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Abstract

In prior work, a series of two-point boundary value problems have been investigated
for a steady state two-ion electro-diffusion model system in which the sum of the valen-
cies ν+ and ν

−
is zero. In that case, reduction is obtained to the canonical Painlevé II

equation for the scaled electric field. Here, a physically important Neumann boundary
value problem in the generic case when ν+ + ν

−
6= 0 is investigated. The problem is

novel in that the model equation for the electric field involves yet to be determined
boundary values of the solution. A reduction of the Neumann boundary value problem
in terms of elliptic functions is obtained for privileged valency ratios. A topological in-
dex argument is used to establish the existence of a solution in the general case, under
the assumption ν+ + ν

−
≤ 0.

1 Introduction

The theory of electro-diffusion originated in the liquid-junction theory of Nernst [1]
and Planck [2]. It provides a macroscopic description of the transmission of charged par-
ticles through material barriers and has applications notably, in the modeling of biological
membranes [3, 4] and in electrochemistry [5].

Here, it proves convenient to partition the ions into m classes characterized by the
same electric charge qj = q0νj where q0 is the unit of charge and νj is a non-zero integral
signed valency. The m-ion electro-diffusion model in steady régimes then reduces to the
Nernst-Planck equations [6].

dni

dx
= νinip− ci, νi 6= 0, i = 1, · · · ,m (1.1)

coupled to Gauss’ equation

dp

dx
=

m
∑

i=1

νini . (1.2)

Here,

ni =
Ni

N0

, (1.3)
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and

p =

[

q0λ̄

κ T

]

E , (1.4)

where Ni are the ion densities, N0 is an arbitrary unit of ionic density, E is the electric field,
T the temperature, κ the Boltzmann constant, and λ̄ = [ ǫκT/(4πq20N0) ]

1/2 is the Debye
length where ǫ is the dielectric constant. The ci are arbitrary constants of integration. The
Painlevé analysis of the system (1.1)−(1.2) has recently been undertaken in [7].

Attention is restricted to the two-ion case and, in the notation of [8], we set n1 = n+,
n2 = n−, ν1 = ν+, ν2 = ν−, c1 = c+, c2 = c− whence (1.1)−(1.2) yield

n′
+ = ν+n+p− c+ , (1.5)

n′
− = ν−n−p− c− , (1.6)

p′ = ν+n+ + ν−n− . (1.7)

The two-ion system (1.5)−(1.7) in the special case when ν+ + ν− = 0 was investigated by
Grafov and Chernenko [9] and independently by Bass [10]. An analogous system was subse-
quently derived independently in the context of semi-conductor theory by Kudryashov [11].
In both cases, reduction to the Painlevé II equation was obtained. This integrable connec-
tion has been exploited in [12] and [13] to apply a Bäcklund transformation sequentially to
generate solutions of the Bass system.

Addition of (1.5) and (1.6) together with use of (1.7) yields, on integration,

n+ + n− =
p2

2
− cx− k , (1.8)

where c = c++ c− and k is an arbitrary constant of integration. Elimination of n+ between
(1.7) and (1.8) then gives

p′ = n−(ν− − ν+) + ν+
p2

2
− cν+x− ν+k

whence

p′′ = (ν− − ν+)(ν−n−p− c−) + ν+pp
′ − cν+

= ν−p

[

p′ − ν+
p2

2
+ c ν+x+ kν+

]

− c−[ν− − ν+] + ν+pp
′ − cν+

so that

p′′ = (ν+ + ν−)pp
′ −

(ν+ν−
2

)

p3 + (cx+ k)ν+ν−p− (ν+c+ + ν−c−) . (1.9)

The condition that there is no net current in the junction yields [8]

ν+D+c+ + ν−D−c− = 0 (1.10)
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where D± = u±kT so that
ν+u+c+ + ν−u−c− = 0 (1.11)

whence
(ν+u+c+ + ν−u−c−)(ν+ − ν−) = 0 . (1.12)

Accordingly,

ν+c+ + ν−c− =
(D+ −D−)cν+ν−
ν+D+ − ν−D−

(1.13)

and (1.9) becomes

p′′ − (ν+ + ν−)pp
′ + ν+ν−

[

p3

2
− (cx+ k)p

]

