
THE BANACH IDEAL OF A-COMPACT OPERATORS
AND RELATED APPROXIMATION PROPERTIES

SILVIA LASSALLE∗ AND PABLO TURCO

Abstract. We use the notion of A-compact sets (determined by an operator ideal A),

introduced by Carl and Stephani (1984), to show that many known results of certain ap-

proximation properties and several ideals of compact operators can be systematically studied

under this framework. For Banach operator ideals A, we introduce a way to measure the

size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators.

Then, we study two types of approximation properties determined by A-compact sets. We

focus our attention on an approximation property which makes use of the norm defined on

KA. This notion fits the definition of the A-approximation property, recently introduced

by Oja (2012), with KA instead of A. We exemplify the power of the Carl-Stephani theory

and the geometric structure introduced here by appealing to some recent developments on

p-compactness.

Introduction

Recall that a Banach space has the approximation property if the identity map can be

uniformly approximated by finite rank operators on compact sets. This property, due to

Grothendieck, has several reformulations, see Grothendieck’s Memoir [15]. Reinforced by

the fact that there are Banach spaces which lack the approximation property (the first

example given by Enflo [13]), important variants of this property have emerged and were

intensively studied, see [4, 11, 18, 21] and references therein. In particular, there is a recent

inclination to study approximation properties related to (Banach) operator ideals, as it can

be seen for instance in [1, 5, 7, 9, 14, 16, 17, 19, 22, 23, 29, 30].

The main purpose of this article is to undertake the study of a general method to un-

derstand a wide class of approximation properties and different ideals of compact operators

which can be equally modeled once the system of compact sets has been chosen. To this end,

we use notion of A-compactness, introduced by Carl and Stephani [3], which is determined

by an operator ideal A and can be seen as a refinement of the concept of compactness.

The system of A-compact sets induces in a natural way the class of A-compact operators,
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consisting of all continuous linear operators mapping bounded sets into A-compact sets.

This ideal, which we denote by KA, was also introduced an studied in [3]. However, the

authors do not emphasize their study from an isometric point of view. In Section 1, we

add a geometric structure to the Carl-Stephani theory by introducing a way to measure

the size of A-compact sets, denoted by mA. Our prototype is the definition given for the

size of p-compact sets in [16] and studied later in [14]. We examine the class of A-compact

sets in a Banach space E and show that the definition can be reformulated considering only

operators in A(`1;E). The class of p-compact sets fits in this framework for the ideal N p of

right p-nuclear operators. This fact and the notion of A-null sequences [3] allow us to give

another proof of a question posed in [8] and solved by Oja in her recent work [24].

In Section 2 we use mA to endow KA with a norm ‖ · ‖KA , under which it is a Banach

operator ideal. Then, we show that the main factorization result of [3] concerning KA is, in

fact, an isometric identity. We use our characterization of A-compact sets via `1, to prove

that KA is regular. As a consequence, we show that a subset is A-compact with equal size

regardless it is considered as a set of a Banach space E or as a set of its bidual E ′′.

The system of A-compact sets leads naturally to two types of approximation properties

which are considered in Section 3. The first one is rather standard and is defined by requiring

the identity map to be uniformly approximable by finite rank operators on A-compact sets.

We prove that a Banach space E enjoys this property if and only if, for any Banach space F ,

the set of finite rank operators from F to E is norm dense in KA(F ;E). We call the latter

property the KA-uniform approximation property. For the second one, the norm ‖ · ‖KA is

considered instead of the supremum norm. In this case, we show that our definition coincides

with that of KA-approximation property of Oja [23]. With the particular case of N p, on the

one hand, we cover the notion of p-approximation property introduced by Sinha and Karn

[29] and studied by many authors in the last years, see for instance [1, 5, 7, 16]. On the other

hand, we cover the κp-approximation property defined by Delgado, Piñeiro and Serrano [9]

and studied later in [14, 16, 23]. Also, we address the KA-uniform approximation property

in terms of a modified ε-product of Schwartz.

Throughout this paper E and F denote Banach spaces, E ′ and BE denote the topological

dual and the closed unit ball of E, respectively. A Banach operator ideal is denoted by

(A, ‖.‖A). When the norm ‖ · ‖A is understood or when we work with an operator ideal, we

simply write A. We denote by L,F ,F and K the linear operator ideals of bounded, finite

rank, approximable and compact operators, respectively; all considered with the supremum

norm. For x′ ∈ E ′ and y ∈ F , the 1-rank operator from E to F , x 7→ x′(x)y is denoted by

x′ ⊗ y.

