∞

a.s.−→ 0, (25)

sup
α∈S1

∥
∥R0n(α, ·) − E

(
R0n(α, ·))∥∥0,∞

a.s.−→ 0, (26)

sup
α∈S1,β∈K

a∈R

∥
∥E
(
R1n(α,β, a, ·))− R(α,β, a, ·)E(R0n(α, ·))∥∥0,∞ → 0. (27)

Using Theorem 37 in Pollard (1984) and D1, we see that (26) hold. On the other
hand, if u1 = αTt1 we obtain that

∣
∣E
(
R1n(α,β, a,u)

)− R(α,β, a,u)E
(
R0n(α, u)

)∣
∣

= ∣
∣E
(
Kh(u1 − u)

[
R(α,β, a,u1) − R(α,β, a,u)

])∣
∣

=
∣
∣
∣
∣

∫

Kh(τ − u)
[
R(α,β, a, τ ) − R(α,β, a,u)

]
fα(τ ) dτ

∣
∣
∣
∣

≤ ‖fα‖∞
∫

K(v)
∣
∣R(α,β, a,u − vh) − R(α,β, a,u)

∣
∣dv.

Note that the boundedness of fT lead to supα∈S1
‖fα‖∞ < ∞. Then, (27) follows

easily from the boundedness of ρ, the integrability of the kernel, the equicontinuity
condition D5 and the fact that hn → 0. Finally, in order to prove (25), consider the
class of functions

Fn =
{

gt,a,α,β,h(y,x, v) = B−1ρ
(
y,xTβ + a

)
w1(x)K

(
αT t − v

h

)

= B−1ρ
(
y,xTβ + a

)
w1(x)K̃α,h,t(v)

}

,
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with B = ‖ρ‖∞‖w1‖∞‖K‖∞. The proof of (25) follows now as that of Theorem 3.1
in Boente et al. (2006).

(b) Follows using analogous arguments to those considered in Theorem 3.1 in
Boente et al. (2006). �

Proof of Lemma 3.2 (a) For any ε > 0, let T0 be a compact set such that
P(t /∈ T0) < ε. Then, we find that

sup
a,α∈S1,b,β∈K

∣
∣Gn(α,β, η̂a,b) − Gn(α,β, ηa,b)

∣
∣

≤ sup
a∈S1,b∈K

‖η̂a,b − ηa,b‖0,∞‖w2‖∞‖Ψ ‖∞

+ 2‖w2‖∞‖ρ‖∞
1

n

n∑

i=1

I(ti /∈T0)

and so, using (13), the fact that P(t /∈ T0) < ε and the Strong Law of Large Numbers,
we get

sup
a,α∈S1,b,β∈K

∣
∣Gn(α,β, η̂a,b) − Gn(α,β, ηa,b)

∣
∣ a.s.−→ 0.

Therefore, it remains to show that supa,α∈S1,b,β∈K |Gn(α,β, ηa,b) −
G(α,β, ηa,b)| a.s.−→ 0. Define the following class of functions H = {fα,β (y,x, t) =
ρ(y,xTβ + ηa,b(αTt))w2(x),b,β ∈ K,a,α ∈ S1}. Using Theorem 3 from
Chap. 2 in Pollard (1984), the compactness of K, D1, D6 and analogous
arguments to those considered in Lemma 1 from Bianco and Boente (2002), we get
supa,α∈S1;b,β∈K |Gn(α,β, ηa,b) − G(α,β, ηa,b)| a.s.−→ 0.

