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Microbial infections represent a silent threat to health that has worsened in recent
decades due to microbial resistance to multiple drugs, preventing the fight against
infectious diseases. Therefore, the current postantibiotic era forces the search for new
microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT)
using supramolecular arrays with photosensitizing capabilities showed successful
emerging applications. This exciting field makes it possible to combine applied
aspects of molecular photochemistry and supramolecular chemistry, together with
the development of nano- and biomaterials for the design of multifunctional or
“smart” supramolecular photosensitizers (SPS). This minireview aims to collect the
concepts of the photosensitization process and supramolecular chemistry applied to
the development of efficient applications of aPDT, with a brief discussion of the most
recent literature in the field.

Keywords: microbial infections, antimicrobial resistance, photosensitization, supramolecular photosensitizers,
antimicrobial photodynamic therapy

ANTIMICROBIAL RESISTANCE: A CURRENT THREAT TO
HEALTH

The misuse of antibiotics has contributed to the prevalence of superbugs that survive conventional
pharmacological treatments, even new generation ones, due to the development of antimicrobial
resistance (AMR) (WHO, 2014). AMR mechanisms include the molecular modification of
antibiotics, binding sites and/or targets, changes in cell permeability that limit drug absorption
and/or increase efflux, and biofilm formation (Peterson and Kaur, 2018). Currently, AMR is the
leading cause of nosocomial profusion infections, such as pneumonia, tuberculosis, and malaria
(Haque et al., 2018), increasing worldwide morbidity and mortality as well as healthcare costs
(Guest et al., 2020).

Biofilm ecosystems of various bacteria, fungi, green algae, and lichens are responsible for almost
80% of human infections as a consequence of the protective effect of an extracellular matrix of
polymeric substances (EPS) self-produced by the communities of microorganisms (Hall and Mah,
2017). Furthermore, low quality of drinking water is another source of microbial contamination
with high social and economic impact (Prüss-Üstün et al., 2008), where various bacteria and viruses
cause diarrheal and intestinal diseases (Tarrass and Benjelloun, 2012).
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Therefore, the search for new approaches to control infections
in different settings without the development of AMR and
low postcontamination is essential. Bacteriocins, essential oils,
bacteriophages, antibodies, quorum sensing inhibitors, and
nanotherapeutics have been tested as effective antimicrobials
without the development of AMRs, many of which receive
Generally Recognized as Safe (GRAS) status. However, these
methods are used successfully in combination with available
antibiotics (Vivas et al., 2019).

LIGHT-INDUCED TREATMENTS AS
TOOLS AGAINST AMR

Light-based methods such as the use of ultraviolet C (UVC,
200–280 nm) and photodynamic therapy (PDT) act as efficient
anti-infective treatments without the involvement of antibiotics
(Yin et al., 2013). Standard germicidal UVC lamps emit primarily
at 254 nm, a wavelength strongly absorbed by RNA and DNA in
microbial cells, leading to dimer formation between pyrimidine
residues in nucleic acid chains that alter the cell replication and
eventually lead to cell death. However, for the same reason,
UVC is very dangerous for mammalian cells, causing skin cancer
(Apalla et al., 2017) and cataracts (Oriowo et al., 2001). Therefore,
UVC disinfection with germicidal lamps is safe only for surfaces,
although the new 222-nm monochromatic light sources showed
excellent germicidal performance for bacteria and viruses without
damaging effects on host cells (Buonanno et al., 2017).

In contrast, the illumination of cells with wavelengths
>400 nm is harmless, except in the presence of a photosensitizer
molecule (PS) that absorbs light to produce photophysical or
photochemical alterations in another molecular entity without
any chemical modification of itself. This process is called
photosensitization, and the key transient species is the lower
triplet excited state T1 (3PS∗) of PS. In a biological medium,
this relatively short-lived species (from hundreds of nano- to
microseconds) can react with a biomolecule (Q) or molecular
oxygen (3O2) either by Type I (charge-transfer) or Type II
(energy-transfer) mechanisms, respectively, yielding reactive
oxygen species (ROS), e.g., hydroxyl radical HO·, hydrogen
peroxide H2O2, anion superoxide O2

·−, and singlet oxygen 1O2
(Baptista et al., 2017; Figure 1A).

