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Abstract Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children.
Metastases represent a major clinical challenge and an estimated 80% would present undetectable
micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in
micrometastasis management. Microvascular endothelium tube formation and in vivo angiogenesis assays,
adhesion assays, apoptosis assays, proteomic analysis, RT-qPCR. We demonstrated that OS LM7
metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an
angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these
cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with
proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential
angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas–FasL axis is key for OS
cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis
pathways and related processes revealed that the percentage of genes associated with those, presented
similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and
antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas
associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not
detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with
the reported cell-survival functions of the identified angiogenic factors and the increased survival features
that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS
cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize
the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells
suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not
result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit
signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis.
During the gain of metastatic traits process, cell populations displaying higher adhesive ability to
microvascular endothelium, negative regulation of the Fas–FasL axis in the FasL (−) lung parenchyma and
a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would
affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in
distinguishing OS cells with different metastatic potential.
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Abstract

Osteosarcoma (OS) is the most frequent malignant bone tumor, afecting predominantly children. Metastases represent a 
major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identiication of 
metastatic traits and molecules would impact in micrometastasis management. Microvascular endothelium tube formation and 
in vivo angiogenesis assays, adhesion assays, apoptosis assays, proteomic analysis, RT-qPCR. We demonstrated that OS LM7 
metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A 
proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic 
OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 
cells. However, no diferential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas–FasL axis is 
key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways 
and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and 
LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was 
subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was 
present in LM7 cells and was not detected in SAOS2 cells. The subtle diferences in apoptosis-related events and molecules, 
together with the reported cell-survival functions of the identiied angiogenic factors and the increased survival features 
that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to 
a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also 
displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain 
in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that 
metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for 
metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular 
endothelium, negative regulation of the Fas–FasL axis in the FasL (−) lung parenchyma and a prosurvival switch, would 
be selected. This opens a new scenario where antiangiogenic treatments would afect cell survival rather than angiogenesis, 
and provides a molecular panel of expression that may help in distinguishing OS cells with diferent metastatic potential.

Keywords Osteosarcoma · Prosurvival phenotype · Apoptosis · Metastasis · Angiogenesis
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Introduction

Osteosarcoma (OS) is the most common malignant bone 
tumor, arising during metaphyseal rapid growth in adoles-
cents and children [1]. Pulmonary metastases exist in early 
stages during OS progression. While lung metastases are 
detected in 20% of patients at diagnosis, an 80% is esti-
mated to carry undetectable micrometastasis at that time 
[2, 3]. Patients with pulmonary metastases at diagnosis 
have a 25–30% ive-year survival rate with no substan-
tial changes in the last three decades [2, 3]. OS etiology 
is unclear, with osteogenic precursors accumulating not 
well-deined oncogenic events which hinders the use of 
potential markers associated to progression and metastasis 
[4]. Complex signaling occurs during OS onset involving 
a bidirectional communication between tumor cells and 
the bone niche. Thus, OS arises because of imbalanced 
bone homeostasis in the bone marrow environment. OS 
progression involves profound bone homeostasis deregu-
lation, extracellular matrix remodeling and biochemical 
signaling that afect the stromal compartment [4]. Lungs 
represent the most frequent target organ for metastatic OS. 
Fas ligand (FasL) is constitutively expressed by alveolar 
and bronchial epithelial cells [5]. Our model comprises 
the parental, human OS  Fas+ (CD95, APO1) SAOS2 
cells that are cells unable to colonize the lungs when 
intravenously injected into immunodeicient mice, and 
the SAOS2-derived LM7 cells, which are able to estab-
lish secondary tumor growth into the lungs and express 
signiicantly lower Fas levels [6]. LaFleur et al. [7] have 
previously demonstrated that  Fas+ OS cells are eliminated 
by the  FasL+ lung epithelium while  Fas− OS cells escape 
this surveillance establishing pulmonary metastases. 
Thus, the gain in metastatic traits involves the absence of 
Fas or molecular changes necessary to downregulate its 
expression as a critical step in this disease. The lack of 
this feature turns OS cells unable to survive in the lung 
environment [8]. Clinical specimens corresponding from 
OS lung metastases express inappreciable Fas levels, while 
the primary bone tumor counterpart was demonstrated to 
express high Fas levels, making this model clinically rel-
evant to understand underlying mechanisms that favor OS 
cells colonization into the lungs and allowing the search 
for novel therapeutic approaches [6]. Further, the complex 
modiications in the stromal primary tumor compartment 
could consequently exert a selection pressure over previ-
ously residing OS subpopulations with diferential abili-
ties, thus favoring cells with metastatic traits to leave the 

nest towards future pulmonary metastatic sites [9]. Metas-
tasis results in a complex process, with variable routes 
and interlinked steps [10, 11]. For metastasis to occur, the 
tumor cell must leave the primary site, intravasate, adhere 

at the metastatic site and left the circulatory system by 
extravasation [12]. Requirements for this are a microvessel 
network, and the ability of the tumor cell to survive both 
in the circulation and at the target site [13].

Angiogenesis is a multistep process constituting the angi-
ogenic cascade, involving complex signaling among several 
participating actors, inducing the formation of new vessels 
from preexisting ones. This process includes the degrada-
tion of the basal membrane mediated by proteolytic enzymes 
like metalloproteinases and cathepsins, and the proliferation 
and migration of endothelial cells (ECs), followed by the 
proliferation and diferentiation/maturation of ECs [14]. The 
last step involves other cellular populations, pericytes and 
smooth-muscle cells, which are recruited by the new vessel 
stabilizing it. Angiogenesis is mediated by the coordinated 
action of various cytokines and growth factors. Angiogenic 
factors such as platelet-derived growth factors (PDGFs) and 
vascular endothelial growth factor (VEGF) are necessary for 
the establishment of new vessels in physiological conditions 
and in tumors [15, 16].