(b) Let (α̂k, β̂k) be a subsequence of (α̂, β̂) such that (α̂k, β̂k) → (α∗,β∗).
Note that (α∗,β∗) belongs to the compact set S1 × K1. Let us assume with-
out loss of generality that (α̂, β̂)

a.s.−→ (α∗,β∗). Then, D7, the continuity of
ηα,β and Lemma 3.1(a) entail that Gn(α̂, β̂, η̂α̂R,β̂R

) − G(α∗,β∗, η0)
a.s.−→ 0 and

Gn(α0,β0, η̂α̂R,β̂R
) − G(α0,β0, η0)

a.s.−→ 0. Finally, since Gn(α0,β0, η̂α̂R,β̂R
) ≥

Gn(α̂, β̂, η̂α̂R,β̂R
) and G(α,β, η0) has a unique minimum at (β0, η0), we conclude

the proof. �

A.2 Proof of the asymptotic normality results

Lemma A.1 Let (yi,xi , ti ) be independent observations such that yi |(xi , ti ) ∼
F(·,μi) with μi = H(xT

i β + η0(α
T
0ti )) and VAR(yi |(xi , ti )) = V (μi). Assume that

ti are random variables with distribution on a compact set T and that M1 to M4
hold. Let α̂, α̃, α̂R, β̃ and β̂R consistent estimators of α0 and β0, respectively. Then,
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Cn
p−→ C where C is defined in (18) and

Cn = 1

n

n∑

i=1

χ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̃Tti

))
w2(xi )λ̂i (τ̂ R,i )λ̂i (τ̃ R,i )

T

+ Ψ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̂Tti

))
w2(xi )λ̂

(1)

i (τ̃ R,i )

with τ̃ R,i = (α̂R, β̂R, α̃
Tti ), τ̂ R,i = (α̂R, β̂R, α̂

Tti ),

λ̂i (τ ) =
(

xi

∂
∂s

η̂a,b(s)|(a,b,s)=τ ti

)

and λ̂
(1)

i (τ ) =
(

0 0

0 ∂2

∂s2 η̂a,b(s)titT
i

)∣
∣
∣
∣
(a,b,s)=τ

,

where τ = (α,β, u).

Proof Let λ
(1)
i (τ ) = ( 0 0

0 ∂2

∂u2 ηα,β (u)ti tT
i

)|τ=τ and note that Cn can be written as Cn =
∑6

i=1 C(i)
n where

C(1)
n = 1

n

n∑

i=1

χ
(
yi,xT

i β̃ + η0
(
αT

0ti
))

w2(xi )λi (τ 0i )λi (τ 0i )
T,

C(2)
n = 1

n

n∑

i=1

χ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̃Tti

))
w2(xi )

× [
λ̂i (τ̂ R,i )λ̂i (τ̃ R,i )

T − λi (τ 0i )λi (τ 0i )
T
]
,

C(3)
n = 1

n

n∑

i=1

χ1
(
yi,xT

i β̃ + ξ1in

)
w2(xi )λi (τ 0i )

[
η̂α̂R,β̂R

(
α̃Tti

)− η0
(
αT

0 ti
)]

,

C(4)
n = 1

n

n∑

i=1

Ψ
(
yi,xT

i β̃ + η0
(
αT

0ti
))

w2(xi )λ
(1)
i (τ 0i ),

C(5)
n = 1

n

n∑

i=1

Ψ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̂Tti

))
w2(xi )

[
λ̂

(1)

i (τ̃ R,i ) − λ
(1)
i (τ 0i )

]
,

C(6)
n = 1

n

n∑

i=1

χ
(
yi,xT

i β̃ + ξ2in
)
w2(xi )λ

(1)
i (τ 0i )

[
η̂α̂R,β̂R

(
α̂Tti

)− η0
(
αT

0 ti
)]

,

where ξ1in and ξ2in are intermediate points between η̂α̂R,β̂R
(α̃Tti ) and η0(α

T
0 ti ) and

between η̂α̂R,β̂R
(α̂Tti ) and η0(α

T
0 ti ), respectively. Using M1, M2, M4 and the fact

that α̂, α̃, α̂R, β̂R and β̃ are consistent estimators of the parameters, we have easily

that C(j)
n

p−→ 0 for j = 2,3,5,6.
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The Dominated Convergence Theorem and the consistency of β̃ lead to

E
(
χ
(
y1,xT

1 β̃ + η0
(
αT

0 ti
))

w2(x1)λ1(τ 01)
)

→ E
(
χ
(
y1,xT

1β0 + η0
(
αT

0 t1
))

w2(x1)λ1(τ 01)
)
.