This photo-triggered ROS imbalance is responsible for the
oxidation and/or oxygenation of biomolecules (DNA, lipids,
proteins, etc.), producing cell malfunction and eventually cell
death (Soriano et al., 2017). ROS-mediated degradation of
biological substrates produced only by light excitation of a PS
under aerobic conditions is termed photodynamic action (PDA),
while the cell destruction produced by this effect is named
photodynamic therapy (PDT) (Benov, 2015).

SCOPE OF ANTIMICROBIAL
PHOTODYNAMIC THERAPY

Antimicrobial PDT (aPDT) refers to the killing of microbes
mediated by PDA (Figure 1A). Although Oscar Raab’s first report
on the use of light combined with acridine staining as a fast and

efficient method to kill protozoa was in 1900, the development
of PDT was overshadowed by the progress of clinical PDT for
cancer (Cieplik et al., 2018). However, clinical interest in aPDT
was recently renewed due to the AMR crisis (Kharkwal et al.,
2011; Hu X. et al., 2018).

Due to the high reactivity of ROS and molecular crowding
in the biological environment, photosensitized damage can
be expected to occur near the location of PS (Awad et al.,
2016). The molecular structure of PS and the composition
of the outer wall of microbes are crucial for modulating
the interaction of PS with the microbe, its intracellular
compartmentalization and the degree of photodamage produced
(Liu Y. et al., 2015; Kashef et al., 2017). Cationic PSs can
photo-inactivate both Gram(+) bacteria and yeasts given the
negative zeta potential values of their outer membranes (Dai
et al., 2012; Cieplik et al., 2018). For Gram(−) bacteria,
the extra dense negatively charged lipopolysaccharide
outer membrane only allows the passage of small neutral
hydrophilic molecules (Jori et al., 2011). In the case of
biofilms, the EPS matrix also elicits molecular and electrostatic
barriers to the PS penetration (Shrestha and Kishen, 2014;
Supplementary Figure 1).

Depending on the localization of PS in the microbe, the
photodamage can affect several critical targets. A PS embedded
in the double-strand DNA can oxidize it by HO· (Type I)
and 1O2 (Type II) mediated reactions (Awad et al., 2016).
Proteins are the most abundant biomolecules, and photoinduced
1O2-mediated injury depletes the enzymatic apparatus involved
in the fermentative and glycolysis pathways, along with the
loss of membrane barrier functions, compromising energy
production and cell defense mechanisms (Dosselli et al., 2012).
Photosensitized Type II oxidation modifies Trp, Tyr, Cys, His,
and Met residues, resulting in loss of enzymatic activity, protein
fragmentation and/or aggregation, changes in redox homeostasis,
signaling, and cellular proteolytic pathways (Pattison et al., 2012).
Photogenerated ROS also reacts with unsaturated membrane
lipids to produce lipid hydroperoxides that can transform
into shortened chain by-products that promote hydrophilic
pore formation and/or membrane rupture (Itri et al., 2014;
Di Mascio et al., 2019).

Therefore, efficient aPDT can be achieved by ROS-mediated
non-specific damage to multiple cell targets with almost no
possibility of AMR development. Other advantages of aPDT
compared to conventional anti-infective treatments are the
following: (i) a rapid (seconds to minutes) and spatially
controlled light-activated microbial inactivation, (ii) a broader
spectrum of action since the same PS can be active against several
types of microorganisms, and (iii) efficient microbial depletion of
>3log CFU, regardless of the antibiotic resistance patterns of the
microbes (Hamblin and Abrahamse, 2019).

