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Paola Everardo-Martínez k, Jorge Gómez-Valdés k, Hugo Villamil-Ramírez m, 
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A B S T R A C T   

Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 in-
dividuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/ 
categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to 
different analytical methods and various phenotypic predictors. As expected from statistical principles, we 
observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We 
find that Random Forest or Linear Regression are generally the best performing methods. We also compare the 
prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and 
skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for 
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eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe 
remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (cate-
gorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, 
but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in 
a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative 
to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent 
with common variation of eye and hair colour having a relatively simple genetic architecture, which is well 
captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since 
skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here 
this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of 
HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while 
illustrating the impact of training datasets on its accuracy.   

1. Introduction 

There is growing interest in the use of genetic data for the prediction 
of physical appearance, particularly in forensic, historical and paleo- 
anthropological studies [1–3]. Strong impetus for these studies has 
been provided by Genome Wide Association Studies (GWAS) of traits 
such as eye, hair and skin pigmentation, which show variation within 
and between continental populations. In the case of eye and hair colour, 
a large variation range is seen in Europeans [4–9], while other conti-
nents have limited variation, essentially within the narrow brown-black 
range [8,10–12]. By contrast, variation in skin colour in Europeans has a 
narrower range than in other continents. In terms of characterizing the 
genetic basis of variation in pigmentation traits, so far, the great ma-
jority of GWASs have been performed in Europeans [13–18], although 
recent GWAS in non-Europeans are enabling the identification of addi-
tional variants associated with pigmentation variation outside Europe 
[12,19], particularly for skin colour. 

Early studies on prediction of pigmentation traits, exploiting GWAS 
findings, focused on eye colour [20–23] and these analyses were sub-
sequently extended to hair [24,25] and skin [26]. As a result, sets of 
SNPs have now been proposed for the simultaneous prediction of eye, 
hair and skin colour [27,28]. These SNP sets have been shown to have 
high prediction accuracy in European samples and there is now interest 
in evaluating the performance of these tools in non-European pop-
ulations, as well as in populations of mixed continental ancestry. Latin 
Americans represent one of the largest recently admixed populations 
world-wide. The history of Latin America has involved extensive 
admixture, mostly between Native Americans, Europeans and 
sub-Saharan Africans. Consistent with its partly European ancestry, a 
recent GWAS for pigmentation traits in Latin Americans in the 
CANDELA cohort detected phenotypic effects for a number of loci pre-
viously identified in Europeans [12]. In addition to these, novel 
pigmentation SNPs with genome-wide significant association were also 
identified in that study. These included SNPs polymorphic only in East 
Asians and Native Americans, consistent with the independent evolution 
of skin pigmentation in West and East Eurasia [7,29,30]. The admixed 
ancestry of Latin America and the finding in the region of pigmentation 
variants not present in Europeans emphasizes the need to evaluate the 
accuracy of tools currently available for prediction of pigmentation 
traits in this population. 

Here we aimed to evaluate the accuracy of prediction of pigmenta-
tion traits in a large Latin American dataset from Mexico, Colombia, 
Peru, Chile and Brazil [12,31–36] characterized for eye colour, 
comparing methods, model predictors, and training datasets. We 
compared results from the widely-used HIrisPlex-S with sets of SNPs 
selected from the CANDELA data (and including a larger number of SNPs 
than HIrisPlex-S). We find that, when trained in the CANDELA data, the 
HIrisPlex-S SNP set has a performance similar to the CAN SNPs in the 
prediction of eye and hair colour, but its performance is somewhat lower 
for skin colour. This observation is consistent with the polygenicity of 
skin colour, relative to hair and (particularly) eye colour and the large 
variation in skin colour across the world. The work presented here sets 

the stage for the optimization of tools for the prediction of pigmentation 
traits across Latin America, for forensic purposes. 

2. Materials and methods 

2.1. Study sample: phenotypes, genetic data and covariates 

We analyzed data previously studied by the CANDELA consortium 
for GWAS of pigmentation traits [12,31–34]. The consortium gathered 
genetic and phenotypic data from over 6500 individuals recruited in five 
Latin American countries: Mexico (N =~1200), Colombia (N = ~1700), 
Peru (N = ~1230), Chile (N = ~1730) and Brazil (N = ~630). 

Pigmentation traits evaluated directly on the research subjects con-
sists of (A) hair pigmentation (recorded in four categories: 1-red/red-
dish, 2-blond, 3-dark blond/light brown or 4-brown/black. However, 
due to their very low frequency (<0.6%), individuals in the ‘red/red-
dish’ category were not included here), (B) eye colour, recorded as five 
ordered categories: 1-blue/grey, 2-honey, 3-green, 4-light brown, 5-dark 
brown/black. For increasing consistency with previous publications [23, 
26,37–39], here we recoded these data into just three categories: 
1-Blue/Grey, 2-Intermediate (honey or green) and 3-Brown/Black (light 
brown or dark brown/black) and (C) a quantitative measure of skin 
pigmentation from an area unexposed to sunlight (the Melanin Index MI, 
obtained by reflectometry). We also had available additional measures 
of iris pigmentation, extracted from digital photographs, using the HCL 
colour space (Hue, Chroma and Luminance). Hue being an angle 
(recorded in arc degree), we linearized this trait with cosine and shifted 
the angle by 15◦ in order to maximize the number of samples in the 
range [0,180◦]; hence the trait considered is cos(Hue+15). The fre-
quency distribution for these traits in the CANDELA dataset is shown in 
Supplementary Fig. S1. 

To enable comparison with previous studies on categorical skin 
colour [26,37], we converted the quantitative MI values into a 
three-level categorical trait (Fair, Intermediate and Dark skin colour). 
For this, we used the individual genetic ancestry estimates in the 
CANDELA dataset to select individuals with estimated 100% European 
ancestry (N = 70) and individuals with African ancestry higher than 
both the European and Native estimates (i.e. > 39% African ancestry; N 
= 23). Based on the MI distribution in these two groups, we defined MI 
values of 33 and 47 as thresholds for three skin colour categories: Fair 
(MI < 33; N = 2506), Intermediate (MI 33–47; N = 3840) and Dark (MI 
> 47; N = 180) (Supplementary Fig. S2). These thresholds are in line 
with values obtained in a previous study of Brazilians[40]. 