To illustrate our results, we appeal to the ideals N p of right p-nuclear operators and Kp of

p-compact operators. To give a brief description of these spaces, we need some definitions.
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As usual, fixed 1 ≤ p <∞, `p(E) and `wp (E) denote the spaces of p-summable and weakly p-

summable sequences in E, respectively. For p =∞, we use the spaces c0(E) and cw0 (E) of null

and weakly null sequences of E, respectively. All these are Banach spaces endowed with their

natural norms. A mapping T belongs to N p(E;F ) if there exist sequences (x′n)n ∈ `wp′(E ′)
and (yn)n ∈ `p(F ), 1

p
+ 1

p′
= 1 (`p′ = c0 if p = 1), such that T =

∑∞
n=1 x

′
n ⊗ yn and

vp(T ) = inf{‖(x′n)n‖`w
p′ (E

′)‖(yn)n‖`p(F ) : T =
∑∞

n=1 x
′
n ⊗ yn} is the right p-nuclear norm of T .

Following [29], a subset K of E is relatively p-compact, 1 ≤ p ≤ ∞, if there exists a sequence

(xn)n ⊂ `p(E) so that K ⊂ p-co{xn}, where p-co{xn} = {
∑∞

n=1 αnxn : (αn)n ∈ B`p′
} is called

the p-convex hull of (xn)n and 1
p

+ 1
p′

= 1 (`p′ = c0 if p = 1). With p = ∞, we have the

relatively compact sets and the absolutely convex hull of (xn)n, denoted here by co{xn}. A

mapping T is in Kp(E;F ) if it maps bounded sets into relatively p-compact sets and the

p-compact norm of T is κp(T ) = inf{‖(yn)n‖p : T (BE) ⊂ p-co{yn}}, see [10, 29].

The definitions and notation used regarding operator ideals can be found in the mono-

graph by Defant and Floret [6]. For operator ideals we also refer the reader to the books

of Pietsch [25], of Diestel, Jarchow and Tonge [12] and of Ryan [27]. For approximation

properties, we refer the reader to the books of Lindenstrauss and Tzafriri [18] and of Diestel,

Fourie and Swart [11]. See also [6, 27], the surveys [4] and [21] and references therein.

1. On compact sets and operator ideals

Fix an operator ideal A. Following [3], a subset K of E is said to be relatively A-compact

if there exist a Banach space X, an operator T ∈ A(X;E) and a compact set M ⊂ X such

that K ⊂ T (M). A sequence (xn)n ⊂ E is A-convergent to zero if there exist a Banach

space X and T ∈ A(X;E) with the following property: given ε > 0 there exists nε ∈ N such

that xn ∈ εT (BX) for all n ≥ nε. Carl and Stephani gave a handy characterization of A-null

sequences [3, Lemma 1.2].

Lemma 1.1. (Carl-Stephani) Let E be a Banach space and A an operator ideal. A sequence

(xn)n ⊂ E is A-null if and only if there exist a Banach space X, an operator T ∈ A(X;E)

and a null sequence (yn)n ⊂ X such that xn = T (yn) for all n.

Now, we present a characterization ofA-compactness which is a combination of [3, Lemma 1.1]

and [3, Theorem 1.1].

Theorem 1.2. (Carl-Stephani) Let E be a Banach space, K a subset of E and A an operator

ideal. The following are equivalent.

(i) K is relatively A-compact.

(ii) There exist a Banach space X and an operator T ∈ A(X;E) such that for every

ε > 0 there are finitely many elements zεi ∈ E, 1 ≤ i ≤ kε realizing a covering of K:

K ⊂
⋃kε
i=1{zεi + εT (BX)}.
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(iii) There exists an A-null sequence (xn)n ⊂ E such that K ⊂ co{xn}.

The following remark is the key to see that the theory of p-compactness perfectly embodies

into the Carl-Stephani theory.

Remark 1.3. Let 1 ≤ p < ∞. The proof of [14, Proposition 2.9] shows that given a

sequence (xn)n ∈ `p(E), there is an operator T ∈ N p(`p′ ;E) such that p-co{xn} = T (M)

with M ⊂ B`p′
relatively compact. Moreover, for fixed ε > 0, T may be chosen to satisfy

‖(xn)n‖p ≤ ‖T‖N p ≤ ‖(xn)n‖p + ε.