+
(D+ −D−) c ν+ν−
ν+D+ − ν−D−

= 0 . (1.14)

If the junction has boundaries at x = 0 and x = δ then, on introduction of the scalings

x = δx∗, p =
y

δ
√−ν+ν−

, (1.15)

(1.14) yields

y′′ =

(

ν+ + ν−√−ν+ν−

)

yy′ +
y3

2
+ δ2ν+ν−(cδx

∗ + k)y − cδ3Dν+ν− (1.16)

where ′ now denotes the derivative with respect to x∗ and

c = n(0)− n(1) +
1

2δ2ν+ν−
[ y2(0) − y2(1) ] , (1.17)

k =
y2(0)

2δ2ν+ν−
− n(0) , (1.18)

D =

√−ν+ν−(D+ −D−)

ν+D+ − ν−D−
, ν+ν− < 0 . (1.19)

It is observed that (1.14) and (1.16) incorporate via c and k the boundary values n(0) =
n+(0)+n−(0), n(1) = n+(1)+n−(1), together with y(0) and y(1). It is anticipated that the
interface concentrations n+(0), n−(0), n+(1), n−(1) be known (Bass [10]). However, the
boundary terms y(0) and y(1) dependent on the yet to be determined solution y remain.

Insertion of (1.17), (1.18) into (1.16) yields

y′′ =

(

ν+ + ν−√−ν+ν−

)

yy′ +
y3

2
+ δ

[

δ2ν+ν−(n(0)− n(1)) +
1

2
(y2(0) − y2(1))

]

x∗y

−
[

y2(0)

2
+ δ2ν+ν−n(0)

]

y − δ

[

δ2ν+ν−(n(0)− n(1)) +
1

2
(y2(0) − y2(1))

]

D ,

that is, if we set λ = −δ2ν+ν−n(0), l = [n(1)− n(0)]/n(0),

y′′ =

(

ν+ + ν−√−ν+ν−

)

yy′ +
y3

2
+ δ

[

λl +
1

2
(y2(0)− y2(1))

]

x∗y

−
[

y2(0)

2
− λ

]

y − δ

[

λl +
1

2
(y2(0)− y2(1))

]

D (1.20)
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The involvement of the boundary terms y(0) and y(1) in (1.20) poses a formidable
impediment to its analysis and will be addressed in the sequal. It is anticipated that analo-
gous procedures to those presented will be applicablemutatis mutandis to the corresponding
(one-point) boundary value problem on the semi-infinite domain.

2 Reduction to Elliptic Integral Formulation for Privileged

Valency Ratios

Here, we consider the Neumann boundary value problem

p′′ − (ν+ + ν−)pp
′ + ν+ν−

[

p3

2
− (cx+ k)p

]

+
(D+ −D−)(c+ + c−)ν+ν−

ν+D+ − ν−D−
= 0 , (2.1)

p′(0) = p′(1) = 0 (2.2)

on the region [0,1] It is noted that the boundary conditions (2.2) imply, by virtue of Gauss’
equation (1.7) that

ν+n+(0) + ν−n−(0) = 0 , (2.3)

ν+n+(1) + ν−n−(1) = 0 , (2.4)

The latter conditions correspond to charge neutrality at the boundaries and can be imposed
at the outset. These imply the necessary requirements

n+(0)

n−(0)
= −ν−

ν+
=

n+(1)

n−(1)
(2.5)

on the interface concentration data. In particular, if, as in [8, 10, 11], ν+ + ν− = 0 , it is
seen that

n+(0)

n−(0)
=

n+(1)

n−(1)
= 1 (2.6)

Here, we proceed with the generic case

ν+ + ν− 6= 0

On introduction of the ansatz

p =
a w′

w
(2.7)

where
(

w′

w

)2

= A w−2 +B w−1 + C +D w + E w2 (2.8)

into the model equation (2.1) for the scaled electric field p, it is seen that,

c+ + c− = 0 , ν+c+ + v−c− = 0
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so that
c+ = c− = 0 (ν+ 6= ν−)

† (2.9)

whence c = 0. Moreover,

C =
2k

a2
(2.10)

and

I A(aν+ + 2)(aν− + 2) = 0 (2.11)

