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The non-relativistic “Ramsey-Flygare relationship” is the most used procedure to obtain semi-
experimental NMR absolute shieldings by a correspondence between NMR shieldings (σ) and nuclear
spin-rotation constants (M). One of its generalizations to the relativistic framework is known as
the M-V model, which was proposed few year ago by some of the authors of the present work, and
right now only applied to linear molecules. This model includes terms that does not have non-
relativistic counterparts and also include the paramagnetic contribution to the NMR shielding of
nuclei in free atoms. All this ensures that its results fit quite well with those of four-component (4c)
calculations. The first application of the M-V model to non-linear molecules, like methyl halides or
CH3X molecules (X = F, Cl, Br and I), is given here. The analysis of each electronic mechanism
of σ shows that most of their electron correlation effects are strongly related with the same effects
in M . By including experimental data of M in the M-V model most of the correlation effects
are accurately taken into account for the absolute values of σ. Calculations of MY and σY (Y =
H, C and X) were carried out within the linear response formalism at the random phase level of
approach and density functional theory in both, 4c and non-relativistic frameworks. The best fit
between calculations of M and experimental data are obtained from calculations at 4c-PBE0 level
of theory in all cases, but not for M‖,Cl which suggest that a revision of the available experimental
data may be necessary. There is an additional advantage of using M-V model. One can indirectly
calculate shieldings of open-shell free atoms, which cannot be obtained at the moment by applying
4c methods.

I. INTRODUCTION

Nuclear spin-rotation (SR) tensors (M) are accurately
measured by microwave spectroscopy. They were ex-
tensively employed to validate many-electron structure
calculations in a wide number of molecules, and are
quite useful in nuclear magnetic resonance (NMR) spec-
troscopy. The absolute values of NMR magnetic shield-
ings (σ) -which are very difficult to measure- are obtain-
able from them by applying the widely known “Ramsey-
Flygare relationship” [1, 2]. This is a relationship be-
tween the paramagnetic contribution to the NMR shield-
ings and the electronic contribution to the SR constants
within a non-relativistic (NR) framework.

During the last decade several groups of research
around the world have made contributions that improve
the calculation of the absolute shieldings in heavy-atom
containing systems [3–13]. Four-component and two-
component methodologies were applied, being one of the
last ones, the M-V model developed by our group of re-
search [14–16]. There are still some doubts about which
methodology gives both, more insights on the physics be-
hind and accurate results, given that one can use different
strategies to generalize the Ramsey-Flygare relationship.
On the other hand our model was only applied to linear
systems and then it is necessary to enlarge its application
to non-linear molecular systems in order to know whether
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such model can be safely used in non geometrically re-
stricted molecular systems.

As mentioned, Flygare found an indirect way of ob-
taining absolute shielding constants by combining exper-
imental SR data with some highly accurate calculations
[17–19]. He assumed that:

1. The paramagnetic contributions to the shielding
constants of free-atom nuclei are null.

2. The NMR shieldings and SR tensors for linear
molecules have null elements on the symmetry axis
of the molecule.

3. For molecules, there is an equivalence between the
perturbative Hamiltonian that describes the inter-
action of magnetic moments of nuclear spins with
an external and uniform magnetic field and the per-
turbative Hamiltonian that describes electronic ef-
fects due to molecular rotation of the nuclei.

Since the earliest theoretical works that included rel-
ativistic effects on NMR shieldings, it is known that the
first statement is not correct. Besides, it is known that
in a relativistic framework the symmetry axis elements
of the NMR shielding tensor of a linear molecule are
not zero, which violates condition 2 [20]. These find-
ings together with some accurate experimental data col-
lected by Wasylishen and collaborators suggested that
the Ramsey-Flygare relationship is not valid when rela-
tivistic effects are not negligible [21]. More recently it
was shown that the formal expressions of both proper-
ties -the NMR magnetic shielding and SR tensors- cannot
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be explicitly related to each other within the relativistic
regime [22]. It means that it is not possible to obtain
an exact theoretical relationship among them that would
be valid within the relativistic framework. So, one of the
above mentioned conditions, the third one, is not fulfilled
any longer. Therefore, the Ramsey-Flygare relationship
does not work in heavy-atom containing molecules.