Note that if p =∞ and (xn)n ∈ c0(E), the obtained operator is in F(`1;E).

Notice that compact sets are F -sets or K-sets and p-compact sets are N p-compact sets.

Also, by [3, p. 79], p-compact sets are Kp-compact sets. In [8], Delgado and Piñeiro define

p-null sequences, p ≥ 1, as follows. A sequence (xn)n in a Banach space E is p-null if, given

ε > 0, there exist n0 ∈ N and (zk)k ∈ εB`p(E) such that xn ∈ p-co{zk} for all n ≥ n0. In [8,

Theorem 2.5 ], p-compact sets are characterized as those which are contained in the absolutely

convex hull of a p-null sequence. Then, the authors prove, under certain hypothesis on the

Banach space E, that a sequence is p-null if and only if it is norm convergent to zero and

relatively p-compact [8, Proposition 2.6]. Also, they wonder if the result remains true for

arbitrary Banach spaces. An affirmative answer was recently given by Oja [24, Theorem 4.3].

In [24] the author describes the space of p-null sequences as a tensor product via the Chevet-

Saphar tensor norm and, as an application, the result is obtained. Here, we show that the

Delgado-Piñeiro-Oja result is an immediate consequence of the next two propositions.

Proposition 1.4. Let A be an operator ideal and E a Banach space. A sequence (xn)n ⊂ E

is A-null if and only if (xn)n is relatively A-compact and norm convergent to zero.

Proof. Thanks to Theorem 1.2, only the “if” part requires a proof. Take a Banach space X,

T ∈ A(X;E) and a compact set M ⊂ X such that {xn}n ⊂ T (M). Consider the quotient

map q : X → X/ker (T ) and the injective operator T̃ such that T = T̃ ◦ q . Then, (xn)n
is a norm null sequence in T̃ (q(M)) with q(M) compact. By standard arguments, there

is a norm null sequence (yn)n in X such that xn = T (yn). An application of Lemma 1.1

completes the proof. �

Notice that a sequence (zk)k as in the definition of a p-null sequence might be chosen

independently of ε as the following result shows.

Proposition 1.5. Let E be a Banach space, (xn)n a sequence in E and p ≥ 1. Then, (xn)n
is p-null if and only if there exists a sequence (zk)k ∈ B`p(E) such that for any ε > 0 there

exists n0 with xn ∈ εp-co{zk} for all n ≥ n0. As a consequence, N p-null and p-null sequences

coincide.
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Proof. We only show the “only if” part. Suppose that (xn)n is p-null and find (zk)k as in the

statement. By [8, Definition 2.1], we may find a strictly increasing sequence nj, j = 1, 2, . . .,

and sequences (zjk)k ∈ B`p(E) such that xn ∈ Kj = 1
4j

p-co{zjk} for all n ≥ nj. Proceeding as

in [1, Theorem 1], we may find a p-compact set K such that 2jKj ⊂ K for all j. Therefore,

there exists (zk)k ∈ B`p(E) such that K ⊂ p-co{zk} and xn ∈ 1
2j

p-co{zk} for all n ≥ nj.

Then, the result follows. �

Corollary 1.6. (Delgado-Piñeiro-Oja) Let E be a Banach space and p ≥ 1. A sequence

(xn)n ⊂ E is p-null if and only if (xn)n is relatively p-compact and norm convergent to zero.

Now, we introduce a way to measure the size of relatively A-compact sets. Our definition

is inspired by the one given for p-compact sets in [16] and studied later in [14]. Fix an

operator ideal A and a norm α on A. For a relatively A-compact set K ⊂ E, we define

mA,α(K;E) = inf{α(T ) : K ⊂ T (M), T ∈ A(X;E) and M ⊂ BX},

where the infimum is taken considering all Banach spaces X, all operators T ∈ A(X;E) and

all compact sets M ⊂ BX for which the inclusion K ⊂ T (M) holds.

If K ⊂ E is not A-compact, mA,α(K;E) = ∞. As it happens with the size of p-compact

sets, see [14, Section 2], there are some properties which derive directly from the definition

of mA,α. For instance, mA,α(K;E) = mA,α(co{K};E).

For simplicity, if (A, ‖.‖A) is a Banach operator ideal, we write mA instead of mA,‖·‖A .
Since ‖T‖ ≤ ‖T‖A, supx∈K ‖x‖ ≤ mA(K;E). Moreover, if B is a Banach operator ideal

such that A ⊂ B, a set K ⊂ E is B-compact whenever it is A-compact and we have

mB(K;E) ≤ mA(K;E).