However, other factors can decrease the effectiveness of aPDT:
(i) low chemical or photochemical stability of PS; (ii) low aqueous
solubility of PS causing self-aggregation; (iii) low absorption of
light by PS due to low extinction coefficient, light scattering
or reflectance, internal filtering, etc.; (iv) low uptake of PS by
microbes; and (v) hypoxic conditions at the PS location, a critical
problem within biofilms where oxygen concentration can drop to
0.010 mM (de Beer et al., 1994), although cell photo-death under
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FIGURE 1 | (A) Schematic representation of the antimicrobial photodynamic therapy (aPDT) process that begins with the absorption of a photon (hν) of appropriate
wavelength by the ground state (S0) of the PS to populate any excited singlet state of higher energy (Sn). Excess vibronic energy is released rapidly (< 1 ns) as heat
by non-radiative processes to populate the lower singlet excitation state S1 (1PS*). Subsequently, the 1PS* state can decay to S0 on the nanosecond time scale by
radiative (fluorescence) and non-radiative (heat processes), in parallel with the population of the excited state lower triplet T1 (3PS*) by an intersystem crossing
process. In aerobic conditions, the reaction of 3PS* with a quencher molecule (Q) or molecular oxygen (3O2) by charge transfer (Type I) or energy-transfer (Type II) will
produce reactive oxygen species (ROS), which in turn react with biological targets (lipids, DNA, proteins) inducing malfunctioning and, eventually, cell death.
(B) Representative supramolecular architectures used for aPDT with PS non-covalently conjugated to carbon-based nanomaterials [e.g., carbon nanotubes (CNTs)
and graphene sheets]; metal nanoparticles (e.g., gold, silver, copper, or platinum) stabilized with different compounds (e.g., amino acids, proteins, polymers,
biopolymers, etc.); macrocycles (e.g., cyclodextrins, calixarenes, cucurbituriles, pillararenes, etc.); and finally, PS entrapped in liposomes, spherical micelles, and
polymeric nanoparticles.

hypoxic conditions decreased Type I more than Type II reaction
(Price et al., 2013).

SUPRAMOLECULAR CHEMISTRY
IMPROVES aPDT

Hundreds of organic and inorganic molecules are efficient PS,
principally as 1O2 generators (Supplementary Figure 2 and

Supplementary Table 1), e.g., tetrapyrroles; organic dyes; metal
coordination complexes, quinones, isoalloxazines, BODIPYs
dyes, phenalenones, and fullerenes, etc. (Redmond and Gamlin,
1999); although Type I oxidation processes are also relevant
in the modification of nucleic acids (Serrano et al., 2015;
Baptista et al., 2017) and proteins (Hawkins and Davies, 2001;
Alarcón et al., 2009).

Owing to the complexity of biological media, it is unlikely
that a single molecule of PS could fulfill all the characteristics
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required for an “ideal” application of aPDT. In this sense regard,
the design of supramolecular photosensitizers (SPS) has provided
adequate improvements in aPDT (Liu et al., 2013; Gao et al., 2019;
Yao et al., 2019).

The concept behind supramolecular chemistry is to obtain
reversible self- or coassembled functional structures through
non-covalent interactions between more than two molecules
and/or macromolecules. Generally, SPS can be formed by
assembling a PS molecule with other molecular pieces through
intermolecular forces that vary roughly in energy as follows:
van der Waals < π–π stacking < dipole–dipole < π-
cation < hydrogen bond < ion–dipole < ion–ion, in many
cases acting cooperatively and reducing free energy to obtain
the most thermodynamically stable aggregate (Supplementary
Figure 3). Different supramolecular architectures can be obtained
with size control from a few nano- to micrometer, e.g.,
0D (nanoparticles), 1D (fibers), 2D (films, plates), and 3D
(amorphous or defined-shaped composites). Due to the relative
weakness of intermolecular interactions, supramolecules are
reversibly formed through equilibria prone to respond to external
stimuli, e.g., pH, temperature, ultrasound, redox agents, enzymes,
etc., allowing extra control over the functionalization of the
supramolecule (Albrecht, 2007; Li et al., 2018). Therefore, the
functional control of an SPS by external stimuli offers the
possibility to modulate the generation of ROS as suitable for each
aPDT application (Li et al., 2018), besides producing synergistic
antimicrobial effects by the supramolecular combination of
PS with other inherently antimicrobial materials (antibiotics,
nanoparticles, peptides, etc.) (Liu et al., 2013; Gao et al., 2019).

SELECTED EXAMPLES OF SPS APPLIED
TO aPDT

Figure 1B schematizes some typical SPS architectures, and
Table 1 and Supplementary Table 2 summarize information of
some representative SPS systems used in aPDT applications.

Among supramolecular self-assemblies, block copolymeric
micelles made of pluronic surfactants, poly(ethyleneglycol)
(PEG)–lipid conjugates, or pH-sensitive poly (N-isopropyl
acrylamide) are emerging supramolecular systems highly
attractive for physical entrapment and transport of PS
(Van Nostrum, 2004) and nanomedicine applications
(Cabral et al., 2018).