The genetic data consisted of ~9 million genotypes, ~700k of which 
were obtained experimentally by genotyping Illumina’s Omni Express 
chip, the remainder obtained by imputation as described in Adhikari 
et al. [12]. We applied several filters to the CANDELA dataset prior to 
the trait prediction analyses. Firstly, we retained only individuals aged 
18–45. Secondly, we removed 8 pairs of individuals whose pairwise 
probability of IBD was estimated close to 1, to discard potential sample 
mix-ups (hence, 16 individuals removed), and individuals whose esti-
mated African ancestry was more than European and native ancestry 
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estimations (23 individuals), as those were considered as genetic out-
liers and thus excluded. Finally, we excluded all individuals with 
missing data on any of the covariates (age, sex, BMI). Note that BMI was 
considered as a covariate since we found it significantly correlated to 
some pigmentation phenotypes; that correlation is most likely a con-
founding effect of continental genetic ancestry. The final sample size 
used in the analyses was: 6495 for hair colour, 6526 for MI, 6529 for 
categorical eye colour and 5738 for quantitative eye colour traits – Hue, 
Chroma and Luminance. These three eye colour phenotypes constitute 
the bicone colour space model – HCL scale for human perception of eye 
colours (previously explained by Adhikari et al. [12]). 

2.2. Pigmentation SNP sets used for prediction 

We used two sets of SNPs for the prediction analyses. Firstly, we 
devised “CANDELA” (CAN) SNP sets for prediction of each pigmentation 
trait (E-eye; H-hair; S-skin) based on results from a GWAS conducted in 
the CANDELA sample[12]. To pre-select SNPs for each trait, we used the 
following protocol: (1) selection of all SNPs with GWAS association 
p-values < 10− 5, (2) grouping SNPs in high LD and (3) for each SNP 
group, selection of the SNP with highest predictive power (as the most 
significant SNP is not necessarily the most predictive [41]). We thus 
pre-selected 1471, 207 and 701 SNPs for skin, hair and eye pigmentation 
prediction, respectively. For each trait, the preselected SNPs were 
ranked based on decreasing conditional predictive power and R2 of 
prediction models computed sequentially, each time adding a SNP from 
the ranked list. We set a limit for the number of SNPs included in a set 
when R2(i)>= max(R2)×0.999. Details of the approach used for SNP 
selection are provided in Supplementary method S1, and the resulting 
CAN-E, CAN-S and CAN-H SNP sets are described in the Results section. 

Secondly, as a benchmark, we used HIrisPlex-S, a SNP set that has 
been developing over the years for the prediction of eye, hair and skin 
pigmentation [20,24,27] HIrisPlex-S currently includes 41 SNPs, of 
which 6/22/36 are relevant respectively for prediction of eye/hair/skin 
pigmentation. Of the 41 SNPs included in HIrisPlex-S 22 SNPs were 
directly genotyped in the CANDELA samples, the remaining having been 
imputed. We only retained SNPs with MAF >= 1% in the CANDELA 
data. This led to seven HIrisPlex-S SNPs being excluded, thus reducing 
the set used here to 34 SNPs (6/16/32 of these being used for eye/-
hair/skin prediction, respectively, Supplementary table S1). Due to the 
low MAF frequency in the CANDELA data, the exclusion of these SNPs 
has a negligible impact on prediction accuracy. The lack of informativity 
of the 7 discarded SNPs in the CANDELA dataset is underlined by the fact 
that they are all located in the MC1R region, and are important mainly 
for red hair prediction, a trait nearly absent in the CANDELA data (the 
few red/reddish individuals with red hair were removed due to their low 
frequency). Of the 34 SNPs retained for the analyses, 13 had imputed 
genotypes, all with high imputation quality metrics (IMPUTE2′s INFO >
0.8 – see Supplementary table S1). 

Overall, for all the imputed SNPs used in the analyses (either from 
CAN or HIrisPlex SNP sets), the average imputation quality metric 
(INFO) was high, 0.942. In addition, we verified the accuracy of imputed 
genotypes for these SNPs by comparing with two independently 
sequenced datasets. A set of Native American samples collected and chip 
genotyped for a previous study [35] were sequenced at high coverage 
and variants filtered. We calculated the concordance for these samples 
as the proportion of imputed genotypes that match the sequence data 
exactly. The average concordance was high for these SNPs, 98.8%. For 
another set of sequenced European samples, the average concordance 
for these SNPs were equally high at 98.5%. 

2.3. Prediction methods and models evaluated 

A broad array of statistical methods have been employed in the 
literature to predict pigmentation traits, such as (multiple) linear [42, 
43] or (multinomial) logistic regression [23,24], decision trees [42,44], 

neural networks [42,45], and naïve Bayes classifiers [37,46,47]. Each 
method has its advantages and disadvantages, and are better suited for 
certain types of traits, e.g. linear regression for quantitative traits [42, 
43] and logistic regression for categorical traits [23,24]. 

The overall strategy we used for performing pigmentation prediction 
in the CANDELA dataset is shown in Fig. 1. Linear Regression (LR) or 
Multinomial Logistic Regression (MLR) were used as the reference 
methods for quantitative or categorical traits, respectively. These two 
methods were used to evaluate three prediction models, incorporating 
an increasing number of predictors (Fig. 1A):  

1. Using only non-genetic covariates as predictors: 

y ∼ Age+ Sex+BMI (1)    

2. Incorporating genetic ancestry to model 1: 

y ∼ Age+ Sex+BMI +EURancestry +AFRancestry (2)  

Here we included as predictors the estimates of European and 
African ancestry (obtained by unsupervised admixture estimation on 
genome-wide data). Native American ancestry was omitted so as to 
avoid collinearity (since the three continental ancestries sum to 1).  

3. Incorporating pigmentation SNPs to model 2: 

y ∼ Age+ Sex+BMI +EURancestry +AFRancestry +
∑

j∈SNPsets
SNPj, (3)  

where SNPsets refers to SNPs included either in the HIrisPlex-S or CAN 
sets defined above. 

