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Progesterone receptors (PR) are expressed throughout the brain. However, their functional sig-
nificance remains understudied. Here we report a novel role of PR as crucial mediators of neuro-
protection using a model of transient middle cerebral artery occlusion and PR knockout mice. Six
hours after ischemia, we observed a rapid increase in progesterone and 5a-dihydroprogesterone,
the endogenous PR ligands, a process that may be a part of the natural neuroprotective mecha-
nisms. PR deficiency, and even haploinsufficiency, increases the susceptibility of the brain to stroke
damage. Within a time window of 24 h, PR-dependent signaling of endogenous brain progester-
one limits the extent of tissue damage and the impairment of motor functions. Longer-term
improvement requires additional treatment with exogenous progesterone and is also PR depen-
dent. The potent and selective PR agonist Nestorone is also effective. In contrast to progesterone,
levels of the neurosteroid allopregnanolone, which modulates y-aminobutyric acid type A recep-
tors, did not increase after stroke, but its administration protected both wild-type and PR-deficient
mice against ischemic damage. These results show that 1) PR are linked to signaling pathways that
influence susceptibility to stroke, and 2) PR are direct key targets for both endogenous neuropro-
tection and for therapeuticstrategies after stroke, and they suggest a novel indication for synthetic
progestins already validated for contraception. Although allopregnanolone may not be an en-
dogenous neuroprotective agent, its administration protects the brain against ischemic damage by
signaling mechanisms not involving PR. Collectively, our data clarify the relative roles of PR and
allopregnanolone in neuroprotection after stroke. (Endocrinology 153: 3747-3757, 2012)

rogesterone is receiving much attention as a neuro-
Pprotective agent and is making its way into neuro-
logical practice (1-3). Indeed, two phase II trials have
already assessed the beneficial effects of progesterone
after traumatic brain injury (TBI) (4, 5), and their en-
couraging outcomes have spurred the launching of two
large phase III multicenter trials (Protect III, 2011, at
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http://www.clinicaltrials.gov/NCT00822900 and SyNAPSe,
2011, at http://www.synapse-trial.com). Progesterone is
also a promising candidate for neuroprotective strategies
after stroke, a major cause of death and neurological dis-
ability (6). The only approved treatment for acute stroke
is thrombolysis with tissue plasminogen activator, but it
can be used in only 10% of patients (7, 8). Progesterone

Abbreviations: Cy, Cycle threshold; 5a-DHP, 5a-dihydroprogesterone; GABA, +y-ami-
nobutyric acid type A; GC/MS, gas chromatography/mass spectrometry; MCA, middle
cerebral artery; MCAO, MCA occlusion; mPR, membrane PR; NMDA, N-Methyl-D-aspar-
tate; PGRMC1, progesterone membrane receptor component 1; PR, progesterone recep-
tors; PRKO, PR-knockout; TBI, traumatic brain injury; TTC, triphenyltetrazolium chloride.
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treatment may represent a new, safe, and effective therapy
that can be offered to a higher percentage of patients. In-
deed, experimental studies have demonstrated its effi-
ciency in reducing lesion volume and improving func-
tional recovery after either transient or permanent
occlusion of brain arteries (9-11).

Progesterone modulates the transcription of target
genes by interacting with intracellular progesterone recep-
tors (PR), which belong to the nuclear receptor superfam-
ily of transcription factors (12). In addition to uterus,
ovaries, and mammary glands, PR are also expressed
throughout the brain, and they are abundant not only
within hypothalamic nuclei involved in the control of re-
productive functions but also in cerebral cortex and sub-
cortical structures (13, 14). However, the significance of
their widespread distribution in the brain is unknown, and
still, recently, brain PR have been qualified as the neglected
ones (15).

That so little attention has been devoted to brain func-
tions of PR may relate to the widely accepted assumption
that neuroprotective effects of progesterone may be
mainly mediated by its metabolite allopregnanolone. In-
deed, the neuroprotective actions of progesterone can be
mimicked by its metabolite allopregnanolone (16), which
does not interact with PR, but instead potentiates mem-
brane y-aminobutyric acid type A (GABA ,) receptors, the
major inhibitory neurotransmitter receptors in the brain
(17,18). However, it has been reported that allopregnano-
lone may be back-oxidized to 5 a-dihydroprogesterone
(5a-DHP), which then interacts with PR, activates gene
transcription, and regulates neuronal functions (19, 20).
The signaling mechanisms involved in progesterone and
allopregnanolone neuroprotection thus require clarifica-
tion. A second possible reason why brain PR have been so
much neglected may be the growing interest in new mem-
brane receptors of progesterone [mPR and progesterone
membrane receptor component 1 (PGRMC1)], although
their biological significance remains to be explored (21).

