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Non-asymptotic and potential Landesman-Lazer
conditions for a nonlinear beam equation

Pablo Amster
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Abstract Existence of solutions for a nonlinear fourth order ordinary differential
equation arising in beam theory is considered.

We obtain solutions by a degree argument under a non-asymptotic condition on the
nonlinear terms of the problem. Moreover, assuming a potential Landesman-Lazer
condition, we prove the existence of at least one solution by variational methods.

Keywords Nonlinear beam equation · Symmetric solutions · Landesman-Lazer
conditions · Degree theory · Variational methods

Mathematics Subject Classification 34B15 · 47H11 · 47J30

1 Introduction

We study the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(4)(t) + g
(
t, u(t)

) = 0

u′′(0) = u′′(T ) = 0

u′′′(0) = −f
(
u(0)

)

u′′′(T ) = f
(
u(T )

)
,

(1)

where g : [0, T ] × R → R and f : R → R are continuous. In addition, we shall as-
sume that g is symmetric in t , namely

g(t, u) = g(T − t, u). (2)

P. Amster (�)
Departamento de Matemática, FCEyN, UBA Ciudad Universitaria, Pabellón I, 1428 Buenos Aires,
Argentina
e-mail: pamster@dm.uba.ar

mailto:pamster@dm.uba.ar
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Problem (1) arises on a model for the deflection of a beam resting on elastic bear-
ings. The existence of symmetric solutions when (2) holds has been considered by
Grossinho and Ma by variational methods. It has been proved (see [2], Theorem 2)
that, if f and g(t, ·) are nondecreasing, then (1) has a symmetric solution if and only
if

2f (a) +
∫ T

0
g(t, a)dt = 0 for some a ∈ R.

Moreover, if no monotonicity condition is assumed, the authors have proved (see
[2], Theorem 5) the existence of a symmetric solution of (1) for the sublinear case,
namely

g(t, s)

s
→ 0 as |s| → ∞

uniformly in t , and

f (s)

s
→ 0 as |s| → ∞,

assuming a growth condition for f and g, and that one of the following hypotheses
holds:

(i) g(t, s) → ±∞ as s → ±∞ uniformly in t , and f is bounded from below.
(ii) f (s) → ±∞ as s → ±∞, and g is bounded from below.

In [1], solutions have been obtained by the use of Mawhin’s coincidence de-
gree theory [5], for bounded g, assuming an asymptotic Landesman-Lazer type
conditions (see e.g. [3, 6]). In more precise terms, if we denote respectively by
g±

sup, g±
inf , f ±

sup, f ±
inf the upper and lower limits of g and f as u → ±∞, existence

of solutions is guaranteed by one of the following conditions:

2f −
sup +

∫ T

0
g−

sup(t) dt < 0 < 2f +
inf +

∫ T

0
g+

inf (t) dt (3)

or

2f +
sup +

∫ T

0
g+

sup(t) dt < 0 < 2f −
inf +

∫ T

0
g−

inf (t) dt. (4)

In this setting, it may be argued that the boundedness of g is, in some sense,
essential: indeed, if we consider for example

g(t, u) = −u + sin t, f ≡ 0,

then there are no solutions of (1) for T = π although (4) is satisfied. However, this
counterexample is obviously due to the interaction of g with the spectrum of the linear
operator Lu := u(4) over the set of symmetric functions such that u′′(0) = u′′′(0) = 0;
thus, different ways of avoiding the problem may be suggested, without restricting
ourselves to the case in which g is bounded.

In first place, observe that L is nonnegative: in consequence, under appropriate
assumptions no interference with the spectrum should be expected when (3) holds
instead of (4).
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In second place, we might consider also that g is sublinear (although not neces-
sarily f ).

Finally, the boundedness restriction can be dropped if we assume that g and f are
both bounded from below in (4), or from above in (3).

These three situations are reflected in the following cases that shall be considered
in our result, together with an appropriate generalization of (3) and (4):

• Case 1: ug(t, u) ≥ k(t) for |u| ≥ u0 and some k ∈ L1(0, T ), and sf (s) ≥ l for
|s| ≥ s0 and some l ∈ R.