For the third (full) model, in addition to regression, the following 
statistical and machine-learning methods were used, in order to evaluate 
their relative performance for prediction: Random Forest (RF), Extreme 
Gradient Boosting (XGB), Artificial Neural Network (ANN), Ordinal 
regression (OR) and Stepwise regression (SR). We provide more details 
on their implementation in Supplementary method S2. 

2.4. Evaluation of prediction accuracy 

To measure prediction accuracy in quantitative traits, we used the 
coefficient of determination (R2, the proportion of phenotype variance 
that is explained by the model, measured as 1 − SSres/SStot, where SSres 
and SStot respectively stand for the residual and total sum of squares). 
For categorical traits, we used a metric denoted “accuracy” that is the 
proportion of correctly classified individuals in confusion matrices. For 
these traits, we also computed the Area Under the ROC Curve (AUC – 
ranging from 0.5 to 1) as well as the expected accuracies from two 
benchmark strategies (either using the categories’ frequency – Prop-
Strat, or always guessing the most frequent category – maxP; see Sup-
plementary Method S3) for comparison. 

Accuracy of prediction was evaluated using 10-fold cross validation 
(10-fold CV) (Fig. 1B). For this, the full dataset is split into 10 approx-
imately equal subsets based on a stratified sampling on the trait (so that 
trait distribution is similar across subsets). Each of the 1/10th subsets is 
used as test data for evaluating prediction accuracy of methods trained 
using the other 9/10th of the data. For regression methods (MLR, LR, SR, 
OR), coefficient parameters are estimated in the training data (Fig. 1C). 
For Machine Learning models, the training data is further split into a 
tuning data (70% of the training data) and validation data (30% of the 
training data). The parameter space for these methods are tuned 
creating a grid of all possible combinations of the hyperparameters and 
the particular combination producing best result on the validation data 
is selected as the set of optimal combination for the whole training data 
(see Supplementary Method S2). Each one of the ten folds is taken as the 
test data in turn, while the rest nine folds are used for training, pro-
ducing 10 different train-test data combinations and the 

S. Palmal et al.                                                                                                                                                                                                                                  



Forensic Science International: Genetics 53 (2021) 102517

4

hyperparameters are tuned based on that subsequently gives rise to 10 
prediction accuracy results (Fig. 1D). These measures of goodness of fit 
are used in a boxplot, or the average of them is used as a single pre-
diction accuracy metric of the method. This helps us in avoiding infla-
tion in the results and the predictions are more robust to small changes 
in the data. 

2.5. Comparison with prediction accuracy from HIrisPlex-S-online 

Several studies have examined the prediction accuracy of HIrisPlex-S 
for categorical pigmentation traits using an online tool (https://hir 
isplex.erasmusmc.nl, referred to here as HIrisPlex-S-Online). This 
implementation uses MLR prediction models trained in a reference 
dataset comprising individuals with various continental origins (80% 
from Europe, 16% from North-America – including individuals of Eu-
ropean, African and Asian ancestry – and 4% from Africa and Oceania) 
[20,24,27]. For Eye colour HIrisPlex-S-Online predicts eye colour cate-
gories corresponding to those used in the CANDELA dataset (Blue/Grey; 
Intermediate and Brown/Black). For hair colour, HIrisPlex-S-Online 
predicts the categories Red, Blond, Brown and Black. The last three 
correspond to hair categories common in the CANDELA dataset. How-
ever, due to their low frequency, individuals in the CANDELA dataset 
with Red hair were removed prior to these analyses. We therefore 
adjusted the prediction probabilities estimated by HIrisPlex-S-Online in 
the CANDELA dataset, for Blond, Brown and Black by the probability of 
Red hair colour. Finally, HIrisPlex-S-Online predicts five categories of 
Skin colour (modified from the Fitzpatrick scale): Very pale, Pale, In-
termediate, Dark and Dark-Black. To allow comparison with the 
three-category predictions from models trained in the CANDELA data, 
we followed Walsh et al. [26] in merging the prediction probabilities for 
Very pale, Pale and Intermediate into one category (Light, 

corresponding to the “White” category of Fitzpatrick). The Dark and 
Dark-Black of HIrisPlex-S-Online correspond to the Brown and Black 
categories of the Fitzpatrick scale [26]. This three-level categorization 
thus matches the one defined in the CANDELA dataset based on the 
transformation of MI values (described above). 

2.6. Prediction of MI in Native American individuals of unknown 
phenotype 

Genotype and geo-localization data for 117 Native American in-
dividuals (with an estimated > 99% Native American ancestry) from 17 
Native American populations were available from a previous study [35]. 
We analysed genotypes for these ‘pure’ Native American individuals, 
predicted their MI, and regressed these predicted values on the amount 
of solar radiation at the site of population sampling. We trained two RF 
models (one with CAN-S and one with HIrisPlex-S) using 550 CANDELA 
individuals with >= 80% native ancestry and using sex as the only co-
variate. Solar radiation levels were defined as insolation incident on a 
horizontal surface (in kWh/m2/day) as reported in the NASA Surface 
meteorology and Solar Energy (SSE) Web site (https://eosweb.larc.nasa. 
gov/sse/) (data previously used in[12]). 

3. Results 

The CANDELA dataset analyzed here consisted of individual 
genome-wide SNP genotypes and pigmentation traits. In that dataset eye 
colour was recorded both as categorical and quantitative variables, hair 
colour as a categorical variable, and skin colour as a quantitative vari-
able (the Melanin Index). In what follows we compare the performance 
of HIrisPlex-S with SNP sets devised here for the prediction of eye (CAN- 
E), hair (CAN-H) and skin (CAN-S) from summary statistics of a 

Fig. 1. Study overview. (A) Models tested, predictors used and prediction methods: multinomial regression (MLR), linear regression (LR), ordinal regression (OR), 
stepwise regression (SR), random forests (RF), extreme gradient boosting (XGB) and artificial neural network (ANN). (B) 10-fold cross-validation: the full data is 
randomly split into 10 equally-sized data sub-groups. For each of the 10 sub-groups, the estimation of model parameters (C) or optimization of model hyper-
parameters (D) was performed on a pool of the nine remaining sub-groups. 
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pigmentation GWAS performed in the CANDELA sample (Materials and 
Methods and Supplementary method S1). The sets devised here consist 
of: 56 (CAN-E), 101 (CAN-H) and 120 (CAN-S) pigmentation-associated 
SNPs and are detailed in Supplementary table S2. Consistent with the 
genetic correlation of eye, hair and skin pigmentation, some SNPs are 

shared across the CAN-E/H/S sets, as well as with the HIrisPlex-S set. 
The overlap between these four SNP sets is shown in Fig. 2. 