We hypothesize that PR may be key mediators of the
neuroprotective effects of progesterone and may have a
contributory role in mediating the effects of allopregnano-
lone after stroke. To test this hypothesis, we used PR-
deficient mice (PR™'") and compared them with PR*/~
and PR*"* mice and checked their susceptibility to stroke.
We also examined the therapeutic potential of PR as a
direct drug target by administrating progesterone or the
potent fourth-generation PR agonist Nestorone (22) or
allopregnanolone after ischemia and reperfusion.

Materials and Methods

Animals

Mice were housed in a temperature-controlled room on a
12-h light, 12-h dark cycle with food and water ad libitum. Ex-
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perimental protocols were approved by the Direction départe-
mentale de la protection des populations du Val-de-Marne,
France, authorization number 94-345 to R.G., accredited estab-
lishment number 94-043-13). Experiments were performed in
accordance with French ethical laws (Act 87--848; Ministere de
I’Agriculture et de la Forét) and the European Communities
Council Directives of November 24, 1986 (86/609/EEC) guide-
lines for the care and use of laboratory animals.

A breeding colony of PR®* mice was established in our an-
imal facility. PR'** mice (C57BL6/129SvEv background) were
generated by inserting the lacZ reporter and neomycin resistance
(neo") genes into exon 1. Their insertion site was chosen to place
the lacZ reporter under the control of the endogenous PR gene
promoter and to effectively disrupt the transcription of both PR
isoforms (23). The PR'** mice are a phenocopy of the previously
described PR-knockout (PRKO) mouse (24). Each mouse was
identified for its PR genotype by using a validated genotyping
protocol (25). Genomic DNA from mouse tails was extracted
using direct PCR lysis reagent (Viagen Biotech, Euromedex,
France). One microgram of DNA was subjected to PCR ampli-
fication using Taq DNA polymerase (Invitrogen, Inc., Carlsbad,
CA). PCR was performed by denaturing the DNA at 94 C for 3
min, followed by 35 cycles of amplification: 94 C for 1 min, 55
C for 1 min, 72 C for 1 min, and a final extension step at 72 C
for 10 min. The following PR-specific primers were used: P1
(5'-TAG ACAGTGTCT TAG ACT CGT TGT TG-3"), P3 (5'-
GAT GGG CAC ATG GAT GAA ATC-3’), and a lacZ-specific
primer, lacZ (5'-CTT CAC CCA CCG GTA CCT TAC GCT
TC-3'). The presence of primer-amplified PCR product was de-
tected on agarose gel and visualized by ethidium bromide fluo-
rescence. We observed the presence of a 590-bp DNA band for
PR*™/* mice (corresponding to the PR gene, P1/P3 primers), a
148-bp band for PR/~ mice (P1/lacZ primers), or both bands
for PR™~ mice.

Anesthesia

Before surgery, adult male PR'*** mice weighting 26-30 g
were anesthetized with ketamine (50 mg/kg) and xylazine hy-
drochloride (6 mg/kg). Although the most commonly used an-
esthetic drugs may provide a certain degree of neuroprotection
(25), ketamine, a noncompetitive antagonist of N-Methyl-D-
aspartate (NMDA) receptors, has the advantage over the others
not to interact with GABA, receptors (26). The choice of ket-
amine reduces potential interferences between the anesthetic
drug and the treatments we are studying (progesterone and
allopregnanolone).

Transient stroke model

Throughout surgery, body temperature was monitored by a
rectal probe and maintained at 37 £ 0.5 C with a homeothermic
blanket control unit (Harvard Apparatus, Edenbridge, Kent,
UK). The middle cerebral artery (MCA) was occluded for 1 h
with an intraluminal filament (27). After ligature of the left com-
mon carotid artery, a nylon monofilament coated with ther-
momelting glue (4 mm long, 190 um diameter) was introduced
through an arteriotomy performed on the external carotid artery
and advanced into the internal carotid artery. Occlusion of the
MCA was controlled by monitoring the cerebral blood flow
within the MCA territory by laser Doppler flowmetry (Moor
Instruments, France). Mice with less than a 50% drop in blood
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flow were excluded from the studies. The filament was with-
drawn 1 h after occlusion to allow reperfusion, and the common
carotid artery ligature was also removed. Sham-operated mice
underwent the same surgical procedure except that no filament
was inserted. After surgery, the wound was sutured.