One of the straight ways to generalize it makes use of
the linear response within the elimination of small com-
ponents (LRESC) model [23, 24]. The development of
the M-V model was highly grounded on a bottom-up
procedure whose first steps were worked out within the
LRESC model. This procedure makes that, when the ve-
locity of light, c, is scaled to infinity, the M-V model goes
to the Ramsey-Flygare one.[14, 15, 25]. It is also worth
to mention that, in addition to the M-V model, some
other models were recently developed in order to extend
the applicability of the Ramsey-Flygare relationship to
heavy-atom-containing molecules [4, 5].

All previous applications of the M-V model to the com-
putation of NMR shieldings have shown that it gives very
close results to the four-component (4c) ones for heavy-
atom containing linear molecules [15, 16, 26]. As a next
step of our development of model M-V we shall show here
how accurate it is to reproduce magnetic shieldings in lit-
tle more general molecules like the set CH3X (X = 19F,
35Cl, 79Br, 127I), meaning non-linear compounds. For
them we also studied the electronic origin of both, elec-
tron correlation and relativistic effects on paramagnetic-
like (or e-e) and diamagnetic-like (or p-p) contributions
to both, σ and M tensors.

The analysis of the SR constants of both nuclei, X
and H in CH3X molecules (X = F, Cl, Br and I) has
been performed in several computational and experimen-
tal works. The earliest experimental works applied dif-
ferent techniques: i) a molecular-beam electric resonance
spectrometer to obtain radio-frequency spectra for CH3F
[27], ii) a molecular-beam maser spectrometer to obtain
high-resolution measurements of hyperfine structure on
CH3Cl [28] and iii) a molecular-beam absorption spec-
trometer to obtain high-resolution microwave spectra for
CH3Cl [29], CH3Br [30] and CH3I [31]. Besides, rota-
tional constants of CH3Br and CH3I were obtained with
the highest accuracy by combining data taken from ro-
tational spectra and pure quadrupole resonances [32].
The rotational spectra of CH3I was also observed once
more time and analyzed in the submillimeter-wave re-
gion, being these data combined with the microwave and
millimeter-wave measurements to determine with high
accuracy its rotational constants [33]. Then, combining
data obtained from Doppler-free double-resonance tech-
nique with that of previous Fourier-transform infrared
spectroscopy, the molecular constants of CH3I were again
obtained [34]. At the same time the Ramsey-Flygare re-
lationship given in Eq. (4) of Section II B of this work
was applied to obtain semi-experimental values of NMR
shieldings for F [27], Cl [29], Br [30] and I [31].

More recently, the microwave spectra of CH3Cl was ob-
tained using the Prague millimeter-wave semiconductor
spectrometer [35], and furthermore the Lamb-dip tech-
nique was exploited to obtain sub-Doppler resolution, en-
abling the determination of SR constants with an accu-
racy that rivals that obtained by molecular-beam electric
resonance measurements on CH3F [36].

Concerning the NMR spectroscopy, K. Jackowski and
coworkers have developed a remarkable methodology to
get experimentally based absolute shielding values. They
obtained absolute shieldings of 1H and 13C in CH3F [37],
CH3Br [38] and CH3I [39]. A systematic study of this
experimental set-up can be found in Ref. [40].

On the theoretical side, relativistic effects on mag-
netic shieldings of methyl halides were first studied
with different methodologies which only included spin-
orbit (SO) interactions [41–46]. A more general though
two-component perturbative approximation for including
relativistic effects on magnetic properties, the LRESC
model [23, 24], was recently applied to calculate σ(127I),
σ(79Br), σ(13C) and σ(1H) in CH3Br and CH3I [47]. This
method allows for the consideration of a number of rela-
tivistic mechanisms others than the SO one. Another and
related recent work was devoted to the study of σ(1H)
and σ(13C) for the family of CH3X (X = F, Cl, Br and
I) molecules. Quantum chemical calculations were car-
ried out at both, ab initio and density functional theory
(DFT) levels of approach, where relativistic corrections
were taken into account at the leading-order Breit-Pauli
perturbation level of approach [48].