Remark 1.7. Let 1 ≤ p <∞. By Remark 1.3, if K ⊂ E is p-compact then

mN p(K;E) = inf{‖(xn)‖p : K ⊂ p-co{xn}}.

Analogously, if K ⊂ E is compact then mK(K;E) = sup{‖x‖ : x ∈ K}.

Note that mN p covers exactly the size of p-compact sets (see [16] or [14, Definition 2.1]).

Also, note that if F is a Banach space containing E as a closed subspace, a set K ⊂ E is

A-compact as a subset of F whenever it is A-compact as a subset of E, and mA(K;F ) ≤
mA(K;E). However, mA may depend on the space the sets are considered, as it is shown

in [14, Corollary 3.5]. The particular case when F = E ′′, for which the size is preserved, is

considered in Corollary 2.3.

The next result shows that the definition of A-compact sets (and therefore the size mA)

can be reformulated considering only operators in A(`1;E).

Proposition 1.8. Let E be a Banach space, K a subset of E and A a Banach operator

ideal. The following are equivalent.
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(i) K is relatively A-compact.

(ii) There exist a Banach space X, operators T ∈ A(X;E) and S ∈ F(`1;X) and a rela-

tively compact set M ⊂ B`1 such that K ⊂ T ◦ S(M). Moreover,

mA(K;E) = inf{‖T‖A‖S‖ : K ⊂ T ◦ S(M) and M ⊂ B`1},

where the infimum is taken over all Banach spaces X, operators T and S and sets M

as above.

(iii) There exist an operator T ∈ A(`1;E) and a relatively compact set M ⊂ B`1 such that

K ⊂ T (M). Also,

mA(K;E) = inf{‖T‖A : K ⊂ T (M), T ∈ A(`1;E) and M ⊂ B`1},

where the infimum is taken over all operators T ∈ A(`1;E) and all relatively compact

sets M ⊂ B`1 such that K ⊂ T (M).

Proof. Suppose K ⊂ E is relatively A-compact. Given ε > 0, take a Banach space X, a

compact set L ⊂ BX and T ∈ A(X;E) such that K ⊂ T (L) and ‖T‖A ≤ mA(K;E) + ε.

Since L ⊂ BX is compact, we may find an approximable operator S : `1 → X and a compact

set M ⊂ B`1 such that L ⊂ S(M). Moreover, S may be chosen to satisfy ‖S‖ ≤ 1+ε. Then,

K ⊂ T (L) ⊂ T ◦ S(M) and

mA(K;E) ≤ ‖T‖A‖S‖ ≤ ‖T‖A(1 + ε) ≤ (mA(K;E) + ε)(1 + ε).

Then (ii) follows from (i). It is clear that (ii) implies (iii) which implies (i), and the proof is

complete. �

Corollary 1.9. Let E be a Banach space, K a subset of E and A a Banach operator

ideal. Then, K is relatively A-compact if and only if K is relatively A ◦ F-compact and

mA(K;E) = mA◦F(K;E).

Proof. Every relativelyA◦F -compact set is relativelyA-compact and mA(K;E) ≤ mA◦F(K;E).

The other implication is given by item (ii) of the above proposition, which combined with

item (iii) gives mA(K;E) = mA◦F(K;E). �

2. The ideal of A-compact operators

Hereinafter we use the procedures: A → Asur,A → Areg and A → Ad, which are given

for Banach operator ideals as follows. The surjective hull Asur of A is the class of T ∈
L(E;F ) such that T ◦ qE belongs to A where qE : `1(BE) � E is the canonical surjection

and ‖T‖Asur = ‖T ◦ qE‖A. The regular hull Areg of A is the class of T ∈ L(E;F ) such that

JF ◦ T ∈ A(E;F ′′) and ‖T‖Areg = ‖JF ◦ T‖A, where JF : F → F ′′ is the canonical inclusion.

It is said that A is surjective or regular if, respectively, A = Asur or A = Areg isometrically.
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Also, denoting by T ′ the adjoint of an operator T , the dual ideal Ad of A is the class of

operators T ∈ L such that T ′ ∈ A and ‖T‖Ad = ‖T ′‖A.

Associated to the concept of A-compact sets, Carl and Stephani [3] define and study

the notion of A-compact operators, which generalizes compact operators. An operator T ∈
L(E;F ) is said to be A-compact if T (BE) is a relatively A-compact set in F [3, Definition 2].