In vivo steroid treatments

To test the effect of steroid treatment after reperfusion, mice
were randomly and blindly assigned to either progesterone (8
mg/kg; Sigma), allopregnanolone (8 mg/kg; Sigma), Nestorone
(0.08 mg/kg; Population Council, Rockefeller University, New
York, NY) or vehicle-treated (sesame oil; Sigma) group. All ste-
roids (progesterone, allopregnanolone, and Nestorone) were ini-
tially dissolved in a small volume of ethanol and further diluted
in sesame oil to obtain the desired final steroid concentrations.
The vials containing the steroid solutions were placed in an in-
cubator overnight to allow the evaporation of ethanol. The ve-
hicle solution was prepared according to the same procedure
(ethanol plus sesame oil) without steroids. Injections were given
ipat1, 6, and 24 h after MCA occlusion (MCAQ) according to
established neuroprotective protocols (9, 16). Mice in the vehicle
group underwent the same experimental protocol, except that
they received the same volume/weight of vehicle only. After treat-
ments, mice were returned to their cage at 29 C with free access
to food and water. Treated mice were killed at 48 h after MCAO.

Analysis of infarct-size and edema

Cerebral infarct volumes and areas were determined after
triphenyltetrazolium chloride (TTC) staining of brain sections
(28,29). Brains were cut into seven 1-mm-thick coronal sections
using a Macllwain tissue chopper (Mickle Laboratory Engineer-
ing, Gomshall, Surrey, UK). Slices were quickly immersed in 0.1
M PBS (pH 7.4) containing 2% TTC for 20 min at room tem-
perature and were then stored in phosphate-buffered 4% para-
formaldehyde (Acros, Noisy-le-Grand, France) overnight before
analysis. The area of damaged unstained brain tissue was mea-
sured on the posterior surface of each slice using a computer
image analysis system (NIH Image). To correct for brain swell-
ing, each infarct area was multiplied by the ratio of the surface
of the intact (contralateral) hemisphere to the infarcted (ipsilat-
eral) hemisphere at the same level. Total volume of damaged
tissue, expressed as cubic millimeters, was calculated by linear
integration of the corrected lesion areas (30). Edema volume was
calculated by computing the ratio of the volume of the infarcted
to the intact hemisphere. The rationale for this method is that the
accumulation of water, within the infarction, proportionally en-
larges the infarcted hemisphere (30).

Rotarod test

Motor coordination of mice was evaluated by the time they
remained on a constant-speed rotarod (10 revolutions/min). A
trial ended when the animal fell off or gripped the device without
attempting to walk. The day before MCAO, mice were trained
in three trials to obtain stable baselines. Just before ischemia, the
test was performed again, and the mean duration of three trials
on the device was recorded, representing the preischemic value.
On the day of killing, the mice were again tested on the rotarod,
and the mean duration of three trials represented the postisch-
emic value.
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Analysis of steroids by gas chromatography/mass
spectrometry (GC/MS)

Six hours after MCAOQ, brain and plasma levels of proges-
terone, Sa-DHP, and allopregnanolone were determined by
GC/MS according to a validated protocol (31, 32). Corticoste-
rone was measured in mice plasma. Steroids were extracted from
tissues and plasma with methanol, and internal standards were
added for steroid quantification: 2 ng [*H,]Sa-DHP (CDN Iso-
topes) for Sa-DHP, 2 ng 19-norprogesterone (Steraloids, New-
port, Rhode Island) for progesterone and allopregnanolone, and
10 ng [*Hg]corticosterone (CDN Isotopes, Sainte Foy La
Grande, France) for corticosterone. Unconjugated and conju-
gated steroids were separated by a previously described solid-
phase extraction and a recycling procedure (33). The fraction
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FIG. 1. Influence of PR disruption on infarct volume and areas at 24 h
after MCAO. A, Successive 1-mm-thick coronal brain sections of
representative PR™™, PR*/~, and PR/~ mice stained with TTC (viable
tissue in red; infarcted tissue appears pale). Scale bar, 5 mm. B,
Quantitative analysis of total infarct volumes calculated from brain
sections. C, Areas of damaged brain tissue on successive brain
sections. Data represent means = sem; n = 14-18 per group. *, P <
0.05; **, P < 0.01 as compared with PR*'* mice after one-way (B) or
two-way (C) ANOVA (PR genotype X brain section level).
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containing the unconjugated steroids was filtered and further
purified and fractionated by HPLC (Thermo Fisher Scientific,
San Jose, CA). Three fractions were collected from the HPLC
system: the first containing 5a-DHP, silylated with a mixture of
N-methyl-N-trimethylsilyltrifluoroacetamide, ammonium io-
dide (NH,I), and dithioerythritol (1000:2:5, vol/wt/wt), the sec-
ond containing progesterone and allopregnanolone derivatized
with heptafluorobutyric anhydride, and the third with cortico-
sterone also derivatized with heptafluorobutyric anhydride.
GC/MS analysis of the steroid derivatives was performed using
an AS 3000 autosampler, a Focus GC gas chromatograph, and
a DSQII mass spectrometer (Thermo Fisher Scientific San Jose,

