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The vigilance decrement phenomenon has been traditionally studied by 

simple and monotonous behavioral tasks. Nowadays, however, there is 

considerable interest in measuring vigilance with more complex tasks, 

including independent measures of other attentional functions. In the present 

study, we provide evidence supporting the suitability of the Attentional 

Networks Test for Interactions and Vigilance – executive and arousal 

components (ANTI-Vea) as an appropriate method to simultaneously assess 

multiple attentional and vigilance components. Vigilance was examined as 

two dissociated components: executive vigilance –as the detection of 

infrequent signals– and arousal vigilance –as the sustenance of a fast reaction 

to stimuli without response selection–. Importantly, the executive vigilance 

decrement was analyzed with a novel methodological approach to particularly 

determine whether the sensitivity loss effect is influenced by a floor level on 

the false alarms. As expected, the ANTI-Vea proved to be a task suitable to 

assess: (a) the main effects and interactions of phasic alertness, orienting, and 

executive control; (b) the executive vigilance decrement as a progressive 
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change in the response bias; and (c) the arousal vigilance decrement as a 

progressive slowness and variability in reaction time. We discuss some 

critical theoretical and empirical implications of measuring vigilance 

components with the ANTI-Vea task. We expect the present study to provide 

a suitable method to analyze the vigilance decrement phenomenon when 

measuring multiple attentional and vigilance functions. 

 

One of the central mechanisms supported by the attentional networks 

system –i.e., alerting, orienting, and executive control (Petersen & Posner, 

2012; Posner & Petersen, 1990)– is the challenging ability to sustain attention 

over extended periods; a mechanism scientifically known as ‘vigilance’ 

(Adams, 1987; Hancock, 2017; Scerbo, 1998; Warm, Parasuraman, & 

Matthews, 2008). Traditionally, vigilance has been studied by simple and 

monotonous behavioral tasks such as the Mackworth Clock Test (MCT; 

Mackworth, 1948) or the Psychomotor Vigilance Test (PVT; Lim & Dinges, 

2008), in which a progressive decrement on performance is commonly 

observed as a function of time on task (Langner & Eickhoff, 2013; 

Mackworth, 1948; Scerbo, 1998). Currently, nevertheless, there is raising 

interest in assessing vigilance with more complex tasks, including measures 

from other attentional components in contrast with the classic approach of 

measuring vigilance with such simple and monotonous behavioral tasks 

(Roca, García-Fernández, Castro, & Lupiáñez, 2018; Tkachenko & Dinges, 

2018; Wickens, Hutchins, Laux, & Sebok, 2015). 

Furthermore, it is important to note that behavioral tasks such as the 

MCT and the PVT indeed seem to assess two dissociated components of 

vigilance (Luna, Marino, Roca, & Lupiáñez, 2018). On the one hand, in the 

PVT (Lim & Dinges, 2008) vigilance is exclusively measured as the capacity 

to sustain a fast reaction to any stimuli from the environment, without 

implementing any control on the selection of the executed response. In 

particular, participants must stay alert over 10 minutes to stop, as fast as 

possible, and by pressing any available key, a millisecond counter that 

appears at random intervals from 2 to 10 seconds (Basner & Dinges, 2011). 

Importantly, participants do not have to be continuously selecting among 

different response’s options and stimuli, as the same simple response is to be 

given to the only possible stimulus. Thus, the PVT seems to assess an arousal 

component of vigilance, a mechanism that could be more related to the 

physiological shifts in the excitability levels that oscillates during the sleep-

wake cycle (Drummond et al., 2005; Lim & Dinges, 2008; Tkachenko & 

Dinges, 2018). Indeed, note that the PVT is very sensitive to the effects of 

total or partial sleep deprivation (Basner & Dinges, 2011; Drummond et al., 

2005). In the PVT, the arousal vigilance (AV) decrement is observed as a 
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progressive increment across time on task in reaction time (RT) scores, as 

mean, variability, and lapses (i.e., excessively slow RT; Lamond et al., 2008; 

Lamond, Dawson, & Roach, 2005; Loh, Lamond, Dorrian, Roach, & 

Dawson, 2004). 

On the other hand, in signal detection tasks such as the MCT 

(Mackworth, 1948) or the Sustained Attention to Response Task (Robertson, 

Manly, Andrade, Baddeley, & Yiend, 1997), vigilance is examined as the 

ability to monitor and detect critical signals that occur quite rarely over an 

extended period. For instance, in the MCT, participants must remain alert to 

detect the occurrence of an unusual double jump of the clock hand 

(Mackworth, 1948). This type of task seems to assess an executive 

component of vigilance, which implements controlled mechanisms of 

sustained attention to categorize stimuli from the environment and selectively 

detect the appearance of critical signals, while avoiding responding to the 

remaining noise stimuli. Importantly, at difference with the PVT, in signal 

detection tasks the executive vigilance (EV) decrement is observed as a 

progressive loss on hits to correctly detect the infrequent signals (See, Howe, 

Warm, & Dember, 1995; Thomson, Besner, & Smilek, 2016). 

Note that, traditionally, by using Signal Detection Theory (SDT) 

metrics it has been assumed that the decrement on hits corresponds to a 

progressive loss in the sensitivity to discriminate the occurrence of critical 

signals from the remaining noise events, e.g., the regular jump of the clock 

hand on the MCT (See et al., 1995). However, a recent review and empirical 

demonstration by Thomson et al. (2016) has pointed out several flaws in 

simple signal detection tasks to properly determine the potential shifts of SDT 

metrics across time on task. To start with, simple and monotonous tasks are 

generally very easy to perform. Consequently, in the first period of the task, 

a ceiling effect on the hits rate is commonly observed along with a floor effect 

on the false alarms (FA) rate. This is a critical issue because if FA are at floor 

levels at the beginning of the task, there is no possibility for the decrement 

on hits to be accompanied by a similar decrement on FA, which would mask 

the likely shift in the response bias across time on task. 

To test this hypothesis, Thomson et al. (2016) developed a novel 

vigilance paradigm in which the noise events included a low proportion of 

lure trials. Critically, the lure trials should be specifically more difficult to 

discriminate from the signal events than the remaining non-lure trials. 

Participants had to perform a categorical decision task over serially presented 

words, trying to respond only to those words representing four-legged 

creatures (e.g., ‘squirrel’, 10 per block). In the remaining noise events, most 

of them represented inanimate objects (e.g., ‘phone’, 80 per block as non-lure 

trials). Furthermore, and importantly, a low proportion of lure trials were 
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words representing non four-legged creatures (e.g., ‘canary’, 10 per block). 