We denote by KA the space of all A-compact operators. When A is a Banach operator ideal,

KA becomes a Banach operator ideal if for any T ∈ KA(E;F ) one defines

‖T‖KA = mA(T (BE);F ).

Carl and Stephani describe the operator ideal KA in terms of Asur via the identities:

KA = (A ◦ K)sur = Asur ◦ K [3, Theorem 2.1]. From this, the authors get that KA = KKA ,

and the process only may produce a new operator ideal the first time it is applied. The

geometric structure introduced via ‖ · ‖KA fits in the Carl-Stephani theory turning both

identities into isometries. Also, with Corollary 1.9 we obtain a slight modification as follows.

Proposition 2.1. Let A be a Banach operator ideal. Then, the isometric identity holds

KA = KA◦F = (A ◦ F)sur.

Since mN p(T (BE);F ) = κp(T ), the ideal Kp of p-compact operators coincides isometrically

with KN p and KKp .

Theorem 2.2. Let A be a Banach operator ideal. Then, the isometric identity holds

KA = KregA .

Proof. Suppose we have proved that A and Areg produce the same system of compact sets

and therefore, KA = KAreg . By the above, the isometric identity KA = Asur ◦ K holds. An

application of [20, Corollary 2.1] then shows that KregA = KAreg , which would complete the

proof.

Since A ⊂ Areg, it only remains to show that Areg-compact sets are A-compact. Let

E be a Banach space and K an Areg-compact set of E. Given ε > 0, by Proposition 1.8,

we may find T ∈ Areg(`1;E) and M a compact set in ⊂ B`1 such that K ⊂ T (M) with

‖T‖Areg ≤ (1 + ε)mAreg(K;E). By [27, Lemma 4.11], there are a compact set L ⊂ B`1 , a

Banach space F and an injective compact operator S ∈ L(F ; `1) such that M ⊂ L = S(BF )

and S−1(M) is compact. In addition, we may choose L = {x ∈ `1 : ‖x − πn(x)‖ ≤ γn, n ≥
1}, where (γn)n belongs to Bc0 and πn : `1 → `1 is the canonical projection to the first n

coordinates. Now, we use the principle of local reflexivity for the finite dimensional subspaces

Wn = JE ◦ T ◦ πn ◦ S(F ) and find a sequence of operators Rn ∈ L(Wn;E) such that

‖Rn‖ ≤ 1 + ε and Rn ◦ JE ◦ T ◦ πn ◦ S = T ◦ πn ◦ S for all n. Since Wn ⊂ Wm for all

m ≥ n, straightforward calculations show that (T ◦πn ◦S)n is a Cauchy sequence in A. Also,
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(T ◦ πn ◦ S)n is convergent to T ◦ S in L. Then, T ◦ S belongs to A. Since S is injective,

K ⊂ T ◦ S(S−1(M)) which shows that K is A-compact.

The isometry follows from the inequality

mA(K;E) ≤ ‖T‖Areg ≤ (1 + ε)mAreg(K;E). �

As an immediate consequence, we have the following results.

Corollary 2.3. Let E be a Banach space, K a subset of E and A a Banach operator ideal.

Then, K is relatively A-compact if and only if K ⊂ E ′′ is relatively A-compact. Moreover,

mA(K;E) = mA(K;E ′′).

Corollary 2.4. Let A be a Banach operator ideal. Then, the isometric identity holds

KA = KddA .

For p-compactness, the above identity was obtained in [10, Corollary 3.6], see [14, Corol-

lary 2.6] and [26, Proposition 8] for the isometry. Also, Theorem 2.2 corresponds with [14,

Theorem 2.5] and [26, Theorem 5]. Finally, Corollary 2.3 was shown in [10, Corollary 3.6],

and the equality of the sizes appears in [14, Theorem 2.4].

We finish this section with a characterization of an A-compact operator in terms of the

continuity and compactness of its adjoint. The next result is well known for compact op-

erators and was studied in the polynomial and holomorphic setting in [2]. We denote by

E ′A the dual space of E considered with the topology of uniform convergence on A-compact

sets. As usual, E ′c denotes the dual space of E with the topology of uniform convergence on

compact sets and K◦ denotes the polar set of a set K.

Proposition 2.5. Let E and F be Banach spaces, T ∈ L(E;F ) and A an operator ideal.