On the other hand, Theorem 3 in Chap. 2 of Pollard (1984) implies that, for any
compact set K ⊂ R

p ,

sup
β∈K

∣
∣
∣
∣
∣
n−1

n∑

i=1

[
χ
(
yi,xT

i β + η0
(
αT

0 ti
))

w2(xi )λi (τ 0i )

− E
(
χ
(
y1,xT

1β + η0
(
αT

0t1
))

w2(x1)
)
λ1(τ 01)

]
∣
∣
∣
∣
∣

a.s.−→ 0.

Therefore, we have C(2)
n

p−→ C with C defined in (18). Using analogous arguments

and M3, we obtain that C(4)
n

p−→ 0. �

Proof of Theorem 4.1 Note that by Remark 2.1, we can assume that α0 = eq . Let

τ̂ R,0i = (α̂R, β̂R,α
T
0 ti ) while τ̃ R,i , τ̂ R,i , λ̂i (τ ), λ̂

(1)

i (τ ), λ
(1)
i (τ ) and τ = (α,β, u) are

defined as in Lemma A.1.
Let (α̂, β̂) be a solution of G

(1)
n (α̂, β̂, η̂α̂R,β̂R

) = 0 with G
(1)
n defined in (11). Using

a Taylor expansion of order one, we get

0 = θn

(
0

α̂

)

+ 1

n

n∑

i=1

Ψ
(
yi,xT

i β̂ + η̂α̂R,β̂R

(
α̂Tti

))
w2(xi )λ̂i (τ̂R,i )

= θn

(
0

α̂

)

+ V̂n + Cn

√
n

(
β̂ − β0
α̂ − α0

)

, (28)

where

V̂n = 1√
n

n∑

i=1

Ψ
(
yi,xT

i β0 + η̂α̂R,β̂R

(
αT

0 ti
))

w2(xi )λ̂i (τ̂ R,0i ),

Cn = 1

n

n∑

i=1

χ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̃Tti

))
w2(xi )λ̂i (τ̂ R,i )λ̂i (τ̃ R,i )

T

+ 1

n

n∑

i=1

Ψ
(
yi,xT

i β̃ + η̂α̂R,β̂R

(
α̂Tti

))
w2(xi )λ̂

(1)

i (τ̃ R,i )

with α̃ and β̃ intermediate points between α0 and α̂ and between β0 and β̂ , respec-
tively.
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Lemma A.1 entails that Cn
p−→ C where C is defined in (18). Then, it will enough

to study the behavior of V̂n. Let

Vn = 1√
n

n∑

i=1

Ψ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )λi (τ 0i ).

Straightforward calculations lead to V̂n − Vn =∑5
i=1 Vin where

V1n = 1√
n

n∑

i=1

Ψ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )
[
λ̂i (τ̂ R,0i ) − λi (τ 0i )

]
,

V2n = 1√
n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )
[
η̂α̂R,β̂R

(
αT

0ti
)− ηα0,β0

(
αT

0 ti
)]

× [
λ̂i (τ̂ R,0i ) − λi (τ 0i )

]
,

V3n = 1√
n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )λi (τ 0i )

× [
η̂α̂R,β̂R

(
αT

0 ti
)− ηα0,β0

(
αT

0ti
)]

,

V4n = 1

2n

n∑

i=1

χ1
(
yi,xT

i β0 + ξin
)
w2(xi )λi (τ 0i )

× [
n1/4(η̂α̂R,β̂R

(
αT

0 ti
)− ηα0,β0

(
αT

0 ti
))]2

,

V5n = 1

2n

n∑

i=1

χ
(
yi,xT

i β0 + ζin
)
w2(xi )

[
n1/4(η̂α̂R,β̂R

(
αT

0 ti
)− ηα0,β0

(
αT

0 ti
))]2

× [
λ̂i (τ̂ R,0i ) − λi (τ 0i )

]

with ξin and ζin intermediate points between ηα0,β0(α
T
0 ti ) and η̂α̂R,β̂R

(αT
0 ti ).