II B(aν+ + 1)(aν− + 1) = 0 (2.12)

III D(aν+ − 1)(aν− − 1) = 0 (2.13)

IV E(aν+ − 2)(aν− − 2) = 0 . (2.14)

The Specializations with ν+ν− < 0, ν+ + ν− 6= 0

These are

A 6= 0 ν+ = −2

a
or ν− = −2

a
⇓ ⇓ , B = E = 0

D 6= 0 ν− =
1

a
or ν+ =

1

a

(2.15)

or

B 6= 0 ν+ = −1

a
or ν− = −1

a
⇓ ⇓ , A = D = 0

E 6= 0 ν− =
2

a
or ν+ =

2

a

(2.16)

In the two canonical cases with valencies

ν+ =
1

a
, ν− = −2

a
(2.17)

ν+ =
2

a
, ν− = −1

a
(2.18)

the electric field equation becomes, in turn

a2p′′ + app′ − p3 + 2k p = 0 , (2.19)

or
a2p′′ − app′ − p3 + 2k p = 0 (2.20)

with general solution (2.7) where w is given in terms of elliptic integrals via

w′ = ±
√

A+ 2kw2/a2 +Dw3 (2.21)

†It is noted that the corresponding arbitrary constants in the 3-ion case are required to be zero in
Bass [14].
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or
w′ = ±

√

Bw + 2kw2/a2 + Ew4 (2.22)

respectively. The positive sign is taken in the sequel.

Case I

Here, we proceed with the case (2.17) with ν+ : ν− = 1 : −2 as obtained via Painlevé
analysis in [7]. Insertion of (2.7) into (1.5) and (1.6) with c+ = c− = 0 on integration yields

n+ = k+w
aν+ = k+w (2.23)

n− = k−w
aν− = k−w

−2 (2.24)

where the Gauss equation (1.7) shows that

k+ =
aD

2ν+
=

a2D

2
,

k− = −aA

ν−
=

a2A

2
,

whence, the concentrations are given by

n+ =
a2Dw

2 ,
(2.25)

n− =
a2A

2w2
. (2.26)

The Neumann boundary conditions (2.2) require that

−2Aw(0)−2 +Dw(0) = 0 , −2Aw(1)−2 +Dw(1) = 0 ,

so that

w(0) = w(1) =

(

2A

D

)1/3

. (2.27)

Moreover,

n+(0) =
a2D w(0)

2
=

a2D

2

(

2A

D

)1/3

= n+(1) ,

n−(0) =
a2A w−2(0)

2
=

a2A

2

(

2A

D

)−2/3

= n−(1) ,

so that

AD2 =
4n3

+(0)

a6
=

32n3
−(0)

a6
. (2.28)

If we denote
n+|x=0 = n+|x=1 = n+ (2.29)
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n−|x=0 = n−|x=0 = n− (2.30)

so that

n+ =
n+w

w(0)
, n− = n−

(

w

w(0)

)−2

(2.31)

and
p =

√

2(n+w/w(0) + n−(w/w(0))−2 + k) (2.32)

so that
p|x=0 =

√

2(n+ + n− + k) = p|x=1 . (2.33)

It is noted that the requirement (2.5) shows that the constants n+ and n− are related by

n+

n− = −ν−
ν+

= 2 . (2.34)

In the above, w is given via

w′ = ±1

a

√

2

(

n+w3

w(0)
+ kw2 + n−w2(0)

)

(2.35)

= ±
√

A+ 2kw2/a2 +Dw3

where it is required that the constants A, D and k be specified.

Case II

Here, we consider the case (2.18) with ν+ : ν− = 2 : −1 so that, in relations (2.23),
(2.24) for the concentrations,

k+ =
aE

ν+
=

a2E

2
, (2.36)

k− = − aB

2ν−
=

a2B

2
, (2.37)

whence

n+ =
a2Ew2

2
, (2.38)

n− =
a2B

2w
. (2.39)

The Neumann boundary conditions (2.23) require that

w(0) = w(1) = −
(

B

2E

)1/3

(2.40)

be applied to

w′ =

√

Bw +
2kw2

a2
+ Ew4 . (2.41)
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Illustration

Here, we set
w(0) = w(1) = 1 (2.42)

together with A = 1 so that, from (2.27), D = 2. The corresponding class of solutions of
the two-ion system is then given by

n+ = a2w , n− =
a2w−2

2
, (2.43)

p = a

√

w−2 +
2k

a2
+ 2w (2.44)

where

w′ =

√

1 +
2kw2

a2
+ 2w3 . (2.45)

In the sequel, we apply an exact shooting method to a Neumann boundary value problem
for the nonlinear equation (1.20) when reduction to an elliptic integral formalism is not
available.