3.1. Prediction accuracy in relation to models, methods and pigmentation 
SNP sets 

Fig. 3 presents the accuracy of prediction for various phenotypes of 
eye, hair and skin colour. For categorical traits, the baseline model (i.e. 
including only non-genetic predictors: age, sex and BMI), reaches 84.9% 
and 81.7% accuracy (proportion of correctly classified individuals) for 
eye and hair colour, respectively. That level of accuracy is actually also 
reached by always guessing the phenotype to be the most frequent 
category (maxP strategy, see Supplementary table S3 and Supplemen-
tary Method S2). This high accuracy obtained by a deterministic strategy 
probably relates to the highly skewed trait distribution in the CANDELA 
individuals: ~ 82% having black/dark brown hair and 85% having 
Brown/Black eyes. Alternately, randomly guessing the phenotypes 
based solely on the frequency of the traits (PropStrat; cyan line in Fig. 3) 
also yields good levels of accuracy (~74% and ~69% for categorical eye 
and hair colour, respectively). 

It is important to keep the maxP strategy in context when assessing 
prediction performance for categorical traits, since it represents how 
skewed the trait distribution is – a binary trait with a frequency distri-
bution of 90% and 10% of the two categories will have 90% accuracy 
under the simplest maxP strategy (even though its sensitivity will be 
0 for the rare category; see Supplementary Method S3). Thus, a skew in 
the trait distribution causes an upward shift in accuracy of prediction 
methods, especially those methods which are biased to the most 
frequent category, making them appear better-performing than they 

Fig. 2. Overlap between SNP sets used for prediction of pigmentation traits. 
CAN-E, CAN- S and CAN-H refer, respectively, to SNP sets designed here for the 
prediction of eye, skin and hair pigmentation, based on a GWAS performed in 
the CANDELA sample [12]. HIrisPlex-S is a SNP assay developed for simulta-
neous Eye, Hair and Skin colour prediction [27]. Numbers refer to SNPs shared 
between the SNP sets. 

Fig. 3. Prediction accuracy in relation to models, methods and pigmentation SNP sets. For continuous traits (Hue (transformed), Luminance, Chroma and Melanin 
Index; left and middle panels) we used R2 as measure of prediction accuracy. For categorical traits (Eye and Hair colour; right panels) accuracy is the proportion of 
correctly classified individuals. Magenta and blue lines indicate the accuracy obtained when only non-genetic predictors or non-genetic + genomic ancestry are 
included in regression models, respectively. For categorical traits, the performance of a random guessing strategy (PropStrat) was also evaluated (cyan line). For these 
traits, the average accuracy of the deterministic maxP strategy is numerically the same as the accuracy obtained when only non-genetic predictors are used (magenta 
line), hence is not shown separately in this figure. For the full prediction model (non-genetic predictors + genetic ancestry + pigmentation SNPs) the performance of 
regression and four additional prediction methods was evaluated (bars are coloured: green = LR/MLR; yellow = SR/OR; brown = RF; pink = XGB; purple = ANN). 
Detailed numerical values are given in Supplementary Table S3. The pigmentation SNP set incorporated in the prediction models is indicated at the bottom of the 
plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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actually are. The PropStrat strategy is comparatively less biased as it 
gives proportional weight to the rare category (hence non-zero sensi-
tivity for this category), and thus has lower accuracy than the maxP 
strategy. It is therefore a better benchmark to compare the performance 
of other strategies for assessing their gain in accuracy. Conversely, a 
comparison of those strategies to the maxP benchmark better represents 
their relative change in incorrect classification rather than the relative 
gain in correct classification (i.e. gain in accuracy). 

Although the accuracies of these basic strategies are already high due 
to our skewed trait distributions, adding genetic ancestry to the model 
has a further impact, especially for hair colour: it decreases the pro-
portion of error by ~6% (from 18.3% of error to 17.1% - detailed 
numbers in Supplementary table S3). Then the further addition of 
pigmentation SNPs has an even larger effect: the remaining proportion 
of errors decreases by another ~16% and ~27% respectively for hair 
and eye colour. It is also noticeable that the gain in prediction brought 
by SNPs relatively to that brought by genetic ancestries is much larger 
for eye colour (~14x) than for hair colour (~3x). 

For continuous traits, we observe a large increase in prediction ac-
curacy (R2) when genetic ancestry is incorporated in regression models, 
relative to the baseline (including only non-genetic predictors). 
Furthermore, when pigmentation SNP sets are incorporated in the 
regression model, accuracy usually more than doubles over that ob-
tained with genetic ancestry plus non-genetic covariates (green bar 
versus blue line in Fig. 3). When using this full prediction model, lowest 
LR prediction accuracy was observed for Chroma (R2 ~0.12) and highest 
for Luminance (R2 ~0.58), two quantitative estimates of eye colour 
variation. 

Comparing different prediction methods for the full model (i.e. 

incorporating all predictors) we do not observe large differences in 
performance, with the exception of a relatively lower accuracy of 
regression for Hue and Chroma. For those two traits, RF markedly out-
performs regression methods, more than doubling the accuracy of LR in 
the case of Chroma. For the two other continuous traits (Luminance and 
Melanin Index), regression models are as effective as machine learning 
models (Fig. 3). We also note that those rank similarly throughout cat-
egorical and continuous traits: RF is almost always better than the other 
tree-based model (extreme gradient boosting; XGB) and artificial neural 
networks (ANN) always underperform compared to tree-based models. 