As predicted by Thomson et al., in the first period of the task the FA rate 

increased importantly (i.e., ~33%) when it was computed considering only 

the lure trials, in contrast to the FA rate when considering all trials (i.e., ~5%). 

Importantly, FA computed from the lure trials showed a prominent decrement 

across time on task, and consequently, the vigilance decrement was observed 

as an increment in the response bias and not as a loss in sensitivity (Thomson 

et al., 2016). Note that the results observed by Thomson et al. were later 

replicated using the same vigilance task in a recent study conducted by 

Claypoole, Neigel, Fraulini, Hancock, & Szalma (2018). 

To obtain a direct measure of both vigilance components along with an 

independent measure of other functions of the attentional networks system, 

we have recently developed the Attentional Networks Test for Interactions 

and Vigilance – executive and arousal components (ANTI-Vea; Luna et al., 

2018). In short, the task combines three different attentional and vigilance 

tasks randomly embedded within a single session. In the largest proportion 

of trials (i.e., 60%), participants have to complete the Attentional Networks 

Test for Interactions (ANTI) developed by Callejas, Lupiáñez, and Tudela 

(2004); a flanker paradigm with visual cues and warning signals that is useful 

to assess the classic attentional networks functions, i.e., phasic alertness, 

orienting, and executive control (Petersen & Posner, 2012; Posner & 

Petersen, 1990). The EV task consists in detecting an infrequent vertical 

displacement of the target (i.e., the central arrow of a five-arrow string is 

vertically displaced in 20% of the trials). In the remaining 20% of trials, 

participants perform an AV task, in which a millisecond counter has to be 

stopped as fast as possible by pressing any key from the keyboard. 

Importantly, the ANTI-Vea has proven to be a task suitable to assess 

multiple attentional and vigilance components at the same time (Luna et al., 

2018). In particular, the usual main effects and interactions of the classic 

attentional functions were observed as with the ANTI task (Callejas, 

Lupiáñez, Funes, & Tudela, 2005; Callejas et al., 2004). Furthermore, and 

importantly, clear decrements were observed for both EV and AV. In 

particular, the EV decrement was found as a progressive increment in the 

response bias, rather than as a loss in sensitivity, in the same vein that the 

empirical demonstration by Thomson et al. (2016). Moreover, the AV 

decrement was observed as a linear increment in the mean and variability of 

RT, as usually observed with the PVT (Basner & Dinges, 2011). It is 

important to highlight that the ANTI-Vea has shown to be useful to dissociate 

the two components of vigilance, as they seem to be differently modulated 

by caffeine intake and exercise intensity (Sanchis, Blasco, Luna, & Lupiáñez, 
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2020) and by transcranial direct current stimulation (Luna, Román-Caballero, 

Barttfeld, Lupiáñez, & Martín-Arévalo, 2020). 

THE PRESENT STUDY 

The main goal of the present study was to investigate the appropriate 

parameters of the ANTI-Vea for it to be a suitable task to assess both the EV 

and AV decrement along with the independence and interactions of the 

classic attentional networks functions, while avoiding a floor effect on FA so 

that the EV decrement can be appropriately interpreted. To achieve this goal, 

we applied the methodological approach developed by Thomson et al. (2016) 

to two different versions of the ANTI-Vea: the ‘standard’ and the ‘lure’ 

version of the ANTI-Vea. Based on the standard version of the ANTI-Vea, 

we designed a lure version, which included a low proportion of trials wherein 

we expected to importantly increase the FA rate. Then, we adapted the 

analytical method of Thomson et al. to compute a corrected FA rate in both 

the standard and the lure ANTI-Vea, considering only those trials wherein it 

was more likely to commit a FA. Therefore, once avoided a possible floor 

level on the FA rate, we examined whether FA either increase or decrease 

across time on task to critically test whether the EV decrement is actually due 

to a decrease in sensitivity or to an increase in the response criterion (or 

perhaps due to changes in both sensitivity and response criterion). Following 

Thomson et al., we hypothesized that if FA decrease across time on task –or 

at least do not increase–, the EV decrement will be more likely observed as a 

change in the response bias rather than as a loss in sensitivity. 

Importantly, note that we expected to observe independent behavioral 

patterns for the vigilance and attentional functions measured with the ANTI-

Vea task (Luna et al., 2018). Therefore, while the EV decrement was 

anticipated as a drop in the correct detection of critical signals, we anticipated 

the AV decrement as a progressive slowness and variability in RT, in the 

same vein as usually reported with the PVT (Basner & Dinges, 2011; Lim & 

Dinges, 2008). Regarding the classic attentional networks functions, we 

expected to observe the typical effects reported with the ANTI (Callejas et 

al., 2004). In particular, for the phasic alertness functioning, we expected 

faster responses when the stimuli are anticipated by a warning signal than 

when they are not anticipated. Regarding attentional orienting, we expected 

valid visual cues to speed up target selection, and invalid cued to slow it 

down, compared to when no visual orienting cue is presented. Lastly, for the 

executive control network, we anticipated that the presence of incongruent 

distractors would impair target selection as compared to congruent 
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distractors. The materials and data set of this study are publicly available in 

the Open Science Framework, at https://osf.io/awz3g/. 

METHOD 

Participants. In a recent study conducted with the ANTI-Vea task 

(Luna et al., 2018), we observed that a sample size of 80 participants (n = 40 

per group) was appropriate to observe a reliable main effect of the change in 

the response bias (the smallest vigilance decrement of interest) across the six 

experimental blocks (𝜂𝑝
2 = .04, for which a minimum of 35 participants per 

group would be necessary, with an α = .05 and a power of 1 – β = .90). 

Therefore, we decided to gather data from a similar sample size in the present 

experiment. A total of 86 healthy volunteers (61 women; age M = 22.70, SD 

= 5.54; education years: M = 13.95; SD = 1.30), all of them with normal or 

corrected to normal vision, participated in this study. All participants were 

undergraduate students from the Universidad Nacional de Córdoba, 

Argentina. They signed a written informed consent and completed the session 

individually. The study was conducted according to the ethical standards of 

the 1964 Declaration of Helsinki (last update Seoul, 2008) and was part of a 

larger research project approved by the Universidad de Granada Ethical 

Committee (175/CEIH/2017). Participants were randomly assigned to one of 

two groups, depending on the task version performed. Groups did not differ 

in age [t (84) = -0.32, p = .75] or education years [t (84) = 1.16, p = .25]. 