• Case 2:

∣
∣g(t, u)

∣
∣ ≤

(
2

T

)4
r

T

for a − r ≤ u ≤ b + r and t ∈ [0, T ], for some constants a < b and r > 0.
For example, if g grows at most linearly, i.e. |g(u)| ≤ α|u| + β , with 2αT <

( 2
T

)4, then it suffices to take r large enough, a = −cr , and b = cr for some constant
c ∈ (1,2).

• Case 3: There exists k ∈ L1(0, T ) and l ∈ R such that either

g(t, u) ≥ k(t) and f ≥ l

or

g(t, u) ≤ k(t) and f ≤ l.

In order to establish non-asymptotic conditions for g and f let us define, for a < b

and r > 0, the functions

ga
sup(t) = sup

|u−a|<r

g(t, u), gb
sup(t) = sup

|u−b|<r

g(t, u),

and

ga
inf (t) = inf|u−a|<r

g(t, u), gb
inf (t) = inf|u−b|<r

g(t, u).

In Case 2, the constants a, b and r are given; in Cases 1 and 3, a and b are arbitrary,
but the value of r depends on the data, and it shall be explicitly computed (see (11)
and (12) below). We are now able to state our existence result as follows.

Theorem 1.1 Assume that one of the situations of the previous Cases 1, 2 or 3 holds,
and that

∫ T

0
ga

sup(t) dt + 2f (a) < 0 <

∫ T

0
gb

inf (t) dt + 2f (b) (5)

or
∫ T

0
gb

sup(t) dt + 2f (b) < 0 <

∫ T

0
ga

inf (t) dt + 2f (a). (6)

Then (1) admits at least one classical solution.
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Remark 1.2 It is easy to verify that all the above-mentioned existence results from
[1] and [2] can be deduced from Theorem 1.1.

A proof of Theorem 1.1 will be given in Sect. 2, by topological degree methods.
On the other hand, we might expect existence results of a different type, due to

the variational structure of problem (1). In particular, we shall prove that existence
of solutions can be proved under a potential Landesman-Lazer condition; namely, in
terms of the primitives

G(t,u) :=
∫ u

0
g(t, s) ds, F (u) :=

∫ u

0
f (s) ds.

Although a more general situation could be considered, we shall assume for sim-
plicity that g is bounded. Let us define

lim sup
s→±∞

G(t, s)

s
:= G±

sup(t), lim inf
s→±∞

G(t, s)

s
:= G±

inf (t),

and the (possibly infinite) limits:

lim sup
s→±∞

F(s)

s
:= F±

sup, lim inf
s→±∞

F(s)

s
:= F±

inf .

Then we obtain:

Theorem 1.3 Assume that (2) holds, and that g is bounded, with

2F−
sup +

∫ T

0
G−

sup(t) dt < 0 < 2F+
inf +

∫ T

0
G+

inf (t) dt (7)

or

2F+
sup +

∫ T

0
G+

sup(t) dt < 0 < 2F−
inf +

∫ T

0
G−

inf (t) dt. (8)

Then (1) admits at least one classical solution.

Remark 1.4 It is worth to observe that the potential conditions in Theorem 1.3 cannot
be deduced from the assumptions of Theorem 1.1. Indeed, (5) and (6) require some
specific behavior on f and g over an interval of length 2r , where r is determined
by the data and cannot be arbitrarily small. But it might happen, for instance, that g

and f oscillate rapidly, so that (5) or (6) do not hold, but one of the conditions in
Theorem 1.3 is fulfilled.

Remark 1.5 As before, the boundedness condition can be dropped when the first of
the assumption holds. However, in this case an uniformness condition on the limits
is needed, in order to avoid some sort of “∞ − ∞” indeterminacy. For example,
a sufficient condition when g is unbounded is the following:

G(t,u) ≥ ξ(t)|u| + C, F(s) ≥ θ |s| + C
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for |u| ≥ u0, |s| ≥ s0 and some ξ ∈ L1(0, T ), θ ∈ R such that
∫ T

0 ξ(t) dt + 2θ > 0.
Note that ξ and θ are not necessarily nonnegative, although in this case the inequal-
ities in (7) still make sense. It might happen, however, that for example F+

inf = −∞
or F−

sup = +∞, as far as G(t,u) goes to +∞ fast enough, uniformly in t .