3 The case ν+ + ν− ≤ 0

Here, we consider (1.20) under Neumann conditions, namely the problem

y′′ =

(

ν+ + ν−√−ν+ν−

)

yy′ +
y3

2
+ δ

[

λl +
1

2
(y2(0)− y2(1))

]

xy

−
[

y2(0)

2
− λ

]

y − δ

[

λl +
1

2
(y2(0)− y2(1))

]

D (3.1)

y′(0) = y′(1) = 0, (3.2)

without the assumption of any privileged valency ratio, except requiring ν+ + ν− ≤ 0.

We shall show the existence of solutions. It proves convenient to set

C :=
ν+ + ν−√−ν+ν−

.

and it is noted that λ = −δ2ν+ν−n(0) > 0.

The main result of this section reads as follows:

Theorem 1 Assume that ν+ + ν− ≤ 0, δ ≤ 1 and l > 0. Then problem (3.1)-(3.2) admits
at least one solution, provided that 0 < D < 1 + 1

l .
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The above extends our previous result proved in [15] for the case ν++ν− = 0 and δ = 1.

The proof will follow from a series of lemmas.

First, we observe that, on searching for positive solutions, if we set z = y/γ, where
γ = y(0), then (3.1)-(3.2) is equivalent to

z′′(x)− Cγz(x)z′(x) =

[

λ− γ2

2
(1− z(x)2) + γαx

]

z(x)− αD, (3.3)

with conditions
z(0) = 1, z′(0) = z′(1) = 0, (3.4)

where

α =
δ

γ

(

lλ+
γ2

2
(1− z(1)2)

)

. (3.5)

In the original problem, the parameter l together with the other parameters, λ, D,
and δ, are given, and we seek a solution y of (3.1) which satisfies the boundary conditions
(3.2). As noted before, the fact that the differential equation (3.1) contains the unknown
boundary values y(0) and y(1) makes the problem unconventional and cannot be adequately
solved by traditional methods. To circumvent this difficulty, we consider the new problem
(3.3) and (3.4). Here the parameter l is no longer given beforehand. Instead, we prescribe
the parameters α and γ and proceed to solve the initial value problem (3.3) with the first
two conditions in (3.4). By adjusting α appropriately, we can coerce the third condition in
(3.4) to hold also, and then we recover l from the solution by solving (3.5). If the calculated
l coincides with the given value of the parameter, we have our desired solution.

Thus, it suffices to find a pair (α, γ) such that the corresponding solution of the initial
value problem satisfies z′(1) = 0 and

l =
2αγ − δγ2(1− z(1)2)

2δλ
.

However, it is observed that an impediment arises on the fact that z may or may not be
‘properly’ defined throughout the entire interval [0, 1]. One situation is that z(t) can blow
up to infinity before t reaches the endpoint 1 of the interval. Another possibility is that
z(t) can hit the t-axis somewhere inside [0, 1] and then becomes negative subsequently. Let
us define an ‘endpoint’ σ ∈ (0, 1] of the solution z in the following way:

Case 1: If 0 < z < 2 on [0, t0) ⊂ [0, 1] and z(t0) = 0, then σ := t0.

Case 2: If 0 < z < 2 on [0, t0) ⊂ [0, 1] and z(t0) = 2, then σ := t0.

Case 3: If 0 < z < 2 on [0, 1] then σ := 1.

Thus, we are able to define a two-dimensional shooting operator T given by

T (α, γ) := (z′(σ), L),
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where L is given by

L = L(α, γ) :=
2αγ − δγ2(1− z(σ)2)

2δλ
. (3.6)

Although physical considerations mean that we are interested only in those (α, γ) in the
(open) first quadrant, we note parenthetically that T is defined also for γ = 0. We seek a
pair (α, γ) such that T (α, γ) = (0, l): in that case it shall be seen that σ = 1 and γ > 0,
and hence the corresponding z is a positive solution of (3.3)-(3.4) with α as in (3.5).