Stimuli and design. The experimental tasks were designed and run in 

E-Prime v2.0 Professional (Psychology Software Tools, Pittsburgh, PA). 

All stimuli and instructions were drawn in black against a grey background. 

Responses were registered by pressing one key on a standard QWERTY 

keyboard. 

Participants sat at ~50 cm from the screen, which had a resolution in 

pixels (px) of 1024 wide and 768 height. Stimuli and timing were the same 

as in the original ANTI-Vea (Luna et al., 2018): a black fixation cross (~7 

px), a black asterisk (~13 px), a warning tone (2000 Hz, presented through 

headphones), a red millisecond down counter (~110 px height each number), 

and a row of five black arrows (50 px wide x 23 px high each arrow) pointing 

either leftward or rightward. The horizontal distance between adjacent arrows 

was set at ~63 px. 

Procedure and design. Self-report questionnaires and assessment of 

fatigue. Before the experimental task, participants completed the following 

questionnaires: (a) Insomnia Severity Index (Bastien, Vallières, & Morin, 

2001), (b) Cognitive Failures Questionnaire (Broadbent, Cooper, FitzGerald, 

& Parkes, 1982), (c) Attentional Control Scale (Derryberry & Reed, 2002), 

https://osf.io/awz3g/
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and (d) Barratt Impulsiveness Scale-11 (Patton, Stanford, & Barratt, 1995). 

In addition, participants self-reported their level of mental and physical 

fatigue at three different times across the session: before instructions and 

practice blocks, before starting the experimental task, and at the end of the 

experimental blocks. The goal of collecting these data is to assess the 

relationship between several self-reported abilities, habits, and sensations, 

with the performance’ scores of the attentional and vigilance components 

measured with the ANTI-Vea task. Note, however, that this goal is part of a 

larger project, so that data of the present study will be reported elsewhere 

when data from a much larger N is accumulated. 

Attentional Networks Test for Interactions and Vigilance – executive 

and arousal components (ANTI-Vea). The ANTI-Vea task comprises three 

different types of trials: ANTI (60%, to assess the classic attentional networks 

functions and their interactions), EV (20%, a signal detection task similar to 

the MCT), and AV (20%, a vigilance task similar to the PVT). The stimuli 

sequence and procedure for all trials can be observed in Fig. 1. 

 

 
Figure 1. ANTI-Vea design. Experimental procedure and stimuli sequence of (a) both ANTI 

and Executive Vigilance (EV) trials and (b) Arousal Vigilance (AV) trials. Responses were 

allowed until 2000 ms since the target or the down counter presentation. (c) Examples of 

visual cue conditions. 

 

In the ANTI trials, a row of five arrows was presented either above or 

below the fixation point. Participants had to respond to the direction of the 

target (i.e., the central arrow) while ignoring the direction pointed by the 

flanking arrows. To measure executive control, half of the times the target 

direction was congruent with the flankers’ direction, whereas in the other half 
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it was incongruent (see examples of congruency conditions in Fig. 2). 

Previously, to assess phasic alertness functioning, in 50% of these trials a 

warning signal was presented 500 ms before the appearance of the arrows 

(tone condition), whereas no warning signal was presented in the remaining 

50% of the trials (no tone condition). Finally, for measuring the orienting 

functioning, a spatially non-predictive visual cue was presented 100 ms 

before the arrows in 2/3 of the trials, whereas no visual cue was presented in 

the remaining 1/3 of the trials. When presented, the cue could be at the same 

location as the target (valid location condition), or at the opposite condition 

(invalid location condition). Examples of warning signal and visual cue 

conditions can be observed in Fig. 1. 

EV trials had the same procedure as ANTI trials (see Fig.1), except 

that the target was displaced from the central position (see Fig. 2). In the EV 

trials, participants were encouraged to remain vigilant to detect as the critical 

signal a large vertical displacement (i.e., 8 px) of the target from its central 

position by pressing the space bar, ignoring in these cases the direction 

pointed by the target. Lastly, in the AV trials (see Fig. 1), a down counter was 

presented instead, and participants were instructed to stop it as fast as possible 

by pressing any key from the keyboard. 

Note that the EV task of the ANTI-Vea presents a 2-alternative-

forced-choice task, in which participants have to discriminate the critical 

signal (i.e., the 8 px vertical displacement of the target from its central 

position in the EV trials) from the remaining noise events (i.e., all the ANTI 

trials, wherein the target is not displaced 8 px from its central position; see 

Fig. 2). Thus, following the two possible responses admitted in a 2-

alternative-forced-choice task: (a) hits are the correct responses to the EV 

trials (i.e., pressing the ‘space bar’ to the 8 px displacement of the target); (b) 

misses (i.e., the complement of hits) are the incorrect responses to the EV 

trials, i.e., not pressing the space bar to the 8 px displacement of the target; 

(c) FA are the incorrect detections of the infrequent signal in the noise events 

(i.e., the ‘space bar’ responses in any of the ANTI trials); and (d) correct 

rejections (i.e., the complement of FA) are not responding with the space bar 

to the trials with a displacement smaller than 8 px, in other words, responding 

instead with the responses expected to the noise events (i.e., either the ‘c’ or 

‘m’ responses in any ANTI trials). 

Each group of participants completed a different version of the ANTI-

Vea task: the standard –as in Luna et al. (2018)–, or the lure task version. 

Importantly, the only difference between the standard and the lure version 

was the possible positions for target and flankers stimuli on each trial. In the 

standard task, a random variability of ±2 px was set for the horizontal and 

vertical position of the arrows, both in the ANTI (for target and flankers) and 



The ANTI-Vea task 9 

EV (only for flankers) trials. This variability on the arrows’ position was 

introduced to make more difficult the detection of the larger and fixed 8 px 

displacement of the target (either up or down) in the EV trials (see examples 

in Fig. 2). 

On the other hand, in the lure version, the arrows’ position was set 

differently (see Fig. 2) to design a vigilance task similar to the one proposed 

by Thomson et al. (2016). The ±2 px noise was eliminated so that the flanking 

arrows appeared in a fixed position, for both ANTI and EV trials. However, 

in the ANTI trials of the lure version, there was 1/3 of trials wherein the target 

had a fixed displacement (4 px, either up or down) smaller nevertheless than 

the one of the EV trials (i.e., 8 px), while in the remaining 2/3 of ANTI trials 

the target appeared fixed in the center of the row of arrows without any 

displacement. Importantly, with these manipulations over the position of the 

stimuli, we expected that participants would commit more FA (i.e., to 

erroneous press the space bar) in those ANTI trials wherein the target was 

displaced 4 px from its central position, as the 4 px displacement could be 

incorrectly confused with the 8 px displacement of the target in the EV trials. 