2 Non-asymptotic conditions: a degree argument

A proof of Theorem 1.1 could be given in the context of coincidence degree theory.
For completeness, we shall present a direct argument, using the homotopy invariance
of the Leray-Schauder degree.

In order to put the problem in an appropriate setting, let us firstly observe that the
linear associated problem for a symmetric function ϕ ∈ L2(0, T ) and a constant c

given by

u(4)(t) = ϕ(t), u′′(0) = 0, u′′′(0) = c (9)

has a symmetric solution u ∈ H 4(0, T ) if and only if

ϕ + 2c

T
= 0,

where ϕ denotes the average of ϕ over the interval (0, T ). Thus, the linear operator
L : H 4(0, T ) → L2(0, T ) × R given by Lu := (u(4), u′′′(0)) admits a continuous
right inverse K : {(ϕ, c) : ϕ + 2c

T
= 0} → H 4(0, T ), given by K(ϕ, c) = u, the unique

solution of (9) such that u(0) = 0. We shall apply a degree argument to the Fredholm
operator Fλ : E → E, where E denotes the Banach space Csym([0, T ]) of symmetric
continuous functions, given by

Fλ(u) = u − u(0) − g(·, u) − 2f (u(0))

T

− λK
(

g(·, u) − g(·, u) − 2f (u(0))

T
,f

(
u(0)

)
)

.

A straightforward computation shows that, for λ ∈ (0,1], then Fλ(u) = 0 if and only
if u is a symmetric solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(4)(t) + λg
(
t, u(t)

) = 0

u′′(0) = u′′(T ) = 0

u′′′(0) = −λf
(
u(0)

)

u′′′(T ) = λf
(
u(T )

)
.

(10)

We shall prove the existence of at least one solution of the problem in 	 ⊂ E,
where

	 := {
u ∈ E : ∥∥u − u(0)

∥
∥ < r,u(0) ∈ (a, b)

}
.

Observe that if the problem has a solution u ∈ ∂	, then there is nothing to prove.
Thus, we may suppose that the problem has no solutions in ∂	. Next, we shall prove
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that Fλ does not vanish on ∂	 for λ ∈ (0,1). With this aim, let us prove in first place
that if Fλu = 0 for λ ∈ (0,1) and u ∈ 	, then ‖u − u(0)‖ < r . Indeed, if Fλu = 0,
then u solves (10). We shall proceed as follows, according to the different cases:

• Case 1: Multiplying the equation by u − u(0), and using the fact that

∫ T

0
g
(
t, u(t)

)
dt + 2f

(
u(0)

) = 0,

we obtain:
∫ T

0
u(4)(t)

(
u(t) − u(0)

)
dt

= −λ

(∫ T

0
g
(
t, u(t)

)
u(t) dt + 2f

(
u(0)

)
u(0)

)

≤ −λ

(∫

|u|≤u0

g
(
t, u(t)

)
u(t) dt +

∫

|u|>u0

k(t) dt + 2 min
{

inf|s|<s0
sf (s), l

})

Integrating by parts the left-hand side, it is seen that ‖u′′‖2
L2 < C for some appro-

priate constant C, and hence

∥
∥u − u(0)

∥
∥∞ <

(
T

2

)3/2
C

2
:= r. (11)

• Case 2: Let us define Ir = [a − r, b + r], and

γr(I ) = T sup
t∈[0,T ],u∈Ir

∣
∣g(t, u)

∣
∣.

From the equation, it follows easily that

∥
∥u − u(0)

∥
∥∞ ≤ λ

(
T

2

)4

γr(I ).

From the hypothesis, we obtain that ‖u − u(0)‖∞ < r .
• Case 3: Assume that g(t, u) ≥ k(t) and f ≥ l, and write: −u(4)(t) = λ[g(t, u(t))−

k(t)] + λk(t). We deduce that

∥
∥u(4)

∥
∥

L1 ≤ λ

∫ T

0
g
(
t, u(t)

)
dt + λ

(‖k‖L1 − T k
)
.