We shall make use of two comparison lemmas. The first is well known (see, for example,
[16]) and the second is specific to our equation.

Lemma 1 Let Z,W : [0, a] → R satisfy

Z ′′(x) ≥ F (x,Z(x))

and
W ′′(x) = F (x,W (x))

for x ∈ [0, a], where F is continuous and non-decreasing in the second variable for each
fixed x ∈ [0, a]. If, in addition, it is assumed that

Z(0) ≥ W (0), Z ′(0) ≥ W ′(0),

then
Z(x) ≥ W (x), Z ′(x) ≥ W ′(x)

for all x ∈ [0, a].

Lemma 2 Let z be a solution of (3.3) with α > 0, and either γ > 0, or γ = 0 but λ 6= αD.
Assume that 0 ≤ z(x0) ≤ z(x1) and z′′(x0) ≥ Cγz(x0)z

′(x0) for some x0 < x1.

Then
z′′(x0)− Cγz(x0)z

′(x0) < z′′(x1)− Cγz(x1)z
′(x1). (3.7)

Proof. First assume that γ > 0. As z′′(x0) ≥ Cγz(x0)z
′(x0), it follows that

[

λ− γ2

2
(1− z(x0)

2) + γαx0

]

z(x0) ≥ αD > 0.

This implies that the righthand side term of (3.3) has positive z-derivative for z ≥ z(x0).
As it is also an increasing function of x, the result obviously follows.

When γ = 0 and λ 6= αD, (3.3) becomes z′′ = λz − αD. A direct computation gives

z(x) =
αD

λ
+

1

2

(

1− αD

λ

)

(

e
√
λx + e−

√
λx
)

. (3.8)

The conclusion of the Lemma can then be verified directly.
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Note that if γ = 0, and λ = αD, then (3.3) has the constant solution z ≡ 1, and (3.7)
does not hold.

Lemma 2 allows us to establish two fundamental facts about the shooting operator T .
These are set down below:

Lemma 3 T is continuous. Moreover, if T (α, γ) = (0, l) with γ > 0 then y := γz is a
solution of the original problem (3.1)-(3.2).

Proof. We start by proving the following claim: if z′(σ) = 0, then 0 < z < 2 on [0, 1].

In other words, z′(σ) = 0 precludes Cases 1 and 2 and we must have σ = 1.

Suppose first that Case 1 holds. Then σ is the global minimum of z on [0, σ], which
implies z′′(σ) ≥ 0. But from (3.3) we have z′′(σ) = −αD < 0, a contradiction.

Next, suppose that Case 2 holds. Let x0 be the global minimum of z in [0, σ]. Then
0 < z(x0) < z(σ) and z′′(x0) ≥ 0. As z′(x0) = z′(σ) = 0, from Lemma 2, we obtain
z′′(σ) > 0, a contradiction, except when γ = 0 and λ = αD. For the exceptional case, the
claim is trivially true.

Continuity of T now follows from the standard continuous dependence result for ordinary
differential equations.

Finally, if T (α, γ) = (0, l) then from the above claim, σ = 1 and the equality L = l
implies that α satisfies (3.5), and y is therefore a solution of the original problem.

In order to prove the existence of a pair (α, γ) such that T (α, γ) = (0, l), we shall find
a bounded domain C ⊂ (0,+∞) × [0,+∞) such that the topological index I of the curve
T ◦ ∂C, which is the image of the boundary of C under T , satisfies

I (T ◦ ∂C, (0, l)) 6= 0.

From the standard topological index theory, this implies that the equation T = (0, l) has at
least one solution in C. More specifically, C shall be defined as the rectangle PQRS given
by the vertices

S :=

(

λ

D
, γ∗

)

, R := (α∗, γ∗)

P :=

(

λ

D
, 0

)

, Q := (α∗, 0)

where α∗ and γ∗ are suitable constants to be chosen later.