Given the possible positions of the target and the flankers in the 

standard and the lure versions, in both task versions, there were some ANTI 

trials (i.e., the non-signal or noise events of the signal detection task) in which 

we expected to observe a higher FA rate, indicated in Fig. 2 as ANTI trials 

with a high chance of FA. In the lure task version, these were ANTI trials 

wherein the target was displaced 4 px from its central position, just explained. 

In the standard version, however, those trials were not pre-specified. 

Therefore, we categorized offline the ANTI trials as a function of the 

maximum distance (in the vertical axis) between the target and the closest 

adjacent flankers. This distance (see Fig. 2) could be in a range from 0 px 

(e.g., the target and both adjacent flankers appeared in the same vertical 

position) to 4 px (e.g., the target was 2 px displaced in one direction and one 

of the closest adjacent flankers was displaced 2 px in the opposite direction). 

Then, in those trials wherein this maximum distance was between 0 and 2 px, 

we assumed that it was less likely that the target displacement could be 

confused with the one of the EV trials (i.e., the 8 px displacement) and 

therefore there was a small chance to commit FA (as the non-displacement 

trials in the lure version). Instead, in those trials wherein this distance was 3 

or 4 px, it could be more probable to commit a FA, as in the trials with the 4 

px displacement of the lure task (see Fig. 2). This categorization of the ANTI 

trials (i.e., the set of trials from which it was computed the FA rate) was 

necessary for our goal of analyzing whether a floor effect on the FA rate could 

be affecting the sensitivity and response bias indices. 
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Figure 2. Target and distractors positions in the standard and lure ANTI-Vea versions, EV 

trials, and for ANTI trials with a high and small chance of committing a FA. The dotted gray 

line was not presented in the screen and it represents the central height for arrows in the 

vertical axis for both above or below the fixation point. Subtractions on the right of each 

example show the distance in pixels between the target (T) and the immediate left (L1) or 

right (R1) distractor. The correct answer for each example is shown below the arrows. 

 

Before the experimental task, participants received specific instructions 

for each type of trial and performed several practice blocks with visual 

feedback. Further details on the sequence of instructions and practice are 

described in Luna et al. (2018). The experimental section of the task included 

six blocks of 80 randomly presented trials (48 ANTI, 16 EV, and 16 AV) 

without any pause or feedback. Given that each trial had a total time duration 

of 4100 ms (see Fig. 1), the average time for each experimental block was 

5:28 min and for the whole task (i.e., the total vigilance period) of ~33 min.  

The 48 ANTI trials had the following factorial design: 2 (warning 

signal: no tone/tone) × 3 (visual cue: invalid/no cue/valid) × 2 (congruency: 

congruent/incongruent) × 2 (target direction: left/right) × 2 (arrows position 

with respect to the fixation point: above/below). The two lasts factors were 

introduced for stimuli presentation but not considered in posterior analyses. 

In the lure version, the 16 ANTI trials wherein the target was displaced 4 px 

from its central position were randomly selected per block. Lastly, in the EV 

trials, one factor was added to the design: displacement direction (up/down). 

The 16 EV trials per block were randomly selected from the 96 possible 

combinations. 

Data analyses. Analyses were performed in Statistica 8.0 (StatSoft 

Inc.) and figures were made with Matplotlib 3.0.0 (Hunter, 2007). First, 
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following the criteria from Luna et al. (2018), seven participants were 

excluded from further analyses either due to an extreme average RT in the 

ANTI trials (2.5 SD above the group average) or to a performance unusually 

low in the ANTI task (i.e., equal or higher than 25% of errors). Thus, in the 

following analyses, 40 participants were included in the standard version 

group and 39 in the lure one. Data analyses were conducted separately for the 

ANTI, EV, and AV tasks. The significance level was established at .05. In 

addition, statistics are reported with partial eta squared (ηp
2) as a measure of 

the effect size and 95% confidence intervals around them (Cumming, 2014; 

Kelley & Preacher, 2012). 

In the ANTI trials, RT analyses excluded trials with incorrect responses 

(7.79%) and those with RT below 200 or above 1500 ms (0.61%). Then, two 

mixed analysis of variance (ANOVA) were conducted, one for RT and 

another for the percentage of errors as dependent variables, and including 

warning signal (no tone/tone), visual cue (invalid/no cue/valid), and 

congruency (congruent/incongruent) as within-participants factors, and task 

version (standard/lure) as a between-participants factor. 

To analyze the vigilance decrement across time on task, EV and AV measures 

were obtained per block of trials. For EV trials, warning tone, visual cue, and 

congruency were not considered for analyses, with data being collapsed 

across these variables. Hits were computed as the proportion of infrequent 

signals (i.e., the 8 px displaced targets) correctly detected. Then, following 

the methodological approach by Thomson et al. (2016), FA (i.e., the ‘space 

bar’ responses in any of the ANTI trials) were computed in two different 

ways. The ‘total’ computation of FA included all the noise events (i.e., the 

whole set of ANTI trials). Instead, the ‘corrected’ computation of FA 

included only those trials wherein we assumed it was more probable to 

commit a FA, i.e., the ANTI trials with a 3 to 4 px displacement of the target 

in the standard task and the ANTI trials with a 4 px displacement in the lure 

task.  

Next, non-parametric indexes of sensitivity (Aʹ) and response bias (Bʺ) 

were obtained (J. B. Grier, 1971). Both indices were computed considering 

either the ‘total’ or the ‘corrected’ FA. The advantages of using non-

parametric over classic parametric indices (dʹ for sensitivity and β for 

response bias) can be reviewed in multiple studies (e.g., Stanislaw & 

Todorov, 1999; Thomson, Besner, & Smilek, 2016). In short, non-parametric 

indices are distribution free and therefore, at difference with parametric 

indices, they can be computed when hits and/or FA are equal to 100% or 0% 

–which are performances frequently observed when scores are computed per 

experimental block–. Then, seven mixed ANOVAs were conducted 

separately including task block (6 levels) as a within-participant factor and 
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task version (standard/lure) as a between-participants factor, one for each 

dependent variable: hits and the ‘total’ and ‘corrected’ computation of FA, 

Aʹ and Bʺ. Importantly, for researchers interested in analyses conducted with 

parametric indices of sensitivity and response bias, please see the 

Supplementary Material. 