Regarding the two SNP sets tested, we observe little difference be-
tween them in prediction accuracy across traits and methods (despite 
the number of SNPs being considerably larger in the CAN sets than in 
HIrisPlex-S), except for the skin Melanin Index. For that trait, CAN-S 
consistently outperforms HIrisPlex-S, particularly with regression 
methods. 

3.2. Prediction accuracy at varying levels of European/Native American 
ancestry 

Since a substantial fraction of individuals in the CANDELA sample 
have minimal African ancestry, we sought to evaluate prediction accu-
racy specifically for varying levels of European/Native American 
ancestry in the CANDELA sample. To this aim, we pooled individuals 
with negligible African ancestry in ~20% ancestry bins (so that the 
smallest pool size included at least 470 individuals) and examined 
prediction accuracy in the pools (see Supplementary table S4). 
Furthermore, for categorical traits, we ensured that at least two trait 
categories, each with > 20 individuals, were observed in the pools, 

Fig. 4. Prediction accuracy for individuals with varying Native American/European admixture. Prediction was assessed in individual bins varying ~20% in 
admixture (bottom axis; for eye and hair pigmentation < 20 individuals with > 80% Native Ancestry were available in each trait category, thus preventing estimation 
of prediction accuracy). Coloured bars indicate accuracy obtained with Random Forest models using non-genetic + pigmentation SNP sets as predictors (R2 being 
used as prediction measure for quantitative traits: Hue, Luminance, Chroma and Melanin index). Blue bars indicate the CAN-E/H/S SNP sets. Yellow bars indicate the 
HIrisPlex-S set. The standard deviation of the quantitative traits in each ancestry bin is indicated as a red line. For the categorical traits (Eye and Hair Colour), 
accuracy (proportion of correctly classified individuals) is used as the metric for prediction measures. Accuracy obtained without genetic predictors using a guessing 
strategy is indicated with a horizontal blue line for Proportional Strategy (random guessing) and magenta line for maxP (deterministic guessing). Detailed numerical 
values are given in Supplementary Table S4 and S5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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which led to withdraw the most Native-American pool. We assessed 
prediction accuracy using RF, a full model (i.e. Eq. 3 but without genetic 
ancestry as predictor) including only pigmentation SNPs having > 1% 
MAF in the pool of individuals being tested. 

For the categorical traits, there is a drop in prediction accuracy (from 
~95% to ~70%) at increasing European ancestry (Fig. 4 and Supple-
mentary table S5). However, as European ancestry increases there is 
greater accuracy relative to random guessing based on trait frequency, 
probably reflecting the trait being less variable at higher Native Amer-
ican ancestry levels. For the quantitative eye pigmentation variables 
(particularly H and L, Fig. 4), as the percentage of European ancestry 
increases there is a trend for an increase in trait variation (red line in 
Fig. 4) and also in prediction R2. For skin pigmentation (MI) we observe 
an opposite trend in trait variability in relation to ancestry, relative to 
hair/eye colour: variation in MI decreases at increasing European 
ancestry. There is also a trend towards an increase in the performance of 
the CAN-S SNP set at decreasing European ancestry: in individuals with 
< 20% European ancestry CAN-S has an accuracy that is nearly twice 
that observed for HIrisPlex-S. Although CAN-S tends to outperform 
HIrisPlex-S in most comparisons, it is only for MI that such a large dif-
ference in performance was observed. In summary, across all pigmen-
tation traits we observe a gain in prediction accuracy for the Native 
American/European ancestry bins showing greater phenotypic di-
versity, with CAN SNPs markedly outperforming HIrisPlex-S only for MI 
in individuals with low (< 20%) European ancestry. 

3.3. Prediction accuracy in CANDELA relative to other population 
samples 

Table 1 compares published HIrisPlex-S-Online prediction accuracy 
estimates with those we obtained here with the CAN and HIrisPlex-S 
SNP sets using our implementation of MLR models trained in the 
CANDELA data and three-level colour categories for eyes, hair and skin 

(as described in Material and Methods). Prediction accuracy estimates 
for eye colour have been reported for HIrisPlex-S-Online in a Latin 
American sample (including 99 individuals from Venezuela and Brazil) 
and in a European sample [23,27,28]. The light (blue/grey) and dark 
(Brown/Black) colour categories have similar prediction accuracies 
across studies (~90–93%), except for the prediction of light eye colour 
reported for HIrisPlex-S-Online in the Venezuelan/Brazilian sample, 
where accuracy is lower (85%). The main difference in eye-colour pre-
diction across studies lies in the intermediate category. No intermediate 
eye colours were predicted by HIrisPlex-S-Online in the Venezuelan/-
Brazilian sample. Our predictions for the intermediate category in the 
CANDELA sample have higher accuracy than that reported for this 
category for HIrisPlex-S-Online in Europeans, both when the prediction 
model was trained in the CANDELA data or in the reference HIrisPlex-S 
data (respectively 89% and 85%, versus 73% in Europeans). Prediction 
accuracy, in the CANDELA sample, of the CAN-E and HIrisPlex-S SNP 
sets was identical. 

Estimates for hair colour prediction accuracy using HIrisPlex-S- 
Online have been reported for a European sample [39]. Prediction ac-
curacy estimates obtained here for the CANDELA sample are higher than 
reported in Europeans for all hair colours, except in the case of inter-
mediate hair-colour (i.e. brown) predicted with HIrisPlex-S-Online. The 
highest hair-colour prediction accuracy was consistently obtained with 
the CAN-H SNP set, although the difference relative to HIrisPlex-S 
trained in the CANDELA data is marginal. 

Concerning skin colour, we observe that predictions from HIrisPlex- 
S-Online have markedly lower accuracy in the CANDELA sample than 
reported for a world-wide sample. Model training in the CANDELA 
dataset increases prediction accuracy substantially, both for HIrisPlex-S 
and CAN-S (with CAN-S SNP set marginally outperforming HIrisPlex-S), 
although the accuracy values obtained for both sets are still below those 
reported for HIrisPlex-S-Online. 