A
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CA). Identification of each steroid derivative was supported by
its retention time during GC and two diagnostic ions resulting
from electron impact ionization. Quantification was performed
in single ion monitoring mode according to the major diagnostic
ion (Supplemental Table 1, published on The Endocrine Society’s
Journals Online web site at http://endo.endojournals.org).

RNA isolation and quantitative PCR

Total RNA was extracted from cerebral tissues using Trizol
reagent (Life Technologies, Invitrogen, Saint Aubin, France).
The concentration and purity of total RNA was determined by
measuring the OD at 260 and 280 nm. All samples were precip-
itated with ethanol and then dissolved in
distilled water to a concentration of 1 ug/ul,
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FIG. 2. Endpoint measures at 6 h after MCAO. A, Infarct volumes in PR** and PR™/~ mice.
Two-way ANOVA (PR genotype X brain region) revealed a significant effect of PR genotype
(P <0.001). *** P <0.001; **, P< 0.01; *, P < 0.05 as compared with PR*/* mice. B,
Time spent on a rotarod before or 6 h after MCAQO. **, P < 0.01 as compared with
preischemia performance; ##, P < 0.01 as indicated. C, Brain levels of progesterone, 5a-DHP,
and allopregnanolone in PR*’* male mice analyzed by GC/MS (nanograms per gram of
tissue). ***, P < 0.001; *, P < 0.05 as compared with control mice (Ctr); ###, P < 0.001;

permitted accurate quantification. Each re-
action mixture contained 2 ng cDNA/ul re-
action, 0.2 uM primers, and 1X Sybr Green
(Applied Biosystems) in a final volume of 25
wul. PCR were performed in triplicate under
optimized conditions: 95 C at 10 min fol-
lowed by 40 cycles at 95 C for 15 sec and 60
C for 1 min. The concentration of the target
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genes was calculated by referring C- values in each sample with
Cr values of the internal standard curve.

Statistics

Statistical analysis was performed by using Statistica ver-
sion 9.1 (StatSoft, Tulsa, OK). Comparisons between multiple
groups were made by one-way or two-way ANOVA and fol-
lowed by Newman-Keuls tests. Correlation between two con-
tinuous variables was determined by Pearson’s correlation
test. P values <0.05 were considered statistically significant.

Results

PR-dependent signaling of endogenous brain
progesterone confers early protection after stroke

PRKO mice exhibited an increased susceptibility to
stroke damage

To determine whether nuclear PR might play a role in
the resistance of the brain to ischemic injury, we used adult
male PR mice, here referred to as wild-type PR*/",
heterozygous PR*'~, and homozygous knockout PR/~
mice, generated by inserting the lacZ reporter and neo-
mycin resistance genes into exon 1 of the PR gene to
effectively disrupt its transcription (23). We used males
because of their low and stable levels of circulating pro-
gesterone and because a protective treatment for stroke
targeting the PR should also be applicable in men, who
show a high risk and poor outcome when compared with
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FIG. 3. Plasma levels of progesterone, 5a-DHP, allopregnanolone, and corticosterone as
analyzed by GC/MS. Plasma was sampled from wild-type control mice (Ctr) and at 6 h after
either sham operation or MCAO. ***, P < 0.001; **, P < 0.01; *, P < 0.05 as compared
with control; ###, P < 0.001 as indicated by Newman-Keuls tests after one-way ANOVA.

Data represent means = seM; n = 5 per group.
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women (36). The uterus and brain of PR~ mice have
been reported to contain about half of the number of PR
binding sites when compared with PR™*'* mice (24, 37).
Using quantitative PCR, we showed that PR mRNA ex-
pression is absent in PR™~ mice and reduced by about
60% in cerebral cortex, subcortical regions, and hypo-
thalamus of PR™'~ mice (Supplemental Fig. 1).