The AV decrement was analyzed considering the mean and SD of RT, 

and the percentage of lapses (i.e., late responses to the down counter) per 

block. Following Luna et al. (2018), the threshold for lapses was set as 

responses slower than 600 ms. Then, three mixed ANOVAs were conducted 

separately, including task block (6 levels) as a within-participant factor and 

task version (standard/lure) as a between-participants factor, one for each 

dependent variable: mean RT, SD of RT, and percentage of lapses. 

Importantly, for both the EV and AV components, post-hoc comparisons of 

the linear component across blocks were performed to determine statistical 

differences of the vigilance decrement between task versions. 

RESULTS 

Phasic Alertness, Orienting, and Executive Control. Significant 

main effects were found for warning signal {RT: [F (1, 77) = 85.21, p < .001, 

𝜂𝑝
2 = .53, 95% CIs (.37, .63)]; errors: [F (1, 77) = 6.68, p = .01, 𝜂𝑝

2 = .08, (.00, 

.21)]}, visual cue {RT: [F (2, 154) = 94.08, p < .001, 𝜂𝑝
2 = .55, (.44, .62)]; 

errors: [F (2, 154) = 6.79, p = .001, 𝜂𝑝
2 = .08, (.01, .17)]}, and congruency 

{only for RT: [F (1, 77) = 143.81, p < .001, 𝜂𝑝
2 = .65, (.52, .73)]; but not for 

errors: F < 1}. Thus, as depicted in Fig. 3, for the warning signal effect 

responses were faster and more precise in the tone than in the no tone 

condition. The visual cue effect was observed as usual (invalid > no cue > 

valid) for the RT, while for errors this effect was marginally modulated by 

the task version [F (2, 154) = 3.16, p = .05, 𝜂𝑝
2 = .04, (.00, .11)] (see Fig. 3). 

In particular, in the standard version the percentage of errors was smaller in 

the no cue than in the invalid and valid conditions. In the lure version, instead, 

the percentage of errors was smaller in the invalid than in the no cue and valid 

conditions. Finally, the congruency effect –which was observed only for RT– 

showed that responses were faster in the congruent than in the incongruent 

condition (Fig. 3). 

The main effect of task version was not significant for the RT (F < 1), 

with a similar overall RT for the standard (M = 671 ms, 95% CIs [640, 702]) 

and the lure version (M = 653 ms, [621, 684]). However, this effect was 

significant for the analysis of errors [F (1, 77) = 4.93, p = .03, 𝜂𝑝
2 = .06, (.00, 
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.18)]: in particular, responses were more precise in the standard (M = 6.60%, 

[5.07, 8.12]) than in the lure version (M = 9.02%, [7.47, 10.56]). 

 

 
Figure 3. Mean correct RT (superior graphs) and percentage of errors (inferior graphs) for the 

warning signal (left), visual cue (center), and congruency (right) conditions, as a function of the task 

version (standard/lure). Error bars represents 95% confidence intervals of the mean and were 

computed following the method developed by Cousineau (2005). 

 

Regarding the modulations between the attentional networks functions, 

only the interaction between warning signal and visual cue was significant 

{only for RT: [F (2, 154) = 12.44, p < .001, 𝜂𝑝
2 = .14, (.05, .23)]; but not for 

errors: [F (2, 154) = 1.01, p = .37, 𝜂𝑝
2 = .01, (.00, .06)]}, whereas the 

remaining interactions did not reach statistical significance: Warning signal 

× Congruency {RT: [F (1, 77) = 3.13, p = .08, 𝜂𝑝
2 = .04, (.00, .15)]; errors: F 

< 1}, and Visual cue × Congruency {RT: [F (2, 154) = 2.41, p = .09, 𝜂𝑝
2 = 

.03, (.00, .09)]; errors: F < 1}. The three way interaction between the three 

within-participant factors was far from significance for both RT [F (2, 154) 

= 1.15, p = .32, 𝜂𝑝
2 = .01, (.00, .06)] and errors [F (2, 154) = 1.48, p = .23, 𝜂𝑝

2 

= .02, (.00, .07)]. Finally, task version did not modulate any other factor or 

their interactions, neither for RT (all Fs < 1.40, ps > .24) nor for errors (all 

remaining Fs < 2.95, ps > .09). Table 1 shows the mean RT and errors for 

each of the ANTI trials conditions. 



 F.G. Luna, P. Barttfeld, E. Martín-Arévalo & J. Lupiáñez 14 

 
Table 1. Mean correct RT (ms) and percentage of errors of warning signal, visual cue, and 

congruency conditions as a function of the task version (standard/lure). 
   Standard  Lure 
   Congruent  Incongruent  Congruent  Incongruent 
   M 95% CI  M 95% CI  M 95% CI  M 95% CI 

Reaction Time            

 No tone Invalid 671 [638, 703]  722 [688, 755]  653 [620, 686]  700 [666, 734] 
  No cue 676 [643, 709]  711 [679, 743]  655 [621, 688]  685 [652, 718] 
  Valid 643 [607, 680]  685 [652, 718]  632 [595, 669]  666 [632, 699] 
 Tone Invalid 656 [624, 689]  713 [680, 746]  642 [609, 675]  688 [655, 721] 
  No cue 623 [594, 652]  677 [643, 711]  614 [584, 643]  660 [625, 694] 
  Valid 612 [581, 643]  663 [628, 698]  602 [570, 633]  636 [601, 671] 

Errors            

 No tone Invalid 8.85 [6.14, 11.57]  7.08 [5.05, 9.12]  8.65 [5.91, 11.40]  8.44 [6.38, 10.50] 
  No cue 6.15 [3.94, 8.35]  6.56 [4.38, 8.75]  9.94 [7.70, 12.17]  8.76 [6.55, 10.97] 
  Valid 8.23 [5.79, 10.67]  8.44 [5.93, 10.94]  8.76 [6.29, 11.23]  10.47 [7.93, 13.01] 
 Tone Invalid 7.19 [4.92, 9.45]  4.58 [2.53, 6.64]  7.16 [4.86, 9.45]  8.12 [6.04, 10.20] 
  No cue 5.10 [3.12, 7.09]  3.96 [1.55, 6.36]  6.94 [4.94, 8.95]  9.83 [7.39, 12.27] 
  Valid 7.08 [4.36, 9.81]  5.94 [3.51, 8.36]  10.68 [7.93, 13.44]  10.47 [8.01, 12.93] 

Note: M = mean; CI = confidence intervals. 
 