We demonstrated that critical steps and events related to 
the angiogenic cascade like EC re-organization, and biologi-
cal pathways and processes like VEGF and PDGF signaling 
were upregulated in metastatic OS cells secretome. How-
ever, this did not result in a net diferential vascular bed 
formation distinguishing metastatic from non-metastatic 
cells. Given that molecules associated with the identiied 
gene ontology (GO) terms through a proteomic approach 
such as VEGF, PDGF, endothelins, are also related to sur-
vival features, we further analyzed the proteomic data with 
emphasis in prosurvival related proteins and other molecules 
arose as relevant. Given our results, we conclude that even 
when angiogenesis is a tumor-progression associated feature 
and a tumor cannot develop without this, the process itself 
and the molecular functions associated with it, would not 
be determinant in the lung metastatic features in OS, but 
instead, a prosurvival function of these molecules would 
allow OS cells to colonize a hostile environment surviving 
the adverse circulation. This inding shed light into multiple 
functions for a given molecule/les, a feature that adds com-
plexity and multiple advantages to a given tumor to progress.

Cancer progression involves multistep functional events, 
which may ultimately lead to the acquisition of a metastatic 
phenotype [17]. We describe for the irst time a functional 
and molecular comparison between a parental non-meta-
static OS cell line and its derived cell line selected by its 
metastatic behaviour, highlighting a diferential molecular 
pattern that may relate to angiogenic induction potential but 
also to favour survival in a hostile environment, such as the 
pulmonary metastatic niche. Pulmonary metastases remain 
as a major OS mortality determinant, and identiication of 
mechanisms and diferentially expressed genes associated 
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with metastasis would help in discovering promising mark-
ers and targets for therapeutic approaches for OS metastatic 
spread.

Materials and methods

Cell lines

SAOS2 and LM7 cells human OS cell lines were supplied by 
Dr. Kleinerman, MD Anderson Cancer Center (MDACC). 
Cells were grown in Dulbecco’s Modiied Eagle Medium: 
Nutrient Mixture F12 (DMEM:F12) supplemented with 
non-essential amino acids (NEAA), 2 mM L-glutamine, 
100U/mL penicillin, 100 mg/mL streptomycin (Invitrogen), 
10% fetal bovine serum (FBS; Natocor), at 37 °C, 5%CO2. 
SAOS2 are OS cells that do not possess the capacity to form 
secondary tumor growth sites in the lungs, while LM7 cells 
have been selected from parental SAOS2 cells by their meta-
static ability through lung cyclic circulation, ability asso-
ciated to avoidance of apoptosis and apoptosis-resistance 
mechanisms [6, 18]. Human Microvascular Endothelial cells 
HMEC-1 (Dr. Candal, Centers for Disease Control, Atlanta, 
GA, USA) were grown in high-glucose DMEM (DMEM 
high, Invitrogen), 10% FBS (Natocor), 2 mM L-glutamine, 
100U/mL penicillin, and 100 mg/mL streptomycin [19]. Ver-
iication of mycoplasma species was carried out (MycoAlert 
Mycoplasma Detection Kit, Lonza Inc.).

Cell conditioned medium

The cells´ secretome compartment is represented by their 
conditioned medium (CM). Cells were seeded on 100 mm 
culture dishes until 80% conluence, washed with phosphate 
basic solution (PBS) and cultured during twenty-four hours 
with basal medium (DMEM:F12). After this, the CM was 
collected, centrifuged for 5 min (1100 rpm), aliquoted and 
stored at −80 °C until use.

Tube formation assay

Tube formation was assayed using Geltrex® LDEV-Free 
reduced growth factor (GF) basement membrane matrix 
(ThermoFisher). Forty µL Geltrex/well were seeded in 
96-well plates (JET Bio-Filtration) allowing polymerization 
(37 °C, 30 min). HMEC-1 cells (2 ×  104, FBS-starved during 
24 h) were seeded on 50 µL of FBS free DMEM high and 
stimulated with CM (50 µL) from SAOS2 and LM7 cells 
(6 h, 37 °C). After this, cells were ixed (2% PFA) three pic-
tures were taken from every well to allow for quantiication 
(100× magniication (10× objective/10× eyepiece), Nikon). 

The number of loops/well was quantiied using Image J soft-
ware, NIH, MD).

In vivo angiogenic assay

Animal experiments were approved by the Institutional Ani-
mal Care and Use Committee (MDACC IACUC #00001633-
RN00). For in vivo angiogenesis assay, athymic male nude 
mice were subcutaneously (s.c., right lank, midline sec-
tion) injected with a pre-mixed solution of SAOS2 or LM7 
cells in Geltrex® LDEV-Free reduced GF basement mem-
brane matrix (5 × 105 cells/40 µL PBS/500 µL Geltrex). 
One week after inoculation, plugs were excised, ixed (PFA 
4%), embedded in Optimal cutting temperature compound 
(OCT), frozen (liquid nitrogen) and processed for cryostate 
sectioning. CD31 was detected using rat anti-mouse CD31 
(BD Biosciences PharMingen, San Diego, CA, USA) as pri-
mary antibody and goat anti-rat Texas Red (Jackson Immu-
noResearch, PA, USA) as secondary antibody. Nuclei were 
stained using Hoechst 33342 solution (1 µg/mL in PBS, 
Sigma) [20, 21]. Microvessel density was assessed as previ-
ously described by Weidner et al. [22], briely microvessel 
density was analyzed in areas with high density of capillaries 
and small venules (vascular “hotspots”) and microvessels 
were counted at 200× magniication ields. Any endothelial 
cell cluster or vessel positive for CD31 and clearly sepa-
rated from an adjacent capillar was considered to be a single 
microvessel [23, 24].