Moreover, as
∫ T

0 g(t, u(t)) dt + 2f (u(0)) = 0, we conclude:

∥
∥u(4)

∥
∥

L1 < ‖k‖L1 − T k − 2l := C.

From the symmetry of u, this implies that

∥
∥u′′′∥∥∞ <

C

2
,

∥
∥u′′∥∥∞ <

T C

4
,

∥
∥u′∥∥∞ <

T 2C

8
,
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and finally

∥
∥u − u(0)

∥
∥∞ <

T 3C

16
:= r. (12)

The proof is analogous if g(t, u) ≤ k(t) and f ≤ l, with C = ‖k‖L1 + T k + 2l.

It remains to prove that u(0) �= a, b. Suppose for example that u(0) = b, and that
(5) holds. As |u(t) − b| < r for every t ∈ [0, T ], we deduce that

0 =
∫ T

0
g
(
t, u(t)

)
dt + 2f (b) ≥

∫ T

0
gb

inf (t) dt + 2f (b) > 0,

a contradiction. The proof is analogous if u(0) = a, and also if (6) holds instead of
(5).

To conclude, let us verify that F0 does not vanish on ∂	, and that the degree of F0
at 0 over the domain 	 is different from zero.

Indeed, if F0(u) = 0 for some u ∈ 	, then u ∈ R. Hence, u − u(0) = 0 and∫ T

0 g(t, u) dt + 2f (u(0)) = 0. Moreover, if u = a or u = b, a contradiction is ob-
tained as before. Thus, u /∈ ∂	. From the definition of the Leray-Schauder degree,

deg(F0,	,0) = degB(F0|R,	 ∩ R,0).

For u ∈ R, it is clear that F0(u) = − 1
T

(
∫ T

0 g(t, u) dt + f (u)). From (5) or (6), it
follows that F0(a)F0(b) < 0; thus, the degree is ±1, and the proof is complete.

3 Proof of Theorem 1.3

Let H be the Hilbert space defined by

H := {
u ∈ H 2(0, T ) : u(T − t) = u(t)

}
,

and consider the functional I : H → R given by:

I (u) =
∫ T

0

u′′(t)2

2
+ G

(
t, u(t)

)
dt + 2F

(
u(0)

)
.

A simple computation shows that I ∈ C1(H,R), with

DI (u)(ϕ) =
∫ T

0
u′′(t)ϕ′′(t) + g

(
t, u(t)

)
ϕ(t) dt + 2f

(
u(0)

)
ϕ(0).

Thus, if u is a critical point of I , then taking all the symmetric test functions
ϕ ∈ C∞

0 (0, T ) it follows that u(4)(t) + g(t, u(t)) = 0 in the weak sense. As u is
continuous, it follows that u is a classical solution of the equation. Furthermore, as u

and ϕ are symmetric, for any ϕ ∈ H we obtain

∫ T

0
u′′(t)ϕ′′(t) dt = −2u′′(0)ϕ′(0) + 2u′′′(0)ϕ(0) −

∫ T

0
g
(
t, u(t)

)
ϕ(t) dt.
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Taking ϕ such that ϕ′(0) = 0 �= ϕ(0) we deduce that

u′′′(0) + f
(
u(0)

) = 0.

Finally, taking ϕ such that ϕ(0) = 0 �= ϕ′(0) we conclude that also u′′(0) = 0.
For the sake of completeness, let us recall the following well known facts from

critical point theory:

Definition 3.1 Let E be a Banach space and I ∈ C1(E,R). It is said that I satis-
fies (PS) if any sequence {un} ⊂ E such that |I (un)| ≤ c for some constant c and
DI (un) → 0, has a convergent subsequence in E.

Theorem 3.2 Let E be a Banach space and let I ∈ C1(E,R) satisfy (PS). Further-
more, assume that I is coercive. Then I achieves a minimum.

Theorem 3.3 (Rabinowitz, [7]) Let E be a Banach space and let I ∈ C1(E,R) sat-
isfy (PS). Furthermore, assume that E = E1 ⊕ E2, with dim(E1) < ∞, and

max
u∈E1:‖u‖=R

I (x) < inf
u∈E2

I (u)

for some R > 0. Then I has at least one critical point.