Lemma 4 Let γ > 0. If z attains a local minimum at x0 < σ, then z′(x) > 0 for x > x0
(in particular, z′(σ) > 0). If furthermore αD ≥ λ, then L > 0.
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Proof. If z′(x1) = 0 for some x1 > x0, then either z(x1) < z(x0) or else from Lemma 2
we obtain z′′(x1) > 0 and x1 is a local minimum. In both cases, z attains a local maximum
at some x2 ∈ (x0, x1) with z(x2) ≥ z(x0), and again we obtain z′′(x2) > 0, a contradiction.
Thus z′ does not vanish after x0, and then z′(x) > 0 for x > x0. It is observed that, in
particular, Case 1 cannot hold.

Note that If Case 2 holds, or if Case 3 holds and z(1) ≥ 1, then (from the definition
of L) L > 0, regardless of whether αD ≥ λ. or not. For the remaining case, when σ = 1
and z(1) < 1, we have

0 < z′′(1)− Cγz(1)z′(1)

= z(1)

(

λ(1 + L) + γα

(

1− 1

δ

))

− αD

< λ(1 + L)− λ.

The first inequality follows from Lemma 2, the equality in the second line from the differ-
ential equation (3.3) and the definition (3.6), and the inequality in the third line from the
assumptions δ ≤ 1, z(1) < 1, and αD ≥ λ. Hence, we have L > 0.

The following lemmas provide a picture of the image of ∂C.

Lemma 5 The segment PQ is mapped one-to-one onto the segment P ′Q′, where P ′ = (0, 0)
and Q′ = (−r, 0) for some r > 0.

Proof. Along the segment PQ, γ = 0 and z(x) is given by (3.8). Hence, T (P ) = (0, 0).
The injectiveness property of T on PQ is actually not needed in the proof of Theorem 1.
To prove it, we have to consider two cases. As we increase α from λ/D, initially we have
Case 3, in which σ = 1. We can then use (3.8) to get

∂

∂α
z′(1) =

−D

2
√
λ

(

e
√
λ − e−

√
λ
)

< 0,

to see that z′(σ) is decreasing in α. However, after α reaches a critical value α0, i.e. for
α > α0, Case 1 prevails. In this case, we multiply the differential equation z′′ = λz − αD
by z′ and integrate from x = 0 to x = σ to obtain

z′2(σ)

2
=

λz2(σ)

2
− αDz(σ)− λ

2
+ αD = −λ

2
+ αD.

Hence, z′2(σ) is an increasing function of α. However, z′(σ) is negative. Thus z′(σ) is a
decreasing function of α.

The next lemma shows that, except for the point P , the image of the segment PS lies
in the first quadrant:

Lemma 6 If α = λ/D and γ > 0 then z′(σ) > 0 and L > 0.
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Proof. If z is initially increasing, then 0 is a local minimum and Lemma 4 applies.

If z is initially decreasing, then as C ≤ 0 and z′ ≤ 0 in [0, ε] for some ε > 0, we obtain:

z′′ ≥
[

λ− γ2

2
(1− z2)

]

z − λ

on [0, ε]. Applying Lemma 1 with W ≡ 1, we deduce that z ≥ 1 on [0, ε], a contradiction.

Finally, if neither of the previous situations occurs, z would have more than one local
minimum, and this contradicts Lemma 4.

The remaining two lemmas concern a convenient choice of α∗ and γ∗.

Lemma 7 Let α > λ (1 + l) /D and γ ≥ 0. If z′(σ) = 0, then L > l.

Proof. As z′(σ) = 0, we are in Case 3 and it is readily seen that γ > 0. From Lemma 4,
z cannot have a local minimum in [0, 1). Hence the global minimum of z is attained at the
endpoint σ = 1, and we deduce that z′′(1) ≥ 0 and z is nonincreasing. From (3.3), we also
deduce that z 6≡ 1, then z(1) < 1 and

0 ≤ z′′(1)

= z(1)

(

λ(1 + L) + γα

(

1− 1

δ

))

− αD

< λ(1 + L)− λ(1 + l),

which implies L > l. Again, the equality in the second line follows from (3.3) and (3.6).

In view of the preceding result, we fix a constant α∗ such that

α∗ >
λ (1 + l)

D
, (3.9)

and proceed with the last lemma.

Lemma 8 If γ∗ is large enough, then the image of the segment RS lies on the first quadrant.