Cell adhesion assay

HMEC-1 cells were seeded at 2 ×  105cells/96-well, allow-
ing the establishment of a monolayer. OS cells were stained 
with DiO (luorescent cell tracker, Molecular Probes) to 
allow visualization; 5.0 ×  103  DiO+ cells were seeded over 
the microvascular endothelium monolayer. Cell adhesion 
was allowed (30 min, 37 °C). Attached cells were ixed (4% 
PFA), visualized (luorescence microscope, Nikon) and ive 
representative visual ields were counted at 100×  (DiO+ 
cells, ImageJ software, NIH, MD, USA) [25]. The micro-
vascular endothelium cell line was used as it was shown 
to be of clinical relevance in experimental approaches [26, 
27]. Disrupted microvascular endothelium areas were not 
included.

Acridine orange/ethidium bromide (AO/EB) 
luorescence staining

OS cell lines were cultured in culture medium with 2,5% or 
without FBS at 37 °C in a 4%  CO2 atmosphere and apopto-
sis was evaluated at 6 h. Morphological changes associated 
with apoptosis were assessed by acridine orange-ethidium 

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10495 Article No : 1677 Pages : 13 MS Code : 1677 Dispatch : 6-5-2021

 Apoptosis

1 3

bromide mixture staining (Sigma). Briely, cell pellets were 
resuspended in dye mix (100 μg/mL acridine orange plus 
100 μg/mL ethidium bromide in PBS) and visualized by 
luorescence microscopy (Nikon Eclipse E800). A mini-
mum number of 200 cells were counted and the number of 
cells presenting fragmented nuclei, enlarged cytoplasm and 
condensed chromatin were determined. The percentage of 
apoptotic cells was calculated as total number of cells with 
apoptotic nuclei/total number of cells counted × 100 as pre-
viously described [28].

Chromatin condensation assay

OS cell lines were grown on gelatin-coated glass cover-
slips, with basal medium in the presence or absence of dox-
orubicin (0,1 and 1 µM) and chromatin condensation and 
nuclear fragmentation was evaluated at 24 h after treatment. 
Cells were washed with PBS and ixed with 4% PFA. As 
previously described, nuclei were stained with 0.01 mg/mL 
Hoechst 33342 (15 min) to allow for nuclear morphology 
visualization at 100× and 400× magniication (10× and 40× 
objective/10× eyepiece, Nikon Eclipse E400 luorescence 
microscope) [29].

Reverse transcription-polymerase chain reaction 
(RT-qPCR) and real Time polymerase chain reaction 
(qPCR)

Total RNA from OS cells (Trizol Reagent, Molecular 
Research Center, USA) was reverse transcribed (2 µg) with 
200 U of EasyScript Reverse Transcriptase (Transgenbio-
tech) using Oligo (dT) primers (500 ng). cDNAs were sub-
jected to qPCR (CFX96 Touch TM Real-Time PCR Detec-
tion System, Bio-Rad). Fas-associated factor 1 (FAF1), 
VEGF, PDGFA, PDGFB, PDGFC, PDGFD, mRNA levels 
were quantiied (SYBR Green, Roche)using the primers: 
FAF1 forward 5’ GAC CAG CTT TGG AGC TCT TG3’, 
reverse 5’ TGC GGG AAA TAA AGA TCT GG3’; VEGF 
forward 5’ATC TTC AAG CCA TCC TGT GTGC 3’, reverse 
5’GCT CAC CGC CTC GGC TTG T 3’;PDGFA forward 5’ 
CCT GCC CAT TCG GAG GAA GAG 3’, reverse 5’ TTG 
GCC ACC TTG ACG CTG CG 3’;PDGFB forward 5’ TCC 
CGA GGA GCT TTA TGA GA 3’, reverse 5’ ACT GCA CGT 
TGC GGT TGT  3’; PDGFC forward 5’ GGA GCA CCA TGA 
GGA GTG TGA 3’, reverse 5’GAG CTG CTG GTG GTG ATG 
C 3’; PDGFD forward 5’ CCC AGG AAT TAC TCG GTC AA 
3’, reverse 5’ ACA GCC ACA ATT TCC TCC AC 3’. PCR 
ampliication was carried out using a 95 °C for 10 min 
cycle and 40 cycles under the parameters: 95 °C for 20 s, 
60 °C for 1 min, 72 °C for 40 s and a 95 °C for 20 s cycle. 
At the end the temperature was increased from 60to 95 °C 
(2 °C/min rate), and luorescence was measured every 15 s 

to construct the melting curve. Values were normalized 
to levels of glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) mRNA levels, forward 5’ GGG GCT GCC CAG 
AAC ATC AT 3’, reverse 5’ GCC TGC TTC ACC ACC TTC 
TTG 3’. Data were processed by the DDCt method. A non-
template control (NTC) was run in every assay; all deter-
minations were performed as triplicates in three separated 
experiments.