Transient focal cerebral ischemia was induced by oc-
cluding the left MCA during 1 h with an intraluminal
filament followed by reperfusion (27). During MCAO,
PR**,PR™~,and PR/~ mice showed similar reductions
in cerebral blood flow recorded by laser Doppler flow-
metry (respectively, 68.8 = 3, 68.1 + 2.8, and 72.7 =
3.5%, means * sem, P = 0.47).

Ischemic brain damage was first assessed at 24 h after
MCAO by staining brain sections with TTC (Fig. 1A). The
total infarct volume was increased by 31% in PR*'~ and
by 46% in PR~ mice when compared with wild-type
PR™'* mice (Fig. 1, A and B). Similarly, infarct areas were
significantly larger on successive 1-mm coronal brain sec-
tions (Fig. 1C).

To investigate whether PR-dependent neuroprotection
may be an early event, brain damage was examined at 6 h
after MCAOin PR*'*,and PR™'™ mice. As in the previous
experiment, there was no difference in the reduction in
blood flow between the two genotypes after MCAOQO, and
there was no correlation between decrease in blood pres-
sure and infarct volume. Although the total infarct volume
was still small at this time, it was three
times larger in PR™/~ mice than in
PR*"* mice. Moreover, infarct vol-
umes were significantly larger in both
the cortex and subcortical structures of
PR/~ mice (Fig. 2A). Areas of damage
on successive brain sections, up to —4 mm
from Bregma, were also much greater in
PR™"~ mice when compared with PR™""
mice (not shown). Linear regression
yielded a high positive correlation be-
tween ischemic brain damage and
edema (r = 0.65; Pearson’s correlation
P < 0.01). There was, however, no cor-
relation between infarct volume and
weight of the mice (P = 0.6). To assess
neurological deficits, mice were tested
on a rotating cylinder (rotarod), which
functions as a treadmill and is widely
used to assess genetic and drug effects
on motor coordination. There was no
difference between PR™* and PR™/~
mice in the time spent on the rotarod
before ischemic injury. Motor func-

MCAO

MCAO
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TABLE 1. Ratios of brain levels of progesterone,
5a-DHP, and allopregnanolone to plasma levels

Control Sham MCAO
Progesterone 1.13+0.3 050*x02 1.96=*0.3
S5a-DHP 330*+0.2 3.80+03 4.40=*0.2°
Allopregnanolone 140 0.2 057 +03 0.80=*0.3

Results are shown means =+ sem; n = 5 per group. Brain levels are
nanograms per gram, and plasma levels are nanograms per milliliter.

9 P < 0.05 as compared with the corresponding control group by
Newman-Keuls tests after one-way ANOVA.

tions were altered after MCAO in both groups, but they
were more impaired in PR™’" than in PR™"" mice (Fig.
2B). At this early stage, no correlation was observed be-
tween rotarod performance and infarct volume (Pearson’s
correlation P = 0.19).

Stroke induced an increase in the levels of the two
neurosteroids progesterone and 5«-DHP, both
endogenous ligands of PR

The above results showed that PR inactivation results
inincreased vulnerability of the brain to ischemic damage.
In addition, they pointed to a role of endogenous brain
progesterone in PR-dependent neuroprotective signaling.
We therefore measured the levels of progesterone and its
reduced derivatives by GC/MS in brain and plasma. Levels
of progesterone were strongly increased, more than 25-
fold, in the brains of male mice as early as 6 h after MCAO,
reaching levels observed in females during pregnancy (Fig.
2C). The increase in brain progesterone was observed both
in the lesioned ipsilateral and in the contralateral brain
sides. We also observed a 2- to 3-fold increase in brain
levels of the progesterone metabolite 5a-DHP, which also
increases the transcriptional activity of PR (19). In con-
trast, stroke did not significantly affect brain levels of al-
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lopregnanolone, which were about 10 times lower than
those of progesterone and 5a-DHP (Fig. 2C). Part of the
progesterone present in brain tissue may be of adrenal
origin, because plasma levels of the hormone were in-
creased in response to both sham surgery and MCAO (Fig.
3). Consistently, plasma levels of adrenal corticosterone
were up-regulated in response to surgery stress (Fig. 3).
However, ischemic injury selectively stimulated proges-
terone synthesis within the brain, because brain but not
plasma levels were significantly higher after MCAO than
after sham surgery (Figs. 2C and 3). Moreover, the ratios
of brain to plasma levels of progesterone and Sa-DHP
were significantly increased after MCAO but not in re-
sponse to sham surgery (Table 1). Up-regulation of the
brain’s endogenous PR ligands (progesterone and Sa-
DHP) may thus confer resistance to ischemic damage.