Proof. We already know that T (S) lies on the first quadrant, so we may assume that
α > λ/D. Then z′′ < 0 in a neighborhood of 0 and z is initially decreasing. If z attains
a local minimum at some point x0 < σ, then Lemma 4 applies. Thus, it suffices to prove
that z cannot be strictly decreasing all the time.

Suppose, on the contrary, that z decreases strictly on [0, σ], then the term −Cγz(x)z′(x)
is nonnegative. Also, as z ≤ 1, we have that (1− z2)z ≤ 2(1− z), and hence from (3.3) we
obtain:

z′′ ≥ −γ∗2(1− z) + (λ+ γ∗αx) z − αD.

13



Next, fix a constant m such that α∗D/(α∗ + λ) < m < 1. This can be done since D < 1+ 1

l ,
and the value of α∗ can be modified if necessary, as far as it satisfies (3.9).

Finally, define W as the solution of the linear problem

W ′′(x) = −γ∗2(1 −W ) + (λ+ γ∗αx)m− αD

W (0) = 1, W ′(0) = 0.

Direct computation shows that

W (x) = 1 + C1e
γ∗x + C2e

−γ∗x −R(x),

where

C1 =
(λ+ α)m− αD

2γ∗2
, C2 =

(λ− α)m− αD

2γ∗2

and

R(x) =
1

γ∗

(

αmx+
λm− αD

γ∗

)

.

As α ≤ α∗, it follows from the choice of m that C1 > 0, and for γ∗ large enough we also
have that |C2e

−γ∗x −R(x)| ≤ 1−m for every x ∈ [0, 1], which, in turn, implies W > m on
[0, 1]. Now, suppose that z(x0) = m, then

z′′ ≥ −γ∗2(1− z) + (λ+ γ∗αx)m− αD

on [0, x0]. From Lemma 1, we deduce that z ≥ W > m on [0, x0], a contradiction. Thus,
z > m and the previous inequality holds on [0, 1]. Applying Lemma 1 again, it follows that
z ≥ W on [0, 1]. Since C1e

γ∗ → +∞ as γ∗ → +∞, for γ∗ large enough, we get W (1) > 1,
and this contradicts the fact that z ≤ 1.

Proof of Theorem 1.

From the previous lemmas we conclude that the index of the curve T ◦ ∂C relative to
the point (0, l) is −1, and hence T (α, γ) = (0, l) for some (α, γ) ∈ C.
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Figure 1. Image of PQRS under the mapping T

To help us to visualize the proof, we plot the image P ′Q′R′S′ of the rectangle PQRS
under the mapping T in Figure 1, for a special case in which the physical parameters have
been chosen to be λ = 1, D = 1, and δ = 1, and the constants α∗ and γ∗ in the definition of
the rectangle PQRS have been chosen to be 6 and 4 respectively. The numerical experiment
is done with the help of MATLAB.

The two distinctive kinks, one on the curve Q′R′ and the other on R′S′ represent the
locations where there is a switch of case of the nature of the endpoint σ (between the
three cases listed before Lemma 1). Let O denote the origin and A where the curve Q′R′

intersects the L-axis. Then the topological index of P ′Q′R′S′ is 1 for every point that lies
on the line segment OA. Hence, the original Neumann problem has a solution for these
values of L. By increasing α∗ and γ∗, more values of L will be covered (Lemmas 7 and 8).

If we reduce γ∗ to 3, the image of the side RS becomes R′′S′′. As shown in the figure,
it does not lie entire in the first quadrant. This attests the fact that Lemma 8 only holds
if γ∗ is sufficiently large.
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system, J. Phys. A. Mathematical & Theoretical, 40, F1031-F1040 (2007)

[8] H.B. Thompson, Existence for two-point boundary value problems in two-ion electrod-
iffusion, J. Math. Anal. Appl, 184, 82-94 (1994)

[9] B.M. Grafov and A.A. Chernenko, Theory of the passage of a constant current through
a solution of a binary electrolyte, Dokl. Akad. Nauk. SSR 146, 135-138 (1962).

[10] L. Bass, Electrical structures of interfaces in steady electrolysis, Trans. Faraday Soc.
60, 1656-1663 (1964)
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