The following statements are equivalent.

(i) T ∈ KA(E;F ).

(ii) T ′ : F ′A → E ′ is continuous.

(iii) T ′ : F ′A → E ′c is compact.

(iv) T ′ : F ′A → E ′B is compact for any Banach operator ideal B.

(v) There exists a Banach operator ideal B such that T ′ : F ′A → E ′B is compact.

(vi) T ′ : F ′A → E ′w∗ is compact.

Proof. Suppose (i) holds, then T (BE) = K is A-compact and K◦ is a neighborhood in F ′A.

Thus, for y′ ∈ K◦ we have that ‖T ′(y′)‖ = supx∈BE
|T ′(y′)(x)| ≤ 1, proving (ii).

Now, suppose (ii) holds. Then, there exists a relatively A-compact set K ⊂ F such that

T ′(K◦) is equicontinuous in E ′ which, by the Ascoli theorem, is relatively compact in E ′c,

obtaining (iii). Since Id : E ′c → E ′B is continuous for any Banach operator ideal B, (iii)

implies (iv). That (iv) implies (v) and (v) implies (vi) are clear. It remains to show that
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(vi) implies (i). Let L be a w∗-compact set of E ′ (hence ‖.‖-bounded) and K an absolutely

convex and A-compact set of F such that T ′(K◦) ⊂ L. As T ′(K◦) is ‖.‖-bounded, there

exists c > 0 such that |T ′(y′)(x)| ≤ c for every y′ ∈ K◦ and x ∈ BE. Therefore, T (BE) ⊂ cK

which ends the proof. �

3. Approximation properties given by operator ideals

The approximation property of a Banach space E means that Id ∈ F(E;E)
τ
, where τ

is the topology of uniform convergence on compact sets. A standard extension is obtained

by considering the topology of uniform convergence on A-compact sets τA and requiring the

identity map to satisfy Id ∈ F(E;E)
τA

. However, for a Banach operator ideal A it seems

to be more appropriate to consider the size of A-compact sets and look at the convergence

on A-compact sets under mA. In order to formalize the latter idea, we introduce on L(E;F )

the topology τsA of strong uniform convergence on A-compact sets, which is given by the

seminorms

qK(T ) = mA(T (K);F ),

where K ranges over all A-compact sets of E.

It is easy to check that τA and τsA are locally convex topologies. Regarding τsA, we propose

to study the approximation property for which Id ∈ F(E;E)
τsA

.

Recall that a Banach space E has the approximation property if and only if for any

Banach space F , F(F ;E) is ‖ · ‖-dense in K(F ;E) (see, e.g. [27, Proposition 4.12]). For the

Carl-Stephani theory, this result can be extended as follows.

Proposition 3.1. Let E be a Banach space and A a Banach operator ideal. The following

are equivalent.

(i) Id ∈ F(E;E)
τsA

.

(ii) For any Banach space F , F ◦ KA(F ;E) is ‖.‖KA-dense in KA(F ;E).

(iii) For any Banach space F , F(F ;E) is ‖.‖KA-dense in KA(F ;E).

Proposition 3.2. Let E be a Banach space and A an operator ideal. The following are

equivalent.

(i) Id ∈ F(E;E)
τA

.

(ii) For any Banach space F , F ◦ KA(F ;E) is ‖.‖-dense in KA(F ;E).

(iii) For any Banach space F , F(F ;E) is ‖.‖-dense in KA(F ;E).

Proofs of Propositions 3.1 and 3.2 essentially follow their classical prototype [27, Propo-

sition 4.12], basing on the following result, which holds by the proof of [27, Lemma 4.11].

Let E be a Banach space and A a Banach operator ideal. Suppose K is a convex, balanced
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and A-compact set of E. Then, there exist a Banach space F and an injective operator

T ∈ KA(F ;E) such that K ⊂ T (BF ) and T−1(K) ⊂ F is compact.

In [23], Oja introduces the concept of A-approximation property as the property enjoyed

by Banach spaces E such that F(F ;E) is ‖ · ‖A-dense in A(F,E), for every Banach space F .

Thus, a space satisfying any of the equivalences of Proposition 3.1 is said to have the KA-

approximation property. On the other hand, if A is an operator ideal and α is a norm on A,

in [16], the authors say that E has the (A, α)-approximation property if F(F ;E) is α-dense

in A(F,E) for all Banach spaces F . When α is the operator norm in L, we say that E has the

A-uniform approximation property instead of saying that E has the (A, ‖ · ‖)-approximation

property. Thus, a space satisfying any of the equivalences of Proposition 3.2 is said to

have the KA-uniform approximation property. Notice that N p covers the p-approximation

property [29, Definition 6.1] and the κp-approximation property [9, Definition 1.1].