Longer-term neuroprotection after stroke requires
additional treatment with progesterone and is
also PR dependent

The presence of PR confers resistance to ischemic dam-
age during the first 24 h. We then investigated whether a
beneficial influence of PR can still be observed in PR™*'*,
PR™~, and PR/~ mice at 48 h after MCAO. Although
endogenous progesterone via PR did appear to protect the
brain during the first 24 h of recovery, the damage con-
tinued to evolve during the next 24 h, rendering PR™'*,
PR~ and PR™'" groups equally damaged at 48 h. In-
deed, in contrast to the 6- and 24-h time points, no influ-
ence of the PR genotype on infarct volume and areas was
observed (Fig. 4). These results suggest an acute and tran-
sient protective effect of endogenous PR activation, albeit
insufficient to overcome the deleterious effects of ischemia
on delayed cell death. Previous work has shown that treat-
ment with progesterone after MCAO results in longer-

term improvement of neurological out-

A B o comes (9).. To confirm that the
60 — . - administration of exogenous proges-

z _ _a__l terone can indeed provide longer-last-
£ E 2| ing protection against stroke injury,
e 0 % and to investigate whether its beneficial
2 S s effects are PR dependent, PR*'" and
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Coronal section (mm)

FIG. 4. Endpoint measures at 48 h after MCAQ. A, Total brain infarct volume in PR*/*, PR/~
and PR/~ mice. There were no significant differences between the three groups. There was
also no effect of the PR genotype on lesion volume in cerebral cortex and subcortical
structures (not shown). B, The areas of damaged brain tissue measured on seven successive
1-mm-thick brain sections (section 3 = bregma level) were similar in PR™*, PR™~, and PR/~
mice. Data represent means = sem; n = 15 per group.

(9). Morphological and functional out-
comes were examined at 48 h after
MCAO. The total infarct volume and
ischemic lesions in both cerebral cortex
and subcortical structures were re-
duced by progesterone treatment in
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n = 16 per group.

PR™* but not in PR™’" mice (Fig. SA). Likewise, the ad-
ministration of progesterone reduced areas of damage in
the different brain areas only in PR*'* mice (Fig. SB).
Motor coordination, when assessed on the rotarod, re-
vealed a highly significant negative correlation with the
infarct volume (Fig. SC). Both PR™" and PR™/~ mice
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displayed functional motor deficits at
48 h after MCAQ. Whereas progester-
one treatment significantly improved
the ability of PR™* mice to remain on
the rotarod as compared with vehicle
treatment, it was inefficient in PR/~
mice (Fig. 5D). We also observed a
strong positive correlation between in-
farct volume and brain edema, and
progesterone treatment reduced brain
edema in PR*'* mice, but not in
PR~ mice (Fig. 6, A and B). Thus, at
48 h after MCAO, the improvement
of histological and functional out-
comes by progesterone treatment is
PR dependent.

The potent and selective PR
agonist and contraceptive agent
Nestorone is also neuroprotective

The identification of PR as a neuro-
protective drug target opens new ther-
apeutic indications for selective syn-
thetic progestins, already validated for
contraception or hormone therapy.
Nestorone (16-methylene-17a-acetoxy-
19-norpregn-4-ene-3, 20-dione) is a 19-
norprogesterone derivative that shows
high specific binding to PR and is about
100 times more potent than progesterone
(22, 38). PR™* mice received three in-
jections of Nestorone (only 0.08 mg/kg at
1, 6, and 24 h after MCAOQ), and neuro-
logical outcomes were examined at 48 h.
When compared with oil treatment,
Nestorone reduced the total infarct vol-
ume by 32% (P < 0.01), the ischemic
lesions in cerebral cortex and in subcor-
tical structures, respectively, by 22%
(P <0.01) and 52% (P < 0.01) and in-
creased the time PR™/* mice remained on
the rotarod by 43% (P < 0.05).