Proteomics and proteomic data analysis

To analyzed the proteomic profile of the cellular and 
secretome components of OS tumor cells, cell pellets 
(4 ×  107cells) and CM (12 mL) were lyophilized for stor-
age and transport. Later, samples were resuspended in lysis 
bufer (100 mM Tris–HCl, pH 7.5, 4%SDS, 100 mM DTT 
and H2O 18.2 MΩ cm at a ratio of 1:1 (v/v) for 15 min at 
94 °C. The samples were subjected to sonication (30 min), 
centrifuged at 16,000×g for 5 min and separated by 10% 
SDS-PAGE. Once the electrophoretic run was inished, the 
gel was stained with Coomassie blue and the lanes were 
excised and cut into small pieces of equal size and treated 
with trypsin. The resulting peptides were processed, and 
analyzed with a tandem system of nanocapillary liquid 
chromatography-mass spectrometry (Thermo Scientiic 
Easy-nLC 1000 system connected to an LTQ Orbitrap XL 
ETD) as previously described [30].

For the identiication, quantiication (label free) and 
validation of the proteins, the MaxQuant platform (ver-
sion 1.5.2.8) was used, which includes the Andromeda 
algorithm fordatabase search. Uniprot was the database 
used for protein search and complemented with the elimi-
nation of frequent contaminants (porcine trypsin) and 
also reverse sequences. To validate the assigned protein 
identity, a minimum of seven amino acids was established 
for each peptide and a Q value cut-of of 0.01 was also 
established at the level of peptides and proteins [30, 31]. 
To obtain the gene ontology terms (GO) of the identiied 
proteins, an enrichment analysis was carried out with the 
software Funrich, of the gene groups corresponding to the 
secretome and the intracellular compartment. To select the 
categories with statistical signiicance, p values were taken 
at 0.05. The focus was on the analysis of GO terms related 
to angiogenesis, survival and processes related to angio-
genic potential. To assess relative expression of individual 
proteins in each compartment, a label free approach was 
performed as previously described. The normalized label 
free quantiication (LFQ) protein values were expressed 
as relative intensity values and for normalization the LFQ 
media intensity of all proteins were used. LFQ (Label-free 
quantiication) intensities are based on the (raw) intensities 
(sums of all individual peptide intensities, peaks in a MS 
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spectra, belonging to a particular protein) and normalized 
on multiple levels to ensure that proiles of LFQ intensities 
across samples relect the relative amounts of the proteins. 
[30].

Database search

Data about the expression of PDGFA, PDGFB, PDGFC, 
PDGFD, VEGF and FAF1 in OS samples were obtain from 
the Gene Expression Omnibus (GEO) database number 
GSE42352. The data set called mixed Osteosarcoma-Kuijjer-
127-vst-ilmnhwg6v2 data set, has 127 samples originally. 
Genome-wide gene expression analysis was performed using 
pretreatment high-grade diagnostic OS biopsy samples. The 
R2: Genomics analysis and visualization platform (http:// r2. 
amc. nl) was used to generate Kaplan–Meier metastasis-free 
survival curves, omitting from the analysis 39 samples that 
lacked survival data.

Statistical analysis

Ninety-five percent (95%) of confidence intervals (CI) 
were determined by calculating arithmetic mean values 
and variance (standard deviation, SD) of three independent 
experiments. Unpaired 2-sided Student’s t test (two groups 
comparisons) and analysis of variance (ANOVA) followed 
by post-tests Kruskal–Wallis and Dunn’s post-tests (more 
than two experimental groups comparisons) (GraphPad 
Prism Software, San Diego, CA, USA) were used for sta-
tistical analyses, considering p value < 0.05 as statistically 
signiicant.

Results

Microvascular endothelium cells rearreagements 
and in vivo angiogenic response induced by OS cells

Neovessel formation, which is associated with cancer pro-
gression in a variety of tumor models, involves the coordi-
nated occurrence of several steps leading to new functional 
vessels. We evaluated the capacity of SAOS2 and LM7 OS 
cells secretome to exert morphogenic rearrangements in 
microvascular endothelium cell monolayers, a step associ-
ated to the angiogenic cascade. To this end we performed 
in vitro tube formation assays on HMEC-1 cells. LM7 cells 
secretome resulted as the major tube inducer as compared to 
the tube-inducing capacity of parental cells secretome, basal 
medium and serum-supplemented basal medium, producing 
a 1.3-fold increase in microvascular endothelium cell rear-
rangement as compared to the response exerted by SAOS2 

cells (Fig. 1a, b). When in vivo angiogenesis assays were 
performed with OS cells, the density of  CD31+ microves-
sels induced by SAOS2 and LM7 cells were similar. Further, 
no qualitative diferences were observed in the vasculature 
induced by OS cells (Fig. 1c, d).

Osteosarcoma cells adhesive behavior 
towards microendothelium

Cell adhesion to endothelium is critical for intravasation 
and extravasation during the metastatic cascade. We ana-
lyzed the adhesive behavior of OS cells to microvascular 
endothelium cells (HMEC-1) and also analyzed proteomic 
data with emphasis on proteins related to adhesion. To this 
end, SAOS2 and LM7 cells were subjected to an adhesion 
assay on HMEC-1 cells. We observed that LM7 cells dis-
played signiicantly higher adhesiveness to HMEC-1 cells 
(30 min, 1.6-fold increase, Fig. 2a ,b). Proteomic analysis 
with emphasis in adhesion-related molecules, revealed that 
both cell lines expressed proteins implicated in this biologi-
cal process like integrins, catenins and cell adhesion mol-
ecules (CAM). Analysis of protein relative levels revealed 
an overall higher expression of adhesion related proteins in 
SAOS2, with LM7 cells expressing high levels for ALCAM 
(activated leukocyte cell adhesion molecule, Fig. 2c).