Aluminum phthalocyanine chloride (AlPcCl) was
incorporated into polymeric micelles made of pluronic
surfactants (P-123 and F-127), and the aPDT efficacy of
these SPS against Staphylococcus aureus, Escherichia coli, and
Candida albicans was investigated (Vilsinski et al., 2015). In the
F-127 micelles, AlPcCl was self-aggregated and did not show an
aPDT effect. In contrast, P-123 micelles can trap monomeric
AlPcCl, and the formulation was effective against S. aureus and
C. albicans.

The aPDT effect against S. aureus of chlorophyll
derivatives (Chl) loaded in polymeric micelles of F-127
and dipalmitoylphosphatidylcholine (DPPC) liposomes was
compared. The efficacy of both SPS depended on the structure
of the Chl and its location in the supramolecular carrier, but the

photodynamic activity was higher in liposomes bearing Chls
without the phytyl chain (Gerola et al., 2019).

Although liposomes are more difficult and expensive to
prepare than polymeric micelles (Kashef et al., 2017), they
have several advantageous properties for use in aPDT, such as
a high loading capacity of both hydrophobic and hydrophilic
PS in the bilayer membrane or the aqueous core, respectively,
biocompatibility, biodegradability, and suitable nanometric size
(Jin and Zheng, 2011).

Molecular recognition based on “host–guest” interactions
given by macrocyclic molecules was relevant to understanding
supramolecular chemistry (Pedersen, 1967). In such systems,
the macrocycle cavity size of <1 nm allows the intermolecular
inclusion of a variety of PS as “guest” molecules using
cyclodextrins, calix[n]arenes, pillar[n]arenes, [n]rotaxanes, and
cucurbit[n]urils, leading to a variety of SPS formulations that
normally increase 81 by preventing self-aggregation of PS and
improving its solubility and photostability (Liu et al., 2013; Sowa
and Voskuhl, 2020). Other notable characteristics of macrocycle-
based SPS are that undesirable dark toxicity due to ionic
substituent groups of PS can be reduced by the formation of
the inclusion complex (Chen et al., 2017; Özkan et al., 2019).
Moreover, on–off photosensitization control is possible by the
convenient combination of PS–guest molecules and the internal
diameter of the macrocycle (Robinson-Duggon et al., 2017).

Metal nanoparticles (MNP) not only can transport and
release non-covalently attached PS but can also act as intrinsic
antimicrobial agents due to the small size that allows them
to adhere to the microbial wall, producing cell death through
various mechanisms that can include the generation of ROS,
disruption of transmembrane electron transport, the release
of toxic species, and membrane modification resulting in a
synergistic antimicrobial effect (Hajipour et al., 2012). The
photodynamic effect of methylene blue–gold nanoparticles
(AgNP@MB) on S. aureus isolated from impetigo lesions in
children was evaluated using a diode laser at 660 nm as the
excitation source (Tawfik et al., 2015). The “naked” AuNPs
did not exert a direct bactericidal effect but improved the
photodynamic activity of the MB adsorbed on the nanoparticle,
possibly due to a photothermal effect due to the simultaneous
excitation of the AuNPs.

Moreover, methicillin-resistant S. aureus (MRSA) in mature
biofilms was efficiently eliminated (>5log CFU reduction)
with the cationic dye MB immobilized on AgNP@citrate
through electrostatic interactions. Results indicated enhanced
ROS formation by the effect of localized surface plasmon
resonance (SPR) of AuNPs (Darabpour et al., 2017). On the
other hand, the antibiofilm action on Streptococcus mutans of
a toluidine blue O-silver nanoparticle (AgNP@TBO) conjugate
occurred via Type I mechanism through the generation of HO·
(Misba et al., 2016).

Carbon-based nanomaterials such as single- and multiwalled
carbon nanotubes (SWCNT and MWCNT, respectively),
graphene, fullerenes, etc. are also useful nanomaterials
for SPS preparation due to their unique physicochemical,
photochemical, mechanical, bacterial affinity, and electrical
properties. For example, nanocomposites of TBO and MWCNT
(MWCNT@TBO) were successfully used in aPDT for the
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TABLE 1 | Summary of properties of selected examples of supramolecular photosensitizers (SPS) used in antimicrobial photodynamic therapy (aPDT).