To our knowledge there are only three papers that con-
tain 4c calculations of σ in methyl halides. In the first
one, σ(13C) in CH3I at 4c-DFT (using the KT3 func-
tional) and random phase approximation (RPA) levels
of theory, and using the gauge-independent atomic or-
bital (GIAO) scheme were studied. The authors also cal-
culated σ(13C) with a hybrid method, mixing NR-MP2
and 4c-RPA calculations [49]. Then, in a second paper
the same authors extended their work to the analysis of
σ(13C) in 70 CXnY4−n halogenomethanes (with n = 1,
2, 3, 4 and X,Y = H, F, Cl, Br and I). They performed
RPA and DFT 4c calculations (with the OPW91 func-
tional), and also used two hybrid methods (NR-MP2 +
4c-RPA and NR-MP2 + 4c-OPW91) to calculate σ(13C)
[50]. The third one is the most recent and is close to the
present one [13]. Uhĺıková and coauthors have calculated
σ(Br) and σ(I) in CH3Br and CH3I using a 4c Dirac-
Coulomb Hamiltonian at DFT-BP86 and DFT-PBE lev-
els of approach, together with their NR counterparts.
They compared the results of calculations of shieldings
and SR constants employing experimental and ab ini-
tio optimized equilibrium geometries, but then they ap-
plied the Ramsey-Flygare relationship to get σ, employ-
ing both, NR and 4c methods. Another aim of our work
is related with the analysis of the consequences that arise
on the values of absolute shieldings when they are calcu-
lated in this way.

In the following section we treat the equations for NMR
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shielding and nuclear SR tensors derived within the 4c
framework, as well as the relationship between them,
both in NR and 4c levels of theory. In Section III the
computational details for all calculations are given and
Section IV start with with a comparison of calculated
nuclear SR tensor elements with the corresponding ex-
perimental data. The accuracy of the M-V model for
methyl halides is then analyzed and concluding remarks
are given in Section V.

II. THEORY

The SR tensor of a nucleus Y , MY , couples the mag-
netic dipole moment due to nuclear spin with the molec-
ular rotational angular momentum [19, 22]. On the other
hand, the NMR shielding tensor of a nucleus Y , σY , cou-
ples the nuclear magnetic dipole moment with an exter-
nal uniform magnetic field.

A. Nuclear spin-rotation and NMR shielding
tensors

The tensor MY in a molecule in equilibrium depends
on both, nuclear and electronic degrees of freedom: MY

= Mnuc
Y + M elec

Y [19, 22]. In Gaussian atomic units,
which are used throughout the present work, they are
written as

Mnuc
Y =

∑
X 6=Y

gY ZX

2mpc2

[
RX,CM ·

RXY

|RXY |3
−RX,CM

RXY

|RXY |3

]
⊗ I−1,(1)

and

M elec
Y =

gY
2mpc2

〈〈
(
r −RY

|r −RY |3
× cα

)
; Je〉〉 ⊗ I−1.(2)

Here, gY is the nuclear g-value of nucleus Y , ZX is the
atomic number of nucleus X, mp is the proton mass, c is
the speed of light in vacuum, RXY and RX,CM are the
position vectors of nucleus X with respect to nucleus Y
and the molecular center of mass, respectively, and I is
the molecular moment of inertia tensor in the equilibrium
geometry with respect to its center of mass. Furthermore,
〈〈 ; 〉〉 stands for the relativistic polarization propagator,
α is the Dirac operator, and Je = (r −RCM )×p+ 1

2Σ is
the relativistic electronic total angular momentum opera-
tor, which is the sum of the total orbital and spin angular
momenta. The orbital angular momentum is taken with
respect to the molecular center of mass, and Σ is the 4c
extension of the Pauli matrices. Then, Eq. (2) can be
written as M elec

Y = ML
Y +MS

Y .
On the other hand, within the 4c polarization propa-

gator theory (4c-PolProp) σY is written as

σY =
1

2c2
〈〈
(
r −RY

|r −RY |3
× cα

)
; (r −RG)× cα〉〉,(3)

where RG represents the gauge origin position of the
magnetic potential.

Working with the 4c-PolProp, tensors M elec
Y and σY

can be approximated as the sum of two terms which con-
tain the following transition moment matrix elements:
one that is built between occupied positive-energy or-
bitals and unoccupied positive-energy orbitals (e-e contri-
butions), and another one that is built between occupied
positive-energy orbitals and unoccupied negative-energy
orbitals (p-p contributions) [51, 52].