Analogous arguments to those considered in Theorem 3.5.3 in Rodriguez (2008),

allow one to show that V1n
p−→ 0. Furthermore, M1, M2 and the fact that n1/4‖α̂R −

α0‖ a.s.−→ 0 and n1/4‖β̂R − β0‖ a.s.−→ 0 entail that Vin
p−→ 0 for i = 4,5.

Therefore, if we show that

(i) V2n
p−→ 0

(ii) V3n =∑n
i=1 ϕ̃(yi,xi , ti )/

√
n + op(1)

where ϕ̃ is defined in (19), we can conclude that

V̂n − Vn − 1√
n

n∑

i=1

ϕ̃(yi,xi , ti )
p−→ 0.

Hence, M3 and the fact that E0ϕ(y1,x1, t1) = 0 entail that V̂n is asymptotically nor-
mally distributed with covariance Γ .
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Let us begin by showing (ii). First, we note that by Lemma 4.1 we have

η̂α̂R,β̂R
(u) − ηα0,β0(u) = η̂α̂R,β̂R

(u) − η̂α0,β0(u) + η̂α0,β0(u) − ηα0,β0(u)

= ∂

∂α
η̂α,β(s)

∣
∣
∣
∣

T

(α,β,s)=(α0,β0,u)

(α̂R − α0)

+ ∂

∂β
η̂α,β(s)

∣
∣
∣
∣

T

(α,β,s)=(α0,β0,u)

(β̂R − β0)

+ 1

nfα0(u)

n∑

j=1

Kh

(
αT

0 tj − u
)
Dj(u) + op

(
n−1/2), (29)

and consider the following expansion:

V3n = V31n + V32n + V33n + V34n + V35n + op

(
n−1/2),

where

V31n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0ti
))

w2(xi )λi (τ 0i )
∂

∂α
ηα,β(u)

∣
∣
∣
∣

T

τ=τ0i

× √
n(α̂R − α0),

V32n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0ti
))

w2(xi )λi (τ 0i )
∂

∂β
ηα,β(u)

∣
∣
∣
∣

T

τ=τ0i

× √
n(β̂R − β0),

V33n = 1

n3/2

n∑

i=1

n∑

j=1

1

fα0(α
T
0 tj )

Kh

(
αT

0tj − αT
0 ti
)
χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

× w2(xi )λi (τ 0i )Dj

(
αTti

)
,

V34n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0ti
))

w2(xi )λi (τ 0i )
∂

∂α

[
η̂α,β(u) − ηα,β(u)

]
∣
∣
∣
∣

T

τ=τ0i

× √
n(α̂R − α0),

V35n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0ti
))

w2(xi )λi (τ 0i )
∂

∂β

[
η̂α,β(u) − ηα,β(u)

]
∣
∣
∣
∣

T

τ=τ0i

× √
n(β̂R − β0).

Using M1, M2 and the fact that
√

n(α̂R − α0) = Op(1) and
√

n(β̂R − β0) = Op(1),

it is easy to see that V3in
p−→ 0 for i = 4,5. Using analogous arguments to those
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considered in Theorem 3.5.3 in Rodriguez (2008) we obtain that

V33n = 1√
n

n∑

i=1

Di

(
αT

0 ti
)
fα0

(
αT

0 ti
)
γ̃ (ti ) + op(1)

with γ̃ (t) defined in (21).
On the other hand, using the fact that the initial estimators β̂R and α̂R satisfy (14)

and the strong law of large umbers, we get

V31n + V32n

= E

(

χ
(
y1,xT

1β0 + ηα0,β0

(
αT

0t1
))

w2(x1)λ1(τ 01)