Photosensitizer (PS) Supramolecular template Type of interaction Microorganism/antimicrobial efficiency References

Polymer-based materials

Cationic Zinc
phthalocyanines

Cellulose nanocrystals Electrostatic interactions S. aureus: 6-3 logs E. coli: 8-6 logs
C. albicans: 6.5 logs

Anaya-Plaza et al.
(2017)

Ru(II) polypyridyl complexes Porous silicone matrix Hydrophobic interactions E. faecalis Total disinfection Manjón et al. (2014)

meso-tetraaryl porphyrins Chitosan film Electrostatic and H-bonding Listeria innocua ≈ 2.5 logs
Irradiation during attachment: 2-3
logs Irradiation after attachment:
1.5-2 logs

Castro et al. (2017)

Self-assembled nanocarriers

Chlorophyll derivatives Zwitterionic DPPC
liposomes Non-ionic
polymeric micelles

PS encapsulation S. aureus ≈ 3 logs Gerola et al. (2019)

S. aureus ≈ 2 logs

Aluminum Chloride
Phthalocyanine

Tri-block copolymers
(polymeric micelles)

PS encapsulation S. aureus ≈ 3 logs E. coli: no effect
C. albicans: <1 logs

Vilsinski et al.
(2015)

Chlorin e6 Poly(HDDA-co-DBPA –
mPEG) (polymeric
nanoparticles)

PS encapsulation S. aureus and E. coli Complete
inhibition in vivo: Improved
photodynamic therapeutic efficacy
of NPs compared to free Ce6

Liu Y. et al. (2015)

Macrocycles-based host-guest complexes

Cationic porphyrin
derivative

Block polymer Backbone +
cucurbit[8]uril

Host-guest complexation Metal
coordination

S. aureus ≈ 100% Chen et al. (2019)

Methylene blue β-cyclodextrin-modified
hyaluronic acid

Host-guest complexation MRSA ≈ 2 logs Yao et al. (2019)

Carbon-based materials

Indocyanine green Nano-Graphene Oxide π-π stacking hydrophobic
interactions

E. faecalis 2.81 logs 99.4% Akbari et al. (2017)

Metallic nanoparticles

Toluidine blue O Silver nanoparticles Electrostatic interactions S. mutans 4 logs 99% Misba et al. (2016)

Methylene blue Gold nanoparticles Electrostatic interactions MRSA >5 logs reduction of MRSA
4-days-old biofilm

Darabpour et al.
(2017)

DBPA: 3-(Diethylamino)-1-propylamine; DPPC: dipalmitoylphosphatidylcholine; C. albicans: Candida albicans; E. coli: Escherichia coli; E. faecalis: Enterococcus
faecalis; HDDA: 1,6-hexanediol diacrylate; L. innocua: Listeria innocua; MRSA: methicillin-resistant S. aureus; mPEG: methyl poly(ethylene glycol); S. aureus:
Staphylococcus aureus.

eradication of both the planktonic cells and biofilms of
P. aeruginosa and S. aureus (Anju et al., 2019). Indocyanine
green (ICG) was incorporated into nano-graphene oxide
(NGO), and effective aPDT against Enterococcus faecalis was
obtained with very low ICG concentration, suggesting that
the photodynamic action was enhanced in the nanocomposite
(Akbari et al., 2017).

Finally, recent advances in the design and manufacture of
nanomaterials and nanoobjects that facilitated the assembly of
various types of SPS with enhanced aPDT potential have been
reviewed (Lucky et al., 2015; Fakayode et al., 2018; Hu B. et al.,
2018; Mesquita et al., 2018).

IN VIVO AND CLINICAL aPDT
APPLICATIONS WITH SPS

The aPDT effectiveness of many PS has been tested in vivo
using infected mice as animal models (Huang et al., 2010),
and cationic liposome preparations have been used as selective
delivery systems that favor interaction with negatively charged

microbial cells rather than eukaryotic cells, optimizing PS
uptake by bacteria and allowing its use for in vivo aPDT
applications even for Gram(−) bacteria (Vimaladevi et al.,
2016). Furthermore, the aPDT effect of hypericin-loaded
amphiphilic block copolymer nanoparticles was tested in vivo
in MRSA-infected wounds in rats, showing faster healing, better
epithelialization, keratinization, and collagen fiber development
(Nafee et al., 2013). A dual-mode antibacterial effect was tested
for a nanocomposite made with a cationic porphyrin bound to
graphene nanoribbons against A. baumannii and MRSA by the
synergy of PDA with photothermal effects (Yu et al., 2020).