Relative role of PR in the

neuroprotective effect of the

neurosteroid allopregnanolone
The fact that progesterone does not

reduce ischemic brain damage in PR/~ mice and that
Nestorone is also neuroprotective strongly suggested that
the effects of progesterone may be mainly mediated by PR
and not after conversion to its derivative allopregnano-
lone, which does not bind to PR. Because 1) previous work



3754 Liu et al. Progesterone Receptors in Stroke

A 30

T 207

©

£

(7]

©

w 10

(]
20 40 60 80 100
Infarct volume (mm3)
B 15— pRM* PR-I-
Econtrol
. |IMProgesterone

X 10

1

£

Q

T

w o

0
FIG. 6. Effects of progesterone treatment on brain edema at 48 h
after MCAO. A, Pearson’s correlation analysis revealed a high positive
correlation between ischemic brain damage and edema (r = 0.79; P <
0.001; dotted lines delimit the 0.95 confidence interval). B, Effect of
progesterone on brain edema in PR™* and PR~/ mice. #, P < 0.05 as
indicated by Newman-Keuls tests after two-way ANOVA (PR

genotype X treatment). Data represent means + sem; n = 17-19.

has shown that allopregnanolone has neuroprotective ef-
fects after stroke and 2) allopregnanolone can be con-
verted back to 5a-DHP, which binds PR, we checked
whether there may be a contributory role of PR in medi-
ating the effects of allopregnanolone. If the protective ef-
fects of allopregnanolone are mediated via its conversion
to PR-active Sa-DHP (19), they should no longer be ob-
served in PR™'~ mice. To test this possibility, PR*/"and
PR’ mice received three ip injections of a neuroprotec-
tive dose of allopregnanolone (8 mg/kg) at 1, 6, and 24 h
after MCAO (16), and neurological outcomes were ex-
amined at 48 h. Treatment with allopregnanolone mark-
edly reduced total infarct volume, ischemic damage in ce-
rebral cortex and subcortical structures, and the extension
of lesions at different brain levels in both PR™* and
PR’ mice (Fig. 7, A and B). Allopregnanolone also re-
duced brain edema independently of the genotype (Fig.
7C). The brain-protective effects of allopregnanolone
were accompanied by improved functional outcomes eval-
uated on the rotarod, which were again independent of PR
(Fig. 7D).

Discussion

Here, we identify PR as an important component of
neuroprotective signaling after ischemic stroke. Both
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short-term neuroprotective effects of endogenous brain
progesterone and longer-term neuroprotective effects of
progesterone treatment indeed require the presence of PR.

In our experiments, deficiency of PR results in increased
susceptibility of the brain to ischemic damage. Intrigu-
ingly, at 24 h after MCAO, brain damage was nearly as
severe in heterozygous PR*/~ mice, which lack only one
allele of the PR gene, as in PR™’~ mice. PR haploinsuffi-
ciency increases the vulnerability of brain cortical and sub-
cortical regions to ischemic insult. This is a first example
of PR haploinsufficiency, because decreased expression of
the receptor in hypothalamus or uterus of PR*’~ mice
does not result in a particular reproductive phenotype
(37). Moreover, only part of hypothalamic PR needs to
be activated for high levels of sexual receptivity in fe-
males (39). Our results suggest that brain PR may be a
limiting factor for reactive neuroprotective processes
after ischemia.

Six hours after MCAQO, we observed a specific increase
(not observed in sham-operated mice) of cerebral levels of
progesterone and 5a-DHP, contrasting with stable levels
of allopregnanolone. These data suggest an activation of
the cerebral biosynthesis of progesterone and its reduced
metabolite after stroke. The up-regulation of the endog-
enous PR ligands, progesterone and Sa-DHP, may confer
resistance to ischemic damage and is consistent with the
observed neuroprotective role of PR early after stroke.
Increased synthesis of progesterone and 5a-DHP within
the central nervous system has previously been reported
after traumatic injury and spinal cord injury (31, 40), and
both steroids can be synthesized de novo from cholesterol
by neurons and glial cells, thus qualifying as neurosteroids
(41). The rapid activation of cerebral biosynthesis of PR
ligands may be a part of endogenous neuroprotective
mechanisms in response to lesions of the central nervous
system, and it may contribute to the extended window of
opportunity for progesterone treatment to prevent neuron
loss after ischemic or TBI injury (3, 42).

Although endogenous progesterone protected the brain
during the first 24 h of recovery, no differences between
PR™* and PR™'" mice were observed in infarct size and
motor coordination at 48 h after MCAOQ. These findings
suggest that the reactive increase in brain steroidogenesis
and endogenous PR activation in response to stroke are
not sufficient for providing protection against ischemic
brain damage for as long as 48 h and to overcome the
deleterious effect of ischemia on delayed cell death. Our
results show that longer-term neuroprotective effects re-
quire additional treatment with exogenous progesterone
and the presence of PR.