Expression of molecules related to angiogenesis 
and pro-survival signaling pathways

Analysis of biological pathways indicated that PDGF signal-
ing was increased in LM7 cells. PDGF was demonstrated to 
have angiogenic and cell-survival properties [32]. Validation 
through qPCR indicated an eightfold and threefold increase 
for PDGFB and D respectively in LM7, with no appreci-
able diferences in PDGFA and C expression (Fig. 3a). We 
observed a gain in biological pathways associated with 
angiogenesis (PECAM1 interactions, VEGF and VEGF 
receptor signaling, endothelins, integrins in angiogenesis 
and angiopoietin receptor tie2 mediated signaling among 
others) (Supplementary material Table 1), but a lack of a 
net in vivo angiogenic response diference between the cell 
types (see Fig. 1).Of interest, expression analysis of VEGF, 
a factor with pro-angiogenic and pro-survival reported func-
tions [33], showed a twofold increase in expression by qPCR 
in LM7 cells (Fig. 3b).Given that apoptosis and cell sur-
vival exert a role in this model, these results could point to a 
scenario where PDGF and VEGF would be related to their 
reported cell-survival functions rather than to a diferential 
angiogenic response. Further, of the exclusive LM7 proteins 
identiied, FAF1, a FAS interactor [34], (see in “Proteomic 
analysis of apoptosis pathway and related processes” sec-
tion) demonstrated a 17-fold expression increase in LM7 
cells as compared to their non-metastatic counterpart 
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(Fig.  3c). We complemented this data by analyzing a 
genome-wide gene expression dataset (The R2: Genomics 
Analysis and Visualization Platform) of high grade OS pre-
chemotherapy biopsies (88 pre-treatment high-grade osteo-
sarcoma diagnostic biopsies). Of relevance, we observed that 
PDGF isoforms, FAF1 and VEGF shared a common feature 
in patients, with higher expression of these proteins related 
with a worst overall survival as conirmed by Kaplan–Meier 
curves (Supp. Figure 1).

Proteomic analysis of apoptosis pathway 
and related processes

Apoptosis is a cell death mechanism, where a cascade of 
mediators triggered by diferent ligand mediated signals 

like Fas/FasL, induce the release of caspases from the 
mitochondria and conclude in cell death. Since our model 
involves a  Fas+ SAOS2 and  Fas− LM7 cell model, which 
allows LM7 cells to survive in the  FasL+ lung parenchyma 
[6], we analyzed our proteomic data with emphasis in 
apoptosis pathways and related processes. The percent-
age of genes associated with apoptotic signaling path-
ways, apoptotic processes in general and regulation of 
apoptotic processes presented similar levels in SAOS2 and 
LM7 cells (Table 1). Interestingly and of relevance to the 
model, when looking into proteins associated to apoptosis, 
Fas associated Factor 1 (FAF1), which participates as an 
enhancer of Fas signaling [34, 35], was present in LM7 
cells (2,876200e+007, normalized LFQ value) and was 
not detected in SAOS2 cells, which was validated through 

Fig. 1  Angiogenic efect exerted by OS human cells or their 
secretome. a In  vitro tube formation assay to test the ability of OS 
cells secretome to induce morphogenic rearrangements. HMEC-1 
microvascular endothelium cells were treated with SAOS2 (parental 
cells) or LM7 cells-derived conditioned medium (CM). DF12 supple-
mented with 10% FBS and DF12 basal medium were used as posi-
tive ( +) and negative (−) stimuli, respectively. One-way ANOVA, 
**p < 0.01. Data are representative of three independent experi-
ments. b Representative images of in vitro tube formation assays with 

SAOS2 or LM7-derived CM; (i) HMEC-1 cells treated with SAOS2 
CM; (ii) HMEC-1 cells treated with LM7 CM; (iii) HMEC-1 cells 
treated with DF12 medium with 10% SFB; (iv) HMEC-1 cells with 
DF12 basal medium. Scale bar represent 0.2 mm. (C) In vivo angio-
genesis assay with Geltrex plugs containing SAOS2 or LM7, show-
ing the quantiication of microvessel density  byCD31+ microvessels 
detection after 7 days. (D) Representative images of the plugs of the 
in  vivo angiogenesis assay. Nuclei were stained with Hoechst and 
vessels detected with CD31 antibody. Scale bar represent 50 µm
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qPCR, with LM7 showing signiicantly higher levels of 
expression as compared to SAOS2 cells (see Fig. 3c). 
The balance of expression levels of other proteins with 
pro- and antiapoptotic functions in both cell types was 
subtle, with SAOS2 displaying higher expression of the 
proapoptotic BAG2 and BAG6 and of the antiapoptotic 
AATF, BCL2L13 and API5 molecules, while LM7 showed 
increased expression of the proapoptotic BLAF1, AIFM1 
and CASP3, and of the antiapoptotic BAG3 and BAG5 
proteins (Supplementary material table  2).The subtle 
differences in apoptosis-related events and molecules 
together with our previous results showing that LM7 are 
more resistant than SAOS2 cells to cytotoxic agents like 
doxorubicin [36], could suggest that cell survival-related 
mechanisms would be of relevance in this model. Inter-
estingly, under starvation conditions SAOS2 cells had a 
6.3-fold increase in apoptosis levels (without FBS sup-
plementation), and a 6.0 fold increase in apoptosis with 
2.5% FBS supplementation, as compared to LM7 cells 
(Fig. 4a). After treatment with 0.1 and 1 µM doxorubicin 

for 24 h, an increasing number of SAOS2 cells started to 
display nuclear features compatible with apoptotic cells, 
like chromatin condensation or nuclear fragmentation, 
while LM7 cells showed similar levels of apoptotic-like 
nucleus in the control and treated groups as compared to 
SAOS2 (Fig. 4b).