Induction of bladder infection was performed in mice to
model acute cystitis as a typical case of urinary tract infection
to evaluate the performance of Chlorine e6 encapsulated in
polymeric nanoparticles, and a significant drop in bacterial cells
was observed with minimal side effects (Liu S. et al., 2015).

The application of aPDT in dentistry has been extensively
reviewed (Carrera et al., 2016), and it was concluded that topical
aPDT has several advantages such as versatility, low cost, and
the absence of harmful effects for patients. Various SPS systems
composed of organic dyes as PS in self-assembled nanocarriers
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(micelles, liposomes, etc.) were used, such as AlClPc entrapped
in cationic liposomes, which was effective in treating various oral
infections (Longo et al., 2012).

Examples of clinical applications of aPDT for the control of
various infections can be found in various reviews by Hamblin
and collaborators (Kharkwal et al., 2011; Dai et al., 2012; Yin
and Hamblin, 2015; Hu X. et al., 2018; Hamblin and Abrahamse,
2019). Briefly, it must be considered that nosocomial infections
generated by contaminated surfaces are of great concern, since
pathogens can survive for a long time on surgical surfaces and
instruments and their adequate disinfection is essential (Haque
et al., 2018). Regarding this, excellent aPDT activity has been
tested for decontamination of S. aureus on a surface by spray
coating made of polymeric micelles of PEG monomethyl ether-
co-polylactide branched copolymers loading BODIPYs even at
micromolar concentrations (Cabral et al., 2018). Also for surface
disinfection, macrocycles have been used as supramolecular
linkers to give rise to larger functional materials for aPDT with
spray coatings (Yao et al., 2019) and fabric fibers (Castriciano
et al., 2017). The inactivation and removal of biofilms in surgical
elements are of great concern, as these microbe communities
are particularly difficult to kill with antibiotics (Stewart and
Costerton, 2001). The microbial cells within the biofilm are firmly
attached to the substrate and embedded in a protective barrier
made of an extracellular polymeric matrix of polysaccharides,
proteins, and extracellular DNA (Rabin et al., 2015). Despite
this, it has been shown that ROS generated in aPDT can attack
the biofilm matrix, cell surface, and cytoplasm, damaging non-
specific targets that lead to degradation of both planktonic cells
and biofilms (Hu X. et al., 2018; Gao et al., 2019).

SUMMARY AND OUTLOOK

Antimicrobial PDT using SPS, many of them based on
nanometric scaffolds of a wide variety of materials, emerges
as a rapid and spatially precise methodology for the control
of a wide spectrum of infections in different environments
(Lucky et al., 2015; Fakayode et al., 2018; Hu B. et al., 2018;
Mesquita et al., 2018). According to the Scopus R© database,
research interest in “supramolecular photosensitization” has been
increasing over the past two decades (Supplementary Figure 4),
driven by the need for effective and less invasive anticancer and
antimicrobial treatments.

The continuous development of new synthetic and
biocompatible nanomaterials allows the design of “smart” SPS
with multiple functionalities that respond to external stimuli
other than light (e.g., pH, temperature, ionic strength, etc.) that
can improve efficiency of aPDT by the controlled tuning of
surface charges and adhesion to microbes, PS transport, and
controlled delivery, improvement of photosensitizing properties,
and synergistic antimicrobial effects in addition to PDA, such as
intrinsic dark toxicity of the composite, photothermal effect, etc.
(Liu et al., 2013; Abrahamse and Hamblin, 2016; Feng et al., 2017;
Hu B. et al., 2018).

Finally, due to the multitarget oxidative action of
photogenerated ROS, it is believed that aPDT does not develop
AMR (Cieplik et al., 2018), but in any case, the question is
how long aPDT can be applied without induction of survival
mechanisms (Hamblin and Abrahamse, 2019). Therefore, given
the current microbial crisis, the continued renewal of the
aPDT requires interdisciplinary efforts involving chemists,
microbiologists, and physicians, among others.
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