For any operator ideal A, the approximation property implies the KA-uniform approxi-

mation property and the converse is not true, as it can be deduced from [29, Theorem 6.4].

The KA-approximation property is strictly stronger than the KA-uniform approximation

property (to see this, combine [29, Theorem 6.4] and [9, Theorem 2.4]). Also, if A and B
are two Banach operator ideals and A ⊂ B, the KB-uniform approximation property implies

the KA-uniform approximation property. Nonetheless, a Banach space may have the KB-

approximation property and fail to have the KA-approximation property (to see this combine

[9, Corollary 3.6] and [9, Theorem 2.4]).

We do not know if the approximation property implies or not the KA-approximation

property. However, the bounded approximation property yields a positive result. Recall that

a Banach space E has the bounded approximation property if Id ∈ F(E;E) ∩ λBL(E;E)

τ
,

for some λ ≥ 1.

Proposition 3.3. Let E be a Banach space with the λ-bounded approximation property, and

let A be a Banach operator ideal. Then E has the KA-approximation property.

Proof. Let K be an A-compact set of E. By Proposition 1.8, take T ∈ A(`1;E) and a

compact set M ⊂ B`1 such that K ⊂ T (M). As in Proposition 2.2, we may find a Banach

space F , an injective compact operator S ∈ L(F ; `1) and a compact set L = {x ∈ `1 : ‖x−
πn(x)‖ ≤ γn, n ≥ 1} with (γn)n in Bc0 such that M ⊂ L = S(BF ) and S−1(M) is compact.

Consider the finite dimensional subspaces Wn = T ◦ πn ◦ S(F ). By [6, Proposition 16.9], for

each n, there exists Rn ∈ F(E;E) such that ‖Rn‖ ≤ 2λ and Rn ◦ T ◦ πn ◦ S = T ◦ πn ◦ S.

Then we have
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mA((Rn − Id)(K);E) ≤ ‖(Rn − IdE) ◦ T ◦ S‖A
≤ ‖Rn ◦ T ◦ S −Rn ◦ T ◦ πn ◦ S‖A + ‖T ◦ πn ◦ S − T ◦ S‖A
≤ (‖Rn‖+ 1)‖T‖A‖S − πn ◦ S‖
≤ (2λ+ 1)‖T‖A|γn|.

Since (γn)n belongs to c0, the result follows. �

Recall that the minimal kernel of A is the composition ideal Amin = F ◦ A ◦ F . Now we

restrict to the class of right-accessible Banach operator ideals (those satisfying Amin = A◦F)

and show that the classic approximation property implies the KA-approximation property.

We need the following result.

Proposition 3.4. Let E be a Banach space and A a right-accessible Banach operator ideal.

Then, E has the KA-approximation property if and only if KA(F ;E) = KminA (F ;E) for all

Banach spaces F .

Proof. Since A is right-accessible, combining [6, Ex. 21.1] and [6, Proposition 21.4] we

get that ‖ · ‖KA and ‖ · ‖Kmin
A

coincide over F(F ;E). Thus, the result follows by a direct

application of Proposition 3.1. �

The above proposition covers the characterization of the κp-approximation property in

terms of the ideals Kp and Kminp , see the comments after [14, Proposition 3.9]. Also, the

next result generalizes [14, Proposition 3.10].

Proposition 3.5. Let E be a Banach space and A be a right-accessible Banach operator

ideal. If E has the approximation property, then E has the KA-approximation property.

Proof. If E has the approximation property, by [6, Proposition 25.11],

(KminA )sur(F ;E) = (KsurA )min(F ;E) = KminA (F ;E),

for every Banach operator ideal A and for every Banach space F . Now we show that if

A is right-accessible, KA = (Amin)sur = (KminA )sur isometrically. Indeed, the first isometry

follows from Proposition 2.1. For the second one, apply [6, Ex. 21.1] to show that KA is

right-accessible. The claim follows from the fact that KA = KKA isometrically.