Discussion

Despite therapeutic combinations, the ive-year survival rate 
for OS remains in 60–70%, and patients with pulmonary 
metastases at diagnosis present a 25–30% ive-year survival 
rate for the last thirty years [3]. Human OS LM7 cells, which 
are able to establish secondary tumor growth into the lungs 
and express signiicantly lower Fas levels, are derived from 
the non-metastasic,  Fas+ SAOS2 cells [6].  Fas+ OS cells 
are eliminated by the  FasL+ lung environment and  Fas− OS 
cells are able to establish pulmonary metastases as previ-
ously demonstrated in this model [7]. Of relevance, this has 

Fig. 2  Osteosarcoma cells adhesive behavior to microvascular 
endothelium. a Adhesion of SAOS2 and LM7 cells on HMEC-1 cells 
monolayers at 30 min, represented as number of cells per ield. t test, 
*p < 0.05. b Representive pictures of SAOS2 cells (panel I) and LM7 
cells (panel II) stained with DiO, over the HMEC-1 monolayer. Pic-
tures were taken at ×100, with luorescence microscope to allow visu-
alization of pre-labelled OS cells. Scale bar represents 0.2 mm. Data 

and images are representative of three independent experiments. c 
The graph bars show the LFQ normalized values of adhesion-related 
proteins identiied by analysis with Funrich program, for both OS cell 
lines proteomes. INTα5: integrin alpha 5; INTα11: integrin alpha 11; 
INTβ1: integrin beta 1; CTNNA1: catenin alpha 1; CTNNB1: catenin 
beta 1; ALCAM: activated leukocyte cell adhesion molecule. Nota-
bly, ALCAM was only present in LM7 cells
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a relationship with clinical observations, with the primary 
OS tumor expressing high Fas levels and inappreciable Fas 
levels in OS lung metastases [6]. The tumor niche is estab-
lished through the interplay between tumor cells, cancer 
stem cells, stromal cells and the extracellular matrix [37, 
38], and the use of this clinically relevant model would help 
in addressing fundamental mechanisms that allow for OS 
lung metastasis establishment.

Tumor progression is a complex biological process that 
involves a gain in several biological mechanisms such as 
angiogenesis, adherence, and cell survival, among others. 
In order to elucidate if metastatic abilities acquired and/
or selected in LM7 cells were accompanied with other 
hallmarks, we performed functional assays and analyzed 
proteomic data with emphasis on biological pathways and 
processes involved in the diferent functional abilities that 

Fig. 3  RT-qPCR analysis of OS human cells. a PDGFA, PDGFB, 
PDGFC and PDGFD. b VEGF and c FAF1. The results represent the 
average expression + SD. PDGFA: platelet derived growth factor A; 
PDGFB: platelet derived growth factor B; PDGFC: platelet derived 

growth factor C; PDGFD: platelet derived growth factor D; VEGF: 
vascular endothelial growth factor; FAF1: Fas-associated protein 1. t 
test, ns not signiicant; ** P < 0.01; **** P < 0.0001. Data are repre-
sentative of three independent experiments

Table 1  OS cells apoptosis pathway and related processes

Percentage of genes represent the relation between the number of expressed genes related to a speciic GO term and the number of genes of the 
GO. Fold enrichment represents the comparison between the frequency of genes annotated in a speciic GO term against the frequency of genes 
that fall into the same GO term. Analyses considering the relative abundance of the proteins (LFQ normalized intensities) were carried out using 
Funrich software

LFQ label free quantiication, GO gene ontology, Ns not signiicant

**p < 0.01; ***p < 0.001

SAOS2 LM7

Biological process Percentage of 
genes

Fold enrichment P-value Percentage of 
genes

Fold enrichment P-value

Negative regulation of apoptotic process 4.78 1.76 *** 4.59 1.69 ***

Positive regulation of apoptotic process 2.72 1.51 ** 2.77 1.53 **

Regulation of apoptotic process 1.60 1.38 ns 1.53 1.32 ns

Apoptotic signaling pathway 0.46 1.41 ns 0.51 1.54 ns

Apoptotic process 3.39 1.09 ns 3.57 1.15 ns
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were evaluated on both OS cell types. GO terms associ-
ated with cell survival, angiogenesis and signaling through 
PDGF/VEGF were relevant in metastatic cells. Pathways 
related to the angiogenic response were upregulated in 
LM7 cells (PECAM interactions, integrins in angiogenesis 
and endothelins (Supp. Table 1), and we demonstrated that 
LM7 cells secretome induced a higher cell rearrangement 
on microvascular endothelium cells, although no signiicant 
increase in the in vivo angiogenic response was observed. 
The quality of microvessels such as an increase in vessel 
diameter may determine tumor progression success [24]. 
Related to this, no quality diference in metastatic cells-
induced vessels that may account for a microcirculation 
advantage was observed. This points that although there 
is a diference associated to a remodeling stage related to 
the angiogenic cascade, both cell lines attain similar lev-
els of in vivo angiogenic response, suggesting that LM7’s 
secretome could be acting as a remodeling process inducer. 
In this scenario and in accordance to our results, an enhanced 
angiogenic response would not represent an advantage to 
any of the cells lines. HMEC-1 cells were established from 
foreskins, and given the heterogeneity of microvascular 
endothelium [39] it may represent a limitation of the study, 
although they are a model of functional human microvascu-
lar endothelium widely used as opposed to the use of cells 
derived from human umbilical veins (HUVEC) to dissect 
tumor cells and stromal cells overall interaction [40–43].