Table 1 
Overall Accuracy (%) and trait AUC (%) for categorical eye (A), hair (B) and skin (C) colour obtained here and in other studies (% frequency of trait in sample is shown 
in parentheses).  

(A) 

Sample CANDELA N = 6529 Venezuela/Brazilb N = 99 Europeansd N = 2364 

SNP set  CAN-Ea HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy   89  89  87     83 
1. Blue/grey (3)  93  93  93 (12) 85 (68)  91 
2. Intermediate (13)  89  89  85 (23) NA (10)  73 
3. Brown/black (85)  92  92  90 (64) 91 (23)  93  

(B) 

Sample CANDELA N = 6495 Europeansc N = 385 

SNP set  CAN-Ha HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy  85 84 56   71 
1. Red (0) NA NA NA (25)  90 
2. Blond (3) 94 92 90 (54)  75 
3. Brown (16) 82 81 65 (9)  72 
4. Black (82) 87 85 80 (12)  78  

(C) 

Sample CANDELA N = 6526 World-wide N = 2025e 

SNP set  CAN-Sa HIrisPlex-Sa HIrisPlex-S-Online 

Overall Accuracy   73  72  26   87 
1. Fair (38)  83  81  78 (92)  97 
2. Intermediate (59)  77  77  71 (3)  83 
3. Dark (3)  86  84  76 (5)  96 

HIrisPlex-S-Online: https://hirisplex.erasmusmc.nl 
a Including only SNPs as predictors and with MLR as prediction method (as in HIrisPlex-S-Online). 
b Obtained with HIrisPlex as described in Freire-Aradas et al. [38]. 
c Obtained with HIrisPlex-S as described in Branicki et al. [39], including individuals with red hair. 
d Obtained from the specificity reported in Liu et al. [23]. 
e Prediction values reported in Walsh et al. [26]. 
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3.4. Portability of models for pigmentation prediction in individuals with 
high Native Ancestry 

Considering the impact of training datasets in the performance of 
HIrisPlex-S (Table 1), we specifically examined the portability of RF 
models developed in two training datasets with extreme differences in 
ancestry (extracted from the CANDELA sample – see Supplementary 
Fig. S3): (i) a highly European training dataset (European ancestry >=

80% and Native American ancestry < 20%) and (ii) a highly Native 
training dataset (European ancestry < 20% and Native American 
ancestry >= 80%). We examined the performance of the resulting pre-
diction models in a subset of the highly Native test dataset (Fig. 5) in a 
cross-validation scheme. We observe that models developed in the 
highly Native training dataset have a better performance than those 
developed in the highly European training dataset for Chrome, Lumi-
nance and MI. The most striking difference in performance is seen for 
MI, where the model trained with highly Native data has a prediction 
accuracy ~6 times that of the model trained in highly European data 
(Fig. 5). Hue is the only trait for which the model trained in the highly 
European dataset very slightly outperforms the model trained in the 
highly Native dataset, but prediction accuracy in this case is extremely 
low (<2%), and the confidence intervals substantially overlap. 

3.5. Prediction of skin pigmentation in Native Americans 

We examined prediction performance of the CAN-S and HIrisPlex-S 
sets in a highly Native dataset independent of CANDELA by predicting 
MI in 117 individuals from 17 Native American populations [35]. As 
above, we trained RF prediction models using CANDELA individuals 
with >= 80% native ancestry. Since performance could not be measured 
directly in this dataset (due to the lack of phenotypic data), we examined 
the correlation of predicted skin pigmentation (MI) with solar radiation 
levels at the site of population sampling (Fig. 6). Previous surveys of skin 
pigmentation in native populations from across the world have found a 

Fig. 5. Portability of prediction models trained in highly European/Native 
American cohorts. For each continuous trait (cos(H+15), C, L and Melanin 
Index) we compare prediction accuracy on the same test data (a highly Native 
ancestry cohort). The prediction models were trained either on a highly Native 
(Blue) or highly European (Pink) cohort established from the CANDELA sample. 
For testing, we created equally-sized 4-folds for each pool of individuals. We 
built the RF models using three of the folds and evaluated prediction accuracy 
in the left-out fold from the Native ancestry cohort (see Supplementary Fig. S3). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Solar radiation levels and skin pigmentation (MI) predicted with CAN-S and HIrisplex-S SNP sets. (a) Annual average of insolation incident on a horizontal 
surface (kWh/m^2/day - data from NASA Surface meteorology and Solar Energy, 2008) and location of the Native American population sampled. The predicted MI 
and solar radiation levels at the sampling site for 117 individuals from 17 Native American populations is shown in (b) CAN-S and (c) HIrisPlex-S. 
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correlation between skin pigmentation and solar radiation [48], an 
observation that has been interpreted as the result of selection 
throughout human evolution. In the Native Americans examined here 
we obtained correlations of 0.516 (p-value 2 × 10− 9) and 0.156 (p-value 
0.1) with the CAN-S and HIrisPlex-S SNP sets, respectively (Fig. 6). 

4. Discussion 

Our comparison of different methods for predicting pigmentation 
traits agree with previous studies [23,42] in finding that regression and 
RF generally outperform other approaches. Owing to its tree-based 
structure, RF implicitly models underlying interaction between SNPs. 
Since it has been shown that epistasis (SNP-SNP interactions) occurs to 
variable degrees for pigmentation traits [4,5,49], it is possible that 
prediction accuracy could be further increased by specifically allowing 
for interaction between SNPs. The difference in accuracy between 
tree-based methods relative to additive linear/logistic models could also 
shed light on the genetic architecture of these trait. For instance, it is 
tempting to hypothesize that SNP interactions may have a more sub-
stantial impact on the genetic architecture of Hue and Chroma [12,50], 
especially considering that these traits are less linear in nature (e.g. Hue 
is an angle, i.e. a circular trait) [49]. Furthermore, differences in accu-
racy are larger for linear compared to tree-based models (up to +0.19 
gain in R2 – see Supplementary table S3) than they are for HIrisPlex-S 
compared to CAN-E (up to +0.014 gain in R2), whereas these two SNP 
sets only have 5 SNPs in common. We might therefore expect that 
relevant interactions would be limited to a handful of SNPs, consistent 
with proposals of significant interactions only between major pigmen-
tation SNPs [4,5,12]. By contrast, skin pigmentation has been proposed 
to have greater additive polygenicity [4,6]. Consistent with this, linear 
models outperform tree-based methods for skin pigmentation prediction 
and the number of SNPs used in the model improves accuracy (Fig. 3). 