Executive vigilance decrement. Hits. As depicted in Fig. 4, a significant 

decrement across blocks was observed on hits [F (5, 385) = 4.16, p = .001, 

𝜂𝑝
2 = .05, (.01, .09)] together with a main effect of task version [F (1, 77) = 

6.59, p = .01, 𝜂𝑝
2 = .08, (.00, .21)]. The overall percentage of hits was higher 

in the standard (M = 81.77%, [76.42, 87.17]) than in the lure version (M = 

71.96%, [66.54, 77.37]). 

The decrease on hits across blocks was not modulated by the task 

version (F < 1). Post-hoc comparisons confirmed that the linear component 

of blocks observed with each task version did not differ from each other (F < 

1). However, when task versions were analyzed separately, the linear 

component was significant in the standard version [F (1, 77) = 7.02, p = .009, 

𝜂𝑝
2 = .08, (.00, .21)], but not in the lure one [F (1, 77) = 3.18, p = .08, 𝜂𝑝

2 = 

.04, (.00, .15)]. 

False alarms. FA computed from all trials did not change significantly 

across blocks [F (5, 385) = 1.42, p = .21, 𝜂𝑝
2 = .02, (.00, .04)] and it was not 

modulated by the task version (F < 1; see Fig. 4). However, there was a 

significant main effect for task version [F (1, 77) = 8.60, p = .004, 𝜂𝑝
2 = .10, 

(.01, .24)], with a smaller overall percentage of FA in the standard (M = 

4.74%, [3.46, 6.02]) than in the lure version (M = 7.42%, [6.12, 8.71]). 

Importantly, as expected and observed in the same Fig. 4, the corrected 

computation showed an important increase in FA. The main effect of task 

version [F (1, 77) = 22.59, p < .001, 𝜂𝑝
2 = .23, (.08, .37)] was larger than in 
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the computation from all trials, with much more FA in the lure (corrected M 

= 19.50%, [16.16, 22.83]) than in the standard version (corrected M = 8.31%, 

[5.02, 11.60]). Nevertheless, despite the important increase in the corrected 

FA, no main effect of blocks was observed [F (5, 385) = 1.24, p = .29, 𝜂𝑝
2 = 

.02, (.00, .04)] and neither was it modulated by task version (F < 1). Post-hoc 

comparisons confirmed that the linear component of blocks for each task 

version separately was not significant (both Fs < 1.20, ps > .28). 

 

 
Figure 4. Hits and false alarms (FA) across time on task. The FA rate computed considering 

all trials is shown in the central graph and the corrected computation of FA is depicted in the 

right graph. Error bars represent 95% confidence intervals as computed following the method 

developed by Cousineau (2005). 

 

Sensitivity. As can be observed in Fig. 5, Aʹ computed from all trials showed 

a significant decrement across blocks [F (5, 385) = 2.55, p = .03, 𝜂𝑝
2 = .03, 

(.00, .06)], independently of the task version (F < 1). In addition, the main 

effect of task version was significant [F (1, 77) = 15.08, p < .001, 𝜂𝑝
2 = .16, 

(.04, .31)], with a higher sensitivity in the standard (Aʹ = .94, [.93, .95]) than 

in the lure version (Aʹ = .90, [.89, .92]). 

The corrected computation of Aʹ (i.e., including only the corrected FA) 

showed an even larger main effect of task version than in the computation 

from all trials [F (1, 77) = 59.37, p < .001, 𝜂𝑝
2 = .44, (.27, .56)], with a higher 

sensitivity in the standard (corrected Aʹ = .93, [.91, .94]) than in the lure 

version (corrected Aʹ = .86, [.84, .87]). Most important, as depicted in the 

same Fig. 5, the corrected computation of Aʹ demonstrated that sensitivity did 

not change across blocks (F < 1), again independently of task version (F < 

1). Post-hoc comparisons for corrected Aʹ confirmed that the linear 

component of blocks was not significant, neither for the standard [F (1, 77) 
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= 1.48, p = .23, 𝜂𝑝
2 = .02, (.00, .11)] nor for the lure version [F (1, 77) = 1.35, 

p = .25, 𝜂𝑝
2 = .02, (.00, .11)]. 

To test whether the collected evidence regarding Aʹ computed from 

corrected trials supports that no change is observed in sensitivity across time 

on task, we performed a Bayesian analysis. We followed the guidelines 

suggested by Wagenmakers et al. (2018) to conduct a Bayesian mixed 

ANOVA with JASP (2019). Compared to the matched model, the Bayesian 

ANOVA led to a BF10 = 0.013 for the effect of blocks, thus providing strong 

evidence in favor of the null hypothesis (i.e., the absence of change in 

sensitivity across time on task being 1/0.013 = 76.92 times more likely than 

the change in sensitivity). 

Response bias. As can be observed in Fig. 5, Bʺ computed from all trials 

showed a significant increment across blocks [F (5, 385) = 2.66, p = .02, 𝜂𝑝
2 

= .03, (.00, .06)]. No main effect of task version (F < 1), or Task version × 

Blocks interaction [F (5, 385) = 1.79, p = .11, 𝜂𝑝
2 = .02, (.00, .05)] were 

observed. The overall Bʺ computed from total trials was similar for both the 

standard (Bʺ = .32, [.16, .47]) and the lure version (Bʺ = .32, [.16, .48]). 

Importantly, as depicted in the same Fig. 5, the corrected computation of Bʺ 

(i.e., including only the corrected FA) confirmed the increment in response 

bias across blocks [F (5, 385) = 3.03, p = .01, 𝜂𝑝
2 = .04, (.00, .07)]. Again, this 

increment was not modulated by the task version [F (5, 385) = 1.52, p = .18, 

𝜂𝑝
2 = .02, (.00, .04)]. The main effect of task version was not significant (F < 

1), with a similar overall performance for the standard (corrected Bʺ = .22, 

[.05, .38]) and the lure version (corrected Bʺ = .12, [-.05, .29]). Nevertheless, 

as shown in Fig. 5, when task versions were analyzed separately the linear 

increment was significant for the standard [F (1, 77) = 7.81, p = .006, 𝜂𝑝
2 = 

.10, (.04, .14)], but not for the lure version [F (1, 77) = 1.34, p = .25, 𝜂𝑝
2 = 

.02, (.00, .04)], as in the case of hits. 

 



The ANTI-Vea task 17 

 
Figure 5. Sensitivity and response bias across time on task. The left graph represents the non-corrected 

and corrected computation of sensitivity. The non-corrected computation of response bias is shown in the 

central graph and its corrected computation in the right graph. Error bars represent 95% confidence 

intervals and were computed following the method developed by Cousineau (2005). 