Angiogenic related growth factors have been also related 
to cell survival pathways, given that they boost survival, 

proliferation and overall cellular state [44]. VEGF and 
PDGF are known master regulators of angiogenesis, but also 
present reported properties as survival factors acting through 
diferent mechanisms. VEGF, for example, has been impli-
cated in the inhibition of apoptosis, promoting the survival 
of ECs in a direct-manner, under adverse conditions and also 
promoting tumor cell survival [45, 46]. The cytoprotective 
efect of VEGF resulting in apoptosis inhibition, involves 
signaling through VEGFR2, which leads to the up-regulation 
of members of the anti-apoptotic machinery such as Bcl-2, 
Bcl-2A1, XIAP (X-chromosome linked inhibitor of apopto-
sis) and survivin [47, 48]. Endothelial permeability, which is 
induced by VEGF, allows the intra and extravasation of cells 
by disrupting the vascular barrier and allowing the wide-
spread of metastatic cells, with previous reports analyzing 
the relationship between VEGF expression in OS cells and 
vascular permeability [49–51]. Related to this and associ-
ated to our identiication of VEGFR signaling as relevant 
in LM7 cells, it has been proved in other models that more 
aggressive OS cells have an autocrine VEGF loop which 
induce OS-tumor growth in vivo [52], pointing that VEGF 
could be exerting both pro-angiogenic and pro-survival fea-
tures [53]. PDGF pro-survival properties were reported to 
involve the downregulation of pro-apoptotic factors such 
as Bad, and the upregulation of anti-apoptotic factors like 
Bcl-2|. PDGF has been described as an inducer factor of 
cell proliferation, survival and migration primarily for cells 
with a mesenchymal lineage origin [54]. Given the observed 
presence of various pro- and antiapoptotic proteins in both 

Fig. 4  Apoptosis analysis by Acridine orange/ethidium bromide 
staining and analysis of nuclear morphology. a Acridine orange/
ethidium bromide assay on OS cells treated with 2.5% FBS or with-
out FBS for 6 h. Columns show the percentage of apoptotic cells as 
the total number of cells with apoptotic nuclei/total number of cells 
counted 100× Data are representative of three independent experi-
ments. Two-way ANOVA, * P < 0.05; ** P < 0.01. b Analysis of 
nuclear morphology by chromatin condensation assay. OS cells were 
treated with 0.1 or 1 µM doxorubicin for 24 h, followed by staining 

with Hoechst 33342. Representative luorescence images of SAOS2 
and LM7 OS cells; (I) SAOS2 control (basal medium); (II) SAOS2 
treated with 0.1  µM doxorubicin; (III) SAOS2 treated with 1  µM 
doxorubicin; (IV) LM7 control (basal medium); (V) LM7 treated with 
0.1 µM doxorubicin; (VI) LM7 treated with 1 µM doxorubicin. Scale 
bar represents 100 µm. Panels on the right correspond to representa-
tive images of nucleus at higher magniication, scale bar represents 
50 µm. Images are representative of four independent assays at ×100 
and higher magniication images at ×400
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OS cell types evaluated, without a signiicant net balance 
in either cell type, cell protective efects exerted by PDGF 
and VEGF could be counteracting pro-apoptotic efects and 
thus promoting OS LM7 cell survival. It was demonstrated 
that the activation of caspase 3 was signiicantly reduced 
by PDGF-BB pretreatment in cells challenged with gp120 
[55] and VEGF was shown to promote cell survival through 
the inhibition of caspase 3 cleavage [56]. In this regard, the 
signiicant higher expression levels of caspase 3 in LM7 
cells, despite cell-death resistant features observed in these 
cells, could be related to signaling through PDGF and VEGF 
promoting a switch to cell survival despite the presence of 
pro-apoptotic proteins. As mentioned, OS metastasizes pre-
dominantly to the lungs emphasizing the importance of the 
microenvironment. Associated to its function, lungs are very 
well vascularized [57, 58], and although there are reports 
of angiogenic-independent tumor growth in this organ [59, 
60], in OS the high vascularization in the lungs may provide 
a suitable scenario where molecules like VEGF and PDGF 
would switch into a pro-survival function rather to a pro-
angiogenic function. Our results showed that PDGFB and 
PDGFD were upregulated members of the PDGF family (see 
Fig. 3). Of interest, analysis of metastasis-free survival data 
of OS patients revealed that both PDGF isoforms upregu-
lated in our model, were of importance in a clinical scenario, 
with high expression associated to worst overall survival as 
conirmed by Kaplan–Meier curves (Supplementary mate-
rial Fig.  1). Pertinent to this, there is a correlation between 
PDGF and VEGF networks, exempliied in the potent VEGF 
secretion induced by PDGF-B in an ovarian cancer model 
[61]. Of relevance, Langley et al. [62] have demonstrated 
that the PDGFBB isoform functions as a survival factor for 
bone-derived microvascular endothelial cells. Cell stress 
conditions can lead to cell survival or to cell death [63]. 
In this regard we showed that LM7 cells were more resist-
ant to apoptosis under starvation conditions (see Fig. 4a), 
and doxorubicin treatment induced in LM7 cells diminished 
nuclear features compatible with apoptosis (see Fig. 4b). 
In this context we have recently shown that OS metastatic 
cells have an increased capacity to modify the intracellular 
localization of chemodrugs, further emphasizing the idea 
of a gain in pro-survival mechanisms in LM7 cells [36]. 
Worth mentioning in this scenario, the angiogenic-related 
endothelins that we identiied in pathways upregulated in 
LM7 cells, have also been reported as multifunctional pro-
teins with prosurvival and chemoprotective properties [64, 
65]. Altogether, our results suggest that augmented PDGF 
and VEGF could relate, in metastatic OS cells, to signal-
ing carrying increased surviving properties. Relevant to the 
model, when looking into proteins associated to apoptosis, 
the Fas signaling enhancer FAF1 protein was expressed in 
high levels in LM7 cells (see Fig. 3). Initially recognized as 
a member of the FAS death-inducing signaling complex, 