Finally, since KA(F ;E) = KminA (F ;E) for every Banach space F , an application of Propo-

sition 3.4 completes the proof. �

It is well known (see, e.g. [27, Proposition 4.12]) that the dual E ′ of a Banach space E

has the approximation property if and only if for any Banach space F , F(E;F ) is ‖ · ‖-dense

in K(E;F ). Note that Kd = K. We characterize the KA-uniform and the KA-approximation

properties on E ′ via the ideal KdA, which is not surprising at the light of the results obtained
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by Delgado, Oja, Piñeiro and Serrano in the p-compact setting [7, Theorem 2.8] and [9,

Theorem 2.3]. We need the following lemma.

Lemma 3.6. Let E and F be Banach spaces and A a Banach operator ideal, then the set

E ⊗ F is τsA-dense in F(E ′;F ).

Proof. Since mA(x′′ ⊗ y(K);F ) = supx′∈K |x′′(x′)|‖y‖ for any bounded set K ⊂ E ′, any

x′′ ∈ E ′′ and any y ∈ F , the result follows by a direct application of the Alaoglu theorem. �

Proposition 3.7. Let E be a Banach space and A a Banach operator ideal. The following

are equivalent.

(i) E ′ has the KA-approximation property.

(ii) For any Banach space F , F(E;F ) is ‖ · ‖Kd
A

- dense in KdA(E;F ).

Proof. If (i) holds, fix ε > 0 and take T ∈ KdA(E;F ). Since T ′ ∈ KA(F ′;E ′) and E ′

has the KA-approximation property, by Lemma 3.6, there exists S ∈ F(E;F ) such that

‖T − S‖Kd
A

= ‖S ′ − T ′‖KA ≤ ε which gives (ii).

For the converse, take T ∈ KA(F ;E ′). By Corollary 2.4, T ′ ◦ JE ∈ KdA(E;F ′). Fix ε > 0,

by hypothesis, there exists S ∈ F(E;F ′) such that ‖S − T ′ ◦ JE‖Kd
A
≤ ε. Then,

‖S ′ ◦ JF − T‖KA ≤ ‖S ′ − (T ′ ◦ JE)′‖KA = ‖S − T ′ ◦ JE‖Kd
A
≤ ε,

and the result follows by Proposition 3.1. �

Analogously, E ′ has KA-uniform approximation property if and only if F(E;F ) is ‖ · ‖-
dense in KdA(E;F ), for any Banach space F .

A Banach space E has the approximation property if and only if E ′c has the approximation

property [28, Exposé 14]. Aron, Maestre and Rueda show the analogous result for the p-

approximation property [1, Theorem 4.6]. Here, we present a generalization of these results.

Proposition 3.8. Let E be a Banach space and A an operator ideal. Then, E has the

KA-uniform approximation property if and only if E ′A has the approximation property.

Proof. The locally convex space E ′A has the approximation property if and only if for any

ε > 0, any A-compact set K ⊂ E and any relatively compact set M ⊂ E ′A, there exists

S ∈ F(E;E) such that

(1) |(S ′ − Id)(x′)(x)| ≤ ε for all x′ ∈M, x ∈ K.

The continuity of the identity map E ′c → E ′A → (E ′, w∗) says that relatively compact

sets in E ′A coincide with ‖.‖-bounded sets. Then, E ′A has the approximation property if and

only if in (1) M is replaced by BE′ which is equivalent to say that E has the KA-uniform

approximation property. �
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Finally we give a reformulation of the KA-uniform approximation property in terms of

the ε-product of Schwartz. A Banach space E has the approximation property if and only

if E ⊗ F is dense in Lε(E ′c;F ) for every locally convex space F [28, Exposé 14]. We denote

by Lε(E ′A;F ) the space of all linear continuous maps from E ′A to a locally convex space F ,

endowed with the topology of uniform convergence on all equicontinuous sets of E ′. The

proof of the next proposition is standard and we omit it.

Proposition 3.9. Let E be a Banach space and A an operator ideal. The following state-

ments are equivalent.

(i) E has the KA-uniform approximation property.

(ii) E ⊗ F is dense in Lε(E ′A;F ) for any locally convex space F .

(iii) E ⊗ E ′ is dense in Lε(E ′A;E ′A).
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1953/54, Inst. Henri Poincaré.

[29] D. P. Sinha, A. K. Karn. Compact operators whose adjoints factor trough subspaces of `p, Studia Math.

150 (2002), 17–33.

[30] D. P. Sinha, A. K. Karn. Compact operators which factor trough subspaces of `p, Math. Nachr. 281

(2008), 412–423.
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