 

Arousal vigilance decrement. Mean and RT Variability, and lapses 

percentage. Fig. 6 shows the significant increment across blocks for mean 

RT [F (5, 385) = 2.51, p = .03, 𝜂𝑝
2 = .03, (.00, .06)], SD of RT [F (5, 385) = 

4.03, p = .001, 𝜂𝑝
2 = .05, (.01, .09)], and lapses percentage [F (5, 385) = 2.36, 

p = .03, 𝜂𝑝
2 = .03, (.00, .06)]. None of these increments was modulated by the 

task version (all Fs < 1). Considering the two task versions together, post-hoc 

comparisons confirmed a significant linear increment across blocks for both 

SD of RT [F (1, 77) = 8.95, p = .003, 𝜂𝑝
2 = .10, (.05, .15)] and lapses 

percentage [F (1, 77) = 4.60, p = .04, 𝜂𝑝
2 = .06, (.01, .10)] and a marginal 

linear increment for mean RT [F (1, 77) = 3.94, p = .05, 𝜂𝑝
2 = .05, (.01, .09)]. 

In general, task versions did not differ significantly for any dependent 

AV variable (all Fs < 1.10, ps > .29): mean RT (standard = 475 ms, [455, 

495]; lure = 471 ms, [451, 491]), SD of RT (standard = 74, [62, 85]; lure = 

73, [61, 85]) and lapses (standard = 10.91%, [6.46, 15.36]; lure = 7.59%, 

[3.08, 12.10]). 

 



 F.G. Luna, P. Barttfeld, E. Martín-Arévalo & J. Lupiáñez 18 

 
Figure 6. Arousal vigilance performance across time on task. Mean RT (left graph), SD of RT (central 

graph), and lapses percentage (right graph). Error bars represent 95% confidence intervals as computed 

following the method developed by Cousineau (2005). 

DISCUSSION 

The present study aimed at providing additional empirical evidence 

to demonstrate the suitability of the ANTI-Vea task to assess both the EV and 

AV decrement together with the classic attentional networks functions. To 

specifically examine the EV component, we extended the methodological 

approach of Thomson et al. (2016) to the ANTI-Vea aiming at avoiding a 

floor effect on the FA, so that the EV decrement across time on task can be 

appropriately interpreted as a progressive loss in sensitivity vs. a change in 

the response bias towards a more conservative criterion. To this end, we 

computed a corrected FA rate in two versions of the ANTI-Vea, i.e., the 

standard task developed in Luna et al. (2018) and a lure version adapted 

following the experimental design of Thomson et al. Thus, we expected to 

obtain an appropriate rate of FA (i.e., above the floor level) to avoid the 

masking of any potential change in the response bias across time on task.  

As predicted, we observed a higher FA rate when it was computed 

only from the corrected trials than from all the noise events, in the same vein 

as reported by Thomson et al. (2016). Importantly, note that even though in 

the lure version it was observed a considerable FA rate in the first period of 

the task (i.e., ~22% considering the corrected computation), neither in the 

standard nor in the lure version it was found a significant change on FA across 

blocks. Consequently, the linear drop on hits (which, importantly, started 

after the first block and was progressive across time-on-task) was not 

accompanied by an increase or decrease in the corrected computation of FA 

across time, thus the EV decrement being observed exclusively as a change 
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in the response bias towards a more conservative criterion. Indeed, and again 

similar to the outcomes reported by Thomson et al., the sensitivity-loss effect 

was observed only when it was computed considering FA from all the noise 

trials, but not when considering the corrected FA. 

It is worth noting that, recently, the study of Thomson et al. (2016) 

received several critics by Fraulini, Hancock, Neigel, Claypoole, & Szalma 

(2017). These authors questioned the analytical methods carried out by 

Thomson et al. to obtain SDT metrics. In short, note that in a typical signal 

detection task based on a 2-alternative-forced-choice paradigm, there are 

usually two categories of events, i.e., signal and noise (Stanislaw & Todorov, 

1999). However, the approach taken by Thomson et al. seems to introduce an 

additional category of events, i.e., the ‘lure’ ones. Thus, Fraulini et al. 

objected that in the vigilance task developed by Thomson et al., participants 

would discriminate events between the three categories and therefore, SDT 

metrics should be computed considering responses as a function of: (a) signal 

vs. noise events (i.e., the ‘total’ computation of SDT metrics), (b) signal vs. 

lure events (i.e., the ‘corrected’ computation), and (c) non-lure vs. lure 

events, a stimuli discrimination not considered by Thomson et al. 

However, it is important to note that this criticism does not apply to 

our adaptation of Thomson et al. (2016)’ approach to the ANTI-Vea task 

because there is no real distinction between lure and non-lure events in the 

ANTI-Vea. This distinction is arbitrary in the ANTI-Vea and only made a 

posteriori for the purpose of analysis. Therefore, despite the objection stated 

by Fraulini et al. (2017), the computation of corrected SDT metrics seems to 

be an adequate approach to analyze the EV decrement in signal detection 

tasks, at least in tasks like the one embedded in the ANTI-Vea.  

Moreover, Fraulini et al. (2017) pointed out that in Thomson et al. 

(2016) the vigilance task was performed online and outside the lab, without 

controlling the experimental context. Notwithstanding, Thomson et al. 

outcomes were replicated later in a study conducted under the typical lab 

conditions (Claypoole et al., 2018). Indeed, we have recently analyzed the 

reliability of the vigilance and attentional components of the ANTI-Vea in a 

study with a large sample (N = 617), wherein participants either performed 

the standard ANTI-Vea in the lab or the online version 

(https://www.ugr.es/~neurocog/ANTI/) outside the lab in a suitable place of 

their choosing (Luna, Roca, Martín-Arévalo, & Lupiáñez, 2020). In short, we 

observed that in both task versions, the split-half reliability indices (corrected 

by the Spearman-Brown prophecy) were higher than .75 for both the EV and 

AV measures. Most importantly, the EV decrement was only found as a linear 

increment in the response bias when FA are not at floor in the first block of 

the task, independently on the task version (lab vs. online). 

https://www.ugr.es/~neurocog/ANTI/
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Furthermore, the present study replicated the fact that the EV 

decrement can be simultaneously assessed with the AV decrement and the 

classic attentional functions (Luna et al., 2018), as independently measured 

by specific tasks like the ANTI (Callejas et al., 2004), the PVT (Lim & 

Dinges, 2008), and a signal detection task as the MCT (Mackworth, 1948). 