3.1 Palais-Smale condition

In this section, we prove that I satisfies the Palais-Smale condition.
Let un ∈ H satisfy |I (un)| ≤ c, DI (un) → 0. If {un} is bounded, then taking

a subsequence we may assume that un converges to some function u, both for the
weak topology and the C1-norm. As

DI (un)(u) =
∫ T

0
u′′

n(t)u
′′(t) + g

(
t, un(t)

)
u(t) dt + 2f

(
un(0)

)
u(0) → 0

and
∫ T

0 u′′
n(t)u

′′(t) dt → ∫ T

0 u′′(t)2 dt , we deduce that

∫ T

0
u′′(t)2 + g

(
t, u(t)

)
dt + 2f

(
u(0)

)
u(0) = 0.

Moreover, as {un} is bounded then also

DI (un)(un) =
∫ T

0
u′′

n(t)
2 + g

(
t, un(t)

)
un(t) dt + 2f

(
un(0)

)
un(0) → 0,
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and hence
∫ T

0 u′′
n(t)

2 dt → ∫ T

0 u′′(t)2 dt . Thus,

∫ T

0

(
u′′

n(t) − u′′(t)
)2

dt

=
∫ T

0
u′′

n(t)
2 dt +

∫ T

0
u′′(t)2 dt − 2

∫ T

0
u′′

n(t)u
′′(t) dt → 0,

which implies that un → u in H.
Next, we shall prove that if {un} is a sequence such that |I (un)| ≤ c and

DI (un) → 0, then {un} is bounded.
If (7) holds, the claim follows immediately from the fact that I is coercive, which

will be proved in Sect. 3.2 below. We shall give an argument when (8) holds, which
in fact is also valid under assumption (7).

Suppose that {un} is unbounded, such that |I (un)| ≤ c and DI (un) → 0. Writing

un(t) = un(0) +
∫ t

0
u′

n(s) ds

and

u′
n(t) =

∫ t

T /2
u′′

n(s) ds,

we deduce that

∥
∥un − un(0)

∥
∥∞ ≤ T

2
‖u′

n‖∞ ≤ T 3/2

4

∥
∥u′′

n

∥
∥

L2 .

Define vn := ũn‖un‖ . As DI (un)(vn) → 0, from the boundedness of g we deduce

that
‖u′′

n‖2
L2

‖un‖ is bounded, and hence
‖u′′

n‖
L2

‖un‖ → 0. From the previous inequalities, this

implies that vn → 0 in the sense of H 2; in particular, |un(0)| → ∞ and ‖ũn‖∞ =
o(|un(0)|). Passing to a subsequence, we may suppose for example that un(0) →
+∞.

Using again that DI (un)(vn) → 0 and that g is bounded, we conclude that
‖u′′

n‖2
L2

‖un‖ → 0. Thus, if we divide I (un) by un(0), and use the fact that ũn(t)
un(0)

→ 0 uni-
formly, we obtain:

0 = lim
n→∞

∫ T

0

G(t,un(t))

un(0)
dt + 2

F(un(0))

un(0)

≤
∫ T

0
G+

sup(t) dt + 2F+
sup < 0,

a contradiction. The proof is similar if un(0) → −∞.

3.2 End of the proof

We shall prove that if (7) holds, then I is coercive, and if condition (8) holds, then
Rabinowitz Theorem applies.
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Indeed, assume (7), and suppose that I (un) is bounded from above for some se-

quence {un} such that ‖un‖ → ∞. As before, we deduce that
‖u′′

n‖2
L2

‖un‖ is bounded, and
‖ũn‖∞ = o(|un(0)|). Then

lim inf
n→∞

∫ T

0

G(t,un(t))

|un(0)| dt + 2
F(un(0))

|un(0)| > 0.

This implies that I (un) → ∞, a contradiction.
Finally, let us assume that (8) holds, and consider

E1 := R, E2 := {
u ∈ H : u(0) = 0

}
.

Taking R ∈ R, a simple computation shows that

I (±R) → −∞ as R → +∞.

Moreover, it is immediate to see that I |E2 is bounded from below, and Theorem 3.3
applies for R large enough.
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