( ∂
∂β

ηα,β(s)|(α,β,s)=τ01

∂
∂α

ηα,β(s)|(α,β,s)=τ01

)T)

× 1√
n

n∑

i=1

ϕ(yi,xiti ) + op(1)

concluding the proof of (ii).
Let us show (i). Using the expansion (29), we can write V2n = V21n + V22n +

V23n + op(n−1/2) where

V21n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )
∂

∂α
η̂α,β(s)

∣
∣
∣
∣

T

(α,β,s)=τ0i

× √
n(α̂R − α0)

(
λ̂i (τ̂ R,0i ) − λi (τ 0i )

)
,

V22n = 1

n

n∑

i=1

χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

w2(xi )
∂

∂β
η̂α,β(s)(s)

∣
∣
∣
∣

T

(α,β,s)=τ0i

× √
n(β̂R − β0)

(
λ̂i (τ̂ R,0i ) − λi (τ 0i )

)
,

V23n = 1

n3/2

n∑

i=1

n∑

j=1

1

fα0(α
T
0 tj )

Kh

(
αT

0 tj − αT
0 ti
)
χ
(
yi,xT

i β0 + ηα0,β0

(
αT

0 ti
))

× w2(xi )Dj

(
αT

0 ti
)[

λ̂i (τ̂ R,0i ) − λi (τ 0i )
]
.

Using again that
√

n(α̂R − α0) = Op(1) and
√

n(β̂R − β0) = Op(1), together with

assumptions M1 and M2, we obtain that V2in
p−→ 0 for i = 1,2. The proof of

V23n
p−→ 0 can be found in Lemma 3.5.4 in Rodriguez (2008).

To conclude the proof, let Pα̂ be the projection matrix Pα̂ = ( Ip 0
0 Iq − α̂α̂T

)
. Using

(28), we get

0 = Pα̂V̂n + Pα̂Cn

√
n

(
β̂ − β0

α̂ − α0

)

. (30)
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The consistency of α̂ implies that Pα̂

p−→ Pα0 and since α0 = eq , we get Pα0 =
( Ip+q−1 0

0 0

)
Then, write Cn = (Cn1 Cn2

Cn3 Cn4

)
where Cn1 ∈ R

(p+q−1)×(p+q−1), Cn2,CT
n3 ∈

R
(p+q−1)×1 and Cn4 ∈ R and also, Cn1 = (C(1)

n1 C(2)
n1

C(3)
n1 C(4)

n1

)
with C(1)

n1 ∈ R
p×p . Let

P(p+q−1)

α̂
= (pα̂1 · · ·pα̂p+q−1)

T where pα̂ i correspond to the columns of Pα̂ . Then,

Lemma A.1 implies that P(p+q−1)

α̂
Cn

p−→ (C1 C2 ) where C1 is defined in M8 and
C2 ∈ R

(p+q−1)×1.
Note that, since ‖α̂‖ = 1 and ‖α0‖ = 1, we have

√
n(α̂ − α0)

T(α̂ + α0) = 0. By
(30), we obtain

(−P(p+q−1)

α̂
V̂n

0

)

=
(

P(p+q−1)

α̂
Cn

0

)√
n

(
β̂ − β0

α̂ − α0

)

.

The consistency of α̂ and the fact that C1 is nonsingular and V̂n
D−→ N(0,Γ ), entail

that −P(p+q−1)
α̂

V̂n
D−→ N(0,P(p+q−1)

α0 Γ P(p+q−1) T

α0 ). Then,
√

n(α̂q −α0q)
p−→ 0 and

√
n

(
β̂ − β0

α̂(q−1) − α
(q−1)

0

)
D−→ N

(
0,C−1

1 Γ 1C−1
1

)
,

where C1 and Γ 1 are defined in M8 and M9, respectively. �
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