Previous studies [12,32,51,52] have shown that genetic ancestry 
correlates with pigmentation, probably as a result of the variable fre-
quency of various pigmentation-associated alleles across populations. 
Here we observe that continental genetic ancestry has considerable 
predictive power (Fig. 3, Supplementary table S3) and that the SNPs 
used for pigmentation prediction rank among the most correlated to 
continental ancestry components (see Supplementary table S2). Inclu-
sion in the prediction models of SNPs selected based on pigmentation 
GWAS results further increases predictive power, especially so for 
quantitative traits. We find that, for MI and the eye colour measure-
ments, pigmentation-associated SNPs add, on an average, twice the 
prediction accuracy of that brought in by the genetic ancestry. The in-
crease in prediction accuracy provided by pigmentation SNPs is less 
pronounced for categorical traits, but still, inclusion of these SNPs in the 
models reduces the proportion of incorrect classifications by a larger 
amount than does genetic ancestry, especially for eye colour. 

The differences in predictive power that we observe between cate-
gorical and quantitative pigmentation traits is partly the result of the 
intrinsically lower statistical informativeness of discrete relative to 
continuous variables. This is accentuated here by the fact that categor-
ical eye and hair colour have a highly skewed distribution in the 
CANDELA sample: 82% of individuals in this sample are assigned to the 
darkest category for eye and 85% for hair colour. The highly skewed 
distribution of these traits in the CANDELA sample results from lightly 
pigmented eyes and hair being essentially Western Eurasian traits [4–9]. 
That is, the occurrence of lightly pigmented hair and eyes in the 
CANDELA sample reflects the partly European ancestry of Latin Amer-
icans. This is consistent with the HIrisPlex-S SNP set (built using a 
world-wide sample, though consisting of 80% Europeans) and the CAN 
(E and H) SNP sets performing about equally for the prediction of eye 
and hair colour (despite the CAN sets including a much larger number of 
SNPs), and matching what has been reported in the literature [4,46,53]. 

Contrasting with eye and hair colour, differences in the prediction 
accuracy of skin colour appear to also be influenced by the different 

genetic architecture of skin pigmentation, reflecting the world-wide 
variation that is observed for this trait [54]. Our analysis of prediction 
along a gradient of Native American-European ancestry shows the 
highest gain in accuracy for the ancestry bins with the greatest pheno-
typic diversity: the highest European bin for eye/hair colour and the 
highest Native American bin for skin colour. In the bin with lowest 
European ancestry, there is hardly any gain in prediction accuracy for 
eye/hair colour over the deterministic maxP strategy, as almost all in-
dividuals in that bin are in the highly pigmented category. By contrast, 
this bin has the highest variation in skin pigmentation, and also shows 
the highest accuracy for the CAN-S (strongly outperforming HIrisPlex-S 
in this ancestry bin, Fig. 4). Although this could be partly the result of 
model training, Fig. 3 shows that the difference in performance is larger 
for MI than for eye and hair colour. A similar trend is observed in 
Table 1: there is a greater difference between the two HIrisPlex-S results 
for skin colour than for eye and hair colour. These observations point to 
skin pigmentation prediction in Latin Americans being impacted by the 
genetic architecture of this trait in non-European populations. Our 
finding of a stronger correlation of predicted MI with solar radiation 
levels in Native Americans for the CAN-S set, relative to HIrisPlex-S, is 
also consistent with this, and with literature reporting comparatively 
poor portability of European-based skin pigmentation prediction models 
in non-European populations [4,46,53]. 

Although quantitative variables are intrinsically more informative 
than categorical ones, forensic applications are mostly interested in the 
prediction of discrete categories, often just two (e.g. blue v. non-blue 
eyes) or three (light, intermediate or dark pigmentation). In that 
setting we find that for the CANDELA dataset there is remarkably little 
difference in performance between HIrisPlex-S and the much larger CAN 
SNP sets, particularly for eye and hair colour. As discussed above, this is 
likely to relate to the lower informativity of categorical traits, to which 
several other factors could be contributing, such as HIrisPlex-S capturing 
particularly well the genetic architecture of eye and hair colour, and 
having been optimized for the prediction of categorical traits. However, 
our analyses indicate that use of the online implementation of HIrisPlex- 
S for the prediction of pigmentation traits in Latin Americans should be 
performed with caution. This likely relates mostly to the reference 
population set used for training of the prediction model implemented in 
the online HIrisPlex-S tool, not being sufficiently representative of the 
diversity of Latin-American populations. 

In conclusion, our analyses of the large CANDELA pigmentation data 
underline the impact on prediction accuracy of greater polygenicity of 
skin, compared to eye and hair pigmentation. As expected from statis-
tical principles, the effect of this greater polygenicity on prediction ac-
curacy is more manifest for quantitative (MI) than for categorical skin 
colour. Prediction methods more sensitive to this polygenicity (e.g. 
regression) can therefore improve their accuracy for MI, through the 
inclusion of additional genetic predictors. This could be of considerable 
interest for certain evolutionary studies, as shown in Fig. 6. [55]. 
However, for forensic applications, in which predictions of interest 
mostly relate to discrete categories, increasing the number of genetic 
predictors does not appear to provide much benefit, even for skin colour. 
The HIrisPlex-S SNP set, optimised precisely for this type of application, 
already provides excellent prediction accuracy. However, use of 
HIrisPlex-S for forensic studies in Latin America should carefully 
consider training of prediction models in reference datasets that more 
closely match the genetic diversity of the region. Beyond the statistical 
accuracy of the models used, pigmentation predictions conducted 
outside scientific research should consider carefully the risks associated 
with the misinterpretation or misuse of such predictions, particularly in 
relation to disadvantaged minorities. 
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Tecnológico, Fundação de Amparo à Pesquisa do Estado do Rio Grande 
do Sul (Apoio a Núcleos de Excelência Program), Fundação de Aper-
feiçoamento de Pessoal de Nível Superior. 