subsequent work revealed FAF1 functions in diverse bio-
logical processes, playing an important role in development 
and neural survival [34], thus adding to pro-survival fea-
tures. Recent evidence shows that AKT can induce FAF1 
phosphorylation through the action of growth factors or 
oncogenic mutations, ultimately inducing pro-metastatic 
functions induced by TGF-β [66]. FAF1 overexpression in 
pre-osteoblastic cells resulted in suppression of endogenous 
Wnt-induced genes and decreased osteoblast diferentiation, 
and in relation with this our group has reported that LM7 
cells present lower osteoblastic diferentiation potential in 
contrast to SAOS2 cells [36, 67]. This evidence poise a novel 
advantage for FAF1 expressing OS cells irrespective of its 
role in the FAS-mediated apoptosis response and adds to 
the picture as a possible regulator of tumor cells survival 
upon lung arrival.

We demonstrated an increase in cell adhesion towards 
microvascular endothelium in LM7 cells. Proteomic analy-
sis revealed that both cell types expressed proteins asso-
ciated with this biological process like integrins, catenins 
and cell adhesion molecules (CAM), with protein relative 
levels overall higher in SAOS2. This would point to a higher 
adhesive behavior of non-metastatic cells at a primary tumor 
site, but the selective advantage of metastatic cells to highly 
adhere to endothelium would relate to the ability of being 
retained in the lung’ microvessels and to colonize the tar-
get site [68]. Of interest, ALCAM, a molecule involved in 
mechanisms associated to cell intravasation was identiied 
as an upregulated protein in metastatic cells (see Fig. 2c), 
supporting this notion. Further, ALCAM was associated to 
metastasis to bone in a primary prostate model, associating 
an antiapoptotic function to this protein based on the intra-
cellular signaling that implicates ALCAM [69]. Relevant 
to a role in metastases, antibody neutralization of ALCAM 
was demonstrated to signiicantly reduce tumor cells colo-
nization into the brain using metastatic breast carcinoma 
models [70], and the expression of this molecule could relate 
to an overall function in favoring migration of mobile cells 
like metastasizing cells, mediating cell–cell-interactions in 
general [71].

From our results, a picture emerges that depicts a het-
erogeneous OS tumor site of pathologic bone remodeling 
with selection of advantageous properties in bone resid-
ing cells allowing lung colonization. An overall molecular 
balance may shift into one or the other side of survival or 
death, which may co-occur independently of the presence 
or absence of Fas. We identiied proteins that are pro-apop-
totic in a context where Fas is present like FAF1, but its 
participation also in prosurvival pathways could present a 
scenario in which not only Fas negative OS cells could colo-
nize the lungs. To our knowledge, this notion is novel and 
little explored, deserving more investigation to allow for the 
manipulation of the permissive soil for metastasis to occur. 
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Interestingly, Kaplan–Meier curves for FAF1 predict that 
a higher expression is associated to lower metastasis-free 
survival (Supplementary material Fig. 1). A pathological 
analysis involving new vessel formation would not be clini-
cally useful as indication of metastatic potential. Further, 
a molecular pattern associated to apoptosis and survival 
was presented in cells with divergent metastatic potential. 
Identiication of novel molecules in OS cells with metastatic 
features would allow for a prompt validation of molecules 
with biomarker usefulness in a disease where the existence 
of non-detectable lung micrometastases remains as a critical 
clinical challenge.
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carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 
‘Author’s response’ area provided below

Query Details Required Author’s Response

AQ1 Please conirm if the author names are presented accurately and in the correct 
sequence (given name, middle name/initial, family name). Author 1 Given name: 
[Matías Valenzuela] Last name [Alvarez]. Author 2 Given name: [María Jose] Last 
name [Cantero]. Also, kindly conirm the details in the metadata are correct.

AQ2 Please check and conirm that the authors and their respective ailiations have been 
correctly identiied and amend if necessary.

AQ3  References [72-83] were provided in the reference list; however, these were not 
mentioned or cited in the manuscript. As a rule, if a citation is present in the text, 
then it should be present in the list. Please provide the location of where to insert the 
reference citation in the main body text. Kindly ensure that all references are cited in 
ascending numerical order.

AQ4 AUTHOR: As References 82. and 83. are same, we have deleted the duplicate 
reference and renumbered accordingly. Please check and conirm.
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