We showed that progesterone specifically acts through
PR. Indeed, treatment with progesterone is effective in
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progestin derived from 19 nor-proges-
terone and exerts its activity at much
lower doses than progesterone (22).
Moreover, this progestin does not con-
vertinto Sa-DHP or allopregnanolone,
and its action has been shown via the
PR with a higher transactivation effect
of the PR than progesterone itself. In
addition, it was found that this proges-
tin shows interesting properties in neu-
rogenesis, similar to progesterone and
superior to other progestins (43) as well
as in myelin repair (44) justifying its
testing in this stroke model. In addition,
although progesterone is used in rela-
tively high doses (8 mg/kg), the possi-
bility to use a much lower dose (100-
fold less) with Nestorone to induce the
same effect on the stroke model repre-
sents a promising avenue for future
therapeutic use.

Until now, there was a widely ac-
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FIG. 7. Improvement of neurological outcomes by allopregnanolone at 48 h after MCAO
does not involve PR. A, Reduction in infarct volume by allopregnanolone. Two-way ANOVA
revealed a significant effect of allopregnanolone treatment (P < 0.01) but no influence of PR
genotype for total, cortical, and subcortical infarct volumes. ***, P < 0.001; **, P < 0.01;

*, P < 0.05 as compared with the corresponding control group. B, Infarct areas on successive
brain sections of PR*/* and PR™/~ mice. ***, P < 0.001; **, P < 0.01; *, P < 0.05 as
compared with the corresponding sections of allopregnanolone-treated mice. C, Reduction of
edema by allopregnanolone (means + sem) in both PR™* and PR™'~ mice. Two-way ANOVA
(PR genotype X treatment) showed a significant effect of treatment (P < 0.001) but no effect
of PR genotype. **, P < 0.01; *, P < 0.05 as compared with corresponding control group by
Newman-Keuls tests. D, The time mice remained on a rotarod. ***, P < 0.001, *, P < 0.05
compared with preischemia performance; ##, P < 0.01 as indicated. Data represent means *+

seM; n = 6-8 for vehicle- and allopregnanolone-treated mice.

PR™* mice but failed to confer neuroprotection in PR-
deficient mice, and the potent and selective PR agonist
Nestorone was also effective in wild-type PR™'* mice. It is
important to note that Nestorone improved neurological
outcomes at a dose 100 times lower than progesterone,
confirming the potency of this progestin and a key role of
the PR in neuroprotection. Nestorone is a highly selective

2) neither endogenous allopregnano-
lone nor the treatment with an ele-
vated dose of exogenous progesterone
protected against ischemic brain in-
jury in PR/~ mice.

We showed that treatment with al-
lopregnanolone reduced brain edema
and infarct volume independently of
the genotype. The brain-protective ef-
fects of allopregnanolone were accom-
panied by improved functional out-
comes evaluated on the rotarod, which
were again independent of PR. These results demonstrate
that allopregnanolone treatment can protect the brain
against ischemic damage by signaling mechanisms not in-
volving PR. This neuroprotection may implicate binding
of allopregnanolone to membrane GABA , receptors (17)
or to the nuclear pregnane X receptor (45) or by its direct
actions on mitochondria (46).
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Although we demonstrate a key role of PR in the neu-
roprotective effects of progesterone, our results do not rule
out an involvement of additional signaling pathways of
progesterone. In addition to PR and GABA, receptors,
progesterone-regulated neural responses may be mediated
by putative membrane receptors such as the mPR (a-, -,
and y-isoforms) and PGRMC1. However, it is very un-
likely that a down-regulation of the alternative receptors
contributes to the absence of progesterone responses in
PRKO mice: 1) actions of allopregnanolone that are de-
pendent on GABA , receptors (47) are preserved in PRKO
mice; 2) the expression of PGRMC1, previously known as
25-Dx, is up-regulated in PRKO mice (48); and 3) we have
recently reported that the expression of mPRa, mPR 8, and
mPRyin the central nervous system is similar in wild-type
and PRKO mice (49).

In conclusion, this study demonstrates that 1) PR is an
essential key for early endogenous neuroprotection, and it
might serve as pharmacological drug target for stroke
therapy. With the success, in terms of safety and improved
outcome, of the first two clinical trials of progesterone
after TBI (4, 5), trials targeting PR may be realistic strat-
egies to promote recovery after stroke. We also demon-
strate that 2) allopregnanolone may not be an endogenous
neuroprotective agent. However allopregnanolone treat-
ment can protect the brain against ischemic damage by
signaling mechanisms not involving PR.
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