In particular, we observed the typical main effects and interactions for phasic 

alertness, orienting, and executive control functions, as usually reported with 

the ANTI task (Callejas et al., 2005, 2004). Nevertheless, in this version of 

the ANTI, the classic attentional functions are measured with effects of a 

similar size (~40 ms each, see Fig. 3). Indeed, the ~40 ms effect of executive 

control observed with the ANTI-Vea (for a specific analysis of this issue, see 

Luna, Telga, Vadillo, & Lupiáñez, 2020) is similar to those of phasic 

alertness and orienting, in contrast with other versions of the task which 

produce a much larger effect of executive control (between ~60 and ~100 ms; 

Callejas et al., 2004; Fan, McCandliss, Sommer, Raz, & Posner, 2002; Roca, 

Castro, López-Ramón, & Lupiáñez, 2011). 

The AV decrement was found as usually observed with the PVT: a 

significant increment across time on task in mean and RT variability, and the 

percentage of lapses (Basner & Dinges, 2011; Lim & Dinges, 2008). 

Importantly, whereas no differences were observed between the standard and 

lure versions regarding AV and the classic attentional functions, it seems that 

the standard task was more suitable for measuring the EV decrement than the 

lure one. For instance, in the standard version, we observed a higher 

percentage of hits, a linear decrement on hits, and a more pronounced 

increment in the response bias, in comparison with the lure task. Furthermore, 

the standard version does not suffer from Fraulini et al. (2017)’ criticism 

about the three categories of events, as discussed above. Therefore, although 

the lure task was tested here as an alternative version of the ANTI-Vea, the 

standard ANTI-Vea was revealed as the most adequate version of the task. 

Future studies might examine whether the ANTI-Vea is a suitable 

method to overcome some theoretical and empirical limitations observed in 

the study of the vigilance decrement phenomenon by cognitively simple and 

repetitive behavioral tasks (Fortenbaugh, DeGutis, & Esterman, 2017; 

Thomson, Besner, & Smilek, 2015; Thomson et al., 2016). Note that, 

traditionally, the EV decrement has been examined by simple signal detection 

tasks wherein it is commonly observed a progressive loss in sensitivity: a 

behavioral pattern explained by the resources overload model as the 

consequence of a progressive depletion in the available attentional resources 

(R. A. Grier et al., 2003; Jun, Remington, Koutstaal, & Jiang, 2019; See et 

al., 1995; Warm et al., 2008). However, as demonstrated by recent research, 

the loss in sensitivity might be an artifact of simple vigilance tasks wherein 
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it is usually observed a floor rate on FA (Claypoole et al., 2018; Thomson et 

al., 2016). 

An alternative account has been proposed by the resources-control 

model, which predicts that the vigilance decrement might be a consequence 

of a progressive loss on cognitive control functioning, which is necessary to 

sustain attentional resources on the task performed at hand. As a 

consequence, resources are diverted to internal irrelevant thoughts leading to 

a progressive decrement in vigilance performance (Thomson et al., 2015). 

Nevertheless, further empirical evidence is necessary to test the predictions 

stated by the resources-control model, for which a multiple behavioral task 

as the ANTI-Vea with independent measures of vigilance and cognitive 

control processes seem to be a more adequate approach than traditional 

simple signal detection tasks, or tasks measuring executive control but no 

vigilance decrements, like the one recently used to investigate the decrement 

in executive control across time on task by Zholdassova, Kustubayeva, & 

Matthews (2019). 

To conclude, the ANTI-Vea has been revealed to be a suitable task to 

assess simultaneously: (a) the independence and interactions of the classic 

attentional functions, (b) the EV decrement as a progressive change in the 

response bias towards a more conservative criterion, and (c) the AV 

decrement as a progressive slowness and variability in RT, and lapses 

percentage. Regarding the EV component, we extended the methodological 

approach developed by Thomson et al. (2016) to the ANTI-Vea to obtain a 

corrected FA rate, which proved to be useful to avoid a floor level on FA that 

could mask a potential change in the response bias. Therefore, this approach 

should be used in the analysis of the EV decrement with the ANTI-Vea task. 

The present study provides further empirical evidence demonstrating that the 

EV and AV decrement can be successfully assessed along with multiple 

attentional functions in a complex task as the ANTI-Vea (Roca et al., 2018; 

Tkachenko & Dinges, 2018; Wickens et al., 2015). The task has proven to be 

useful to measure the functioning of the three attentional networks and 

vigilance (EV and AV) as a function of different variables like age and sport 

practice (Huertas et al., 2019), or musical practice (Román-Caballero, 

Martín-Arévalo, & Lupiáñez, 2020). At Open Science Framework 

(https://osf.io/awz3g/) can be found useful tools for the research with the 

ANTI-Vea task, both with the standard version, as the one used in the present 

research, and the web-based version (www.ugr.es/~neurocog/ANTI/), that is 

freely available in different languages. 

https://osf.io/awz3g/
http://www.ugr.es/~neurocog/ANTI/
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RESUMEN 

Tradicionalmente, el decremento de la vigilancia se ha estudiado con 

tareas comportamentales simples y repetitivas. Sin embargo, actualmente 

existe un considerable interés en evaluar la vigilancia con tareas más 

complejas que incluyan medidas independientes de otros procesos 

atencionales. En el presente estudio, nuestro objetivo fue proporcionar nueva 

evidencia empírica sobre la adecuación del Test de Redes Atencionales para 

Interacciones y Vigilancia – componentes ejecutivo y de activación (ANTI-

Vea) para medir simultáneamente múltiples componentes atencionales y de 

vigilancia. Examinamos la vigilancia como dos componentes disociados: 

vigilancia ejecutiva –como la detección de señales infrecuentes– y vigilancia 

de activación –como el mantenimiento de una reacción rápida a los estímulos 

sin control sobre la respuesta–. Es importante destacar que la vigilancia 

ejecutiva se analizó con un novedoso método para determinar si un efecto 

suelo en las falsas alarmas podría influenciar una disminución en la 

sensibilidad. Como se esperaba, se observó que la tarea ANTI-Vea es 

adecuada para medir: (a) los efectos principales e interacciones de las 

funciones de alerta fásica, orientación, y control ejecutivo; (b) el decremento 

en la vigilancia ejecutiva como un cambio en la tendencia de la respuesta; y 

(c) el decremento en la vigilancia de activación como un enlentecimiento y 

variabilidad de la respuesta. Discutimos algunas implicaciones teóricas y 

empíricas sobre la medición de los componentes de la vigilancia con la tarea 

ANTI-Vea. Esperamos que el presente estudio provea un método adecuado 

para analizar el decremento de la vigilancia cuando se evalúan múltiples 

funciones atencionales y de vigilancia. 
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