Competing interests 

The authors declare that they have no competing interests. 

Data availability 

Summary statistics from the GWAS analyses on which the three CAN 
SNP sets used in this study were established the have been previously 
deposited at GWAS central (http://www.gwascentral. 
org/study/HGVST3308). 

Acknowledgments 

We thank the volunteers for their enthusiastic support for this 
research. We also thank Alvaro Alvarado, Mónica Ballesteros Romero, 
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J. Werely, M. Möller, M.S. Sandhu, D.M. Kingsley, E.G. Hoal, X. Liu, M.J. Daly, M. 
W. Feldman, C.R. Gignoux, C.D. Bustamante, B.M. Henn, An unexpectedly complex 
architecture for skin pigmentation in Africans, Cell 171 (2017) 1340–1353.e14, 
https://doi.org/10.1016/j.cell.2017.11.015. 

[7] L. Deng, S. Xu, Adaptation of human skin color in various populations, Hereditas 
155 (2018) 1, https://doi.org/10.1186/s41065-017-0036-2. 

[8] H.L. Norton, M. Edwards, S. Krithika, M. Johnson, E.A. Werren, E.J. Parra, 
Quantitative assessment of skin, hair, and iris variation in a diverse sample of 
individuals and associated genetic variation: quantitative assessment of 
pigmentary phenotype, Am. J. Phys. Anthropol. 160 (2016) 570–581, https://doi. 
org/10.1002/ajpa.22861. 

[9] M. Jonnalagadda, M.A. Faizan, S. Ozarkar, R. Ashma, S. Kulkarni, H.L. Norton, 
E. Parra, A genome-wide association study of skin and iris pigmentation among 
individuals of South Asian ancestry, Genome Biol. Evol. 11 (2019) 1066–1076, 
https://doi.org/10.1093/gbe/evz057. 

[10] M. Edwards, D. Cha, S. Krithika, M. Johnson, G. Cook, E.J. Parra, Iris pigmentation 
as a quantitative trait: variation in populations of European, East Asian and South 
Asian ancestry and association with candidate gene polymorphisms, Pigment Cell 
Melanoma Res. 29 (2016) 141–162, https://doi.org/10.1111/pcmr.12435. 

[11] L. Rawofi, M. Edwards, S. Krithika, P. Le, D. Cha, Z. Yang, Y. Ma, J. Wang, B. Su, 
L. Jin, H.L. Norton, E.J. Parra, Genome-wide association study of pigmentary traits 
(skin and iris color) in individuals of East Asian ancestry, PeerJ 5 (2017), e3951, 
https://doi.org/10.7717/peerj.3951. 

[12] K. Adhikari, J. Mendoza-Revilla, A. Sohail, M. Fuentes-Guajardo, J. Lampert, J. 
C. Chacón-Duque, M. Hurtado, V. Villegas, V. Granja, V. Acuña-Alonzo, 
C. Jaramillo, W. Arias, R.B. Lozano, P. Everardo, J. Gómez-Valdés, H. Villamil- 
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A. Wojas-Pelc, M. Kayser, Model-based prediction of human hair color using DNA 
variants, Hum. Genet. 129 (2011) 443–454, https://doi.org/10.1007/s00439-010- 
0939-8. 

[40] T.K.M. Leite, R.M.C. Fonseca, N.M. de França, E.J. Parra, R.W. Pereira, Genomic 
ancestry, self-reported “color” and quantitative measures of skin pigmentation in 
Brazilian admixed siblings, PLoS ONE 6 (2011), e27162, https://doi.org/10.1371/ 
journal.pone.0027162. 

[41] A. Lo, H. Chernoff, T. Zheng, S.-H. Lo, Why significant variables aren’t 
automatically good predictors, Proc. Natl. Acad. Sci. USA 112 (2015) 
13892–13897, https://doi.org/10.1073/pnas.1518285112. 

[42] K. Zaorska, P. Zawierucha, M. Nowicki, Prediction of skin color, tanning and 
freckling from DNA in Polish population: linear regression, random forest and 
neural network approaches, Hum. Genet. 138 (2019) 635–647, https://doi.org/ 
10.1007/s00439-019-02012-w. 

[43] R.K. Valenzuela, M.S. Henderson, M.H. Walsh, N.A. Garrison, J.T. Kelch, O. Cohen- 
Barak, D.T. Erickson, F. John Meaney, J. Bruce Walsh, K.C. Cheng, S. Ito, 
K. Wakamatsu, T. Frudakis, M. Thomas, M.H. Brilliant, Predicting phenotype from 
genotype: normal pigmentation, J. Forensic Sci. 55 (2010) 315–322, https://doi. 
org/10.1111/j.1556-4029.2009.01317.x. 

[44] O. Spichenok, Z.M. Budimlija, A.A. Mitchell, A. Jenny, L. Kovacevic, 
D. Marjanovic, T. Caragine, M. Prinz, E. Wurmbach, Prediction of eye and skin 
color in diverse populations using seven SNPs, Forensic Sci. Int. Genet. 5 (2011) 
472–478, https://doi.org/10.1016/j.fsigen.2010.10.005. 

[45] B. Alipanahi, P. Fontanillas, 23 and Me Resarch Team, S. Pitts, R. Gentleman, 
Pigmentor—Accurate prediction of multiple pigmentation phenotypes, 2017. 

[46] L. Yun, Y. Gu, H. Rajeevan, K.K. Kidd, Application of six IrisPlex SNPs and 
comparison of two eye color prediction systems in diverse Eurasia populations, Int. 
J. Leg. Med. 128 (2014) 447–453, https://doi.org/10.1007/s00414-013-0953-1. 

[47] Y. Ruiz, C. Phillips, A. Gomez-Tato, J. Alvarez-Dios, M. Casares de Cal, R. Cruz, 
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