B. Relationship between σ and M

Ramsey and Flygare based their works on the
Schrödinger representation. They found a reliable the-
oretical relationship between σY and MY which is still
useful for obtaining absolute shieldings from measured
SR constants [1, 2, 19]. Such a relation, the Ramsey-
Flygare relationship, is valid when the molecules do not
contain heavy atoms and are considered as rigid rotors;
it is written as

σY = σNR−paraY + σNR−diaY

≈ mp

gY
MNR

Y ⊗ I + σFA,NRY . (4)

The symbols σNR−paraY and σNR−diaY stand for paramag-
netic and diamagnetic contributions to the NR shielding,

respectively, and σFA,NRY is the shielding of a nucleus Y
for a free atom (which has only diamagnetic contributions
within the NR domain). Furthermore, results of calcu-
lations with the Ramsey-Flygare relationship are more
accurate for isotropic values than for individual tensor
elements [17–19].

Our main concern here is related with the application
of the M-V model to non-linear molecules. This model
is the most accurate of the set of M-i (i= I to V) models
whose theoretical grounds are given elsewhere [15, 16].
In this model both properties are related as follows:

σM−VY = σSRY + σFAY +
1

2c

(
νSY − νFA,SY

)
. (5)

where

σSRY =
mp

gY
MY ⊗ I, (6)

σFAY is the 4c shielding tensor of nucleus Y for the free

atom, and both νSY and νFA,SY are terms without NR
equivalents, where[15]

1

2c
νSY =

1

2c2
〈〈
(
r − rY
|r − rY |3

× cα
)

; Se〉〉 =
mp

gY
MS

Y ⊗ I,
(7)

being Se = 1
2Σ. Besides, νFA,SY has the same expression

as that of νSY , but refers to the free atom. In addition,
the linear response on the rhs of Eq. (7) is formally the
same as that of MS

Y .
One can easily see that Eqs. (4) and (5) are expressed

with some similar formal terms. The main difference is
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that the first one is written within the NR framework,
meaning that it includes only scalar terms; instead, the
model M-V have all its elements written within the rela-
tivistic framework.

We shall consider two different components of the σ
tensors for carbon and halogens nuclei. They are the
perpendicular and parallel components relative to the C-
X molecular bond axis. Hence,

σ
M−V (e−e)
⊥(‖),Y =

mp I⊥(‖)

gY
M

elec(e−e)
⊥(‖),Y + σ

FA(e−e)
Y +

1

2c

(
ν
S(e−e)
⊥(‖),Y − ν

FA,S(e−e)
Y

)
(8)

and

σ
M−V (p−p)
⊥(‖),Y =

mp I⊥(‖)

gY

(
Mnuc
⊥(‖),Y + M

elec(p−p)
⊥(‖),Y

)
+ σ

FA(p−p)
Y + +

1

2c

(
ν
S(p−p)
⊥(‖),Y − ν

FA,S(p−p)
Y

)
. (9)

Then, the isotropic shielding constant for H, C and X
nuclei are expressed as

σM−Viso,Y = σSRiso,Y + σFAY +
1

2c

(
νSiso,Y − νFA,SY

)
.(10)

III. COMPUTATIONAL DETAILS

Gas phase experimental geometries, determined by
microwave and infrared spectroscopies and taken from
Ref. [53], were considered for CH3X (X = 19F, 35Cl,
79Br, 127I) molecules. The equilibrium bond distances
and angles are given in Table I.

TABLE I: Equilibrium bond distances and angles for
CH3X (X = 19F, 35Cl, 79Br, 127I) molecules.

CH3F CH3Cl CH3Br CH3I

C–H (in Å) 1.095 1.090 1.086 1.084

C–X (in Å) 1.382 1.785 1.933 2.132

θ(HCH) 110.45◦ 110.8◦ 111.2◦ 111.2◦

Furthermore, calculations of SR constants were per-
formed with values of nuclear g-factors taken from
Ref. [54]: 5.585694 for 1H, 1.404824 for 13C, 5.257736 for
19F, 0.547916 for 35Cl, 1.404267 for 79Br and 1.125309 for
127I. Four-component calculations of σ, M and νS were
performed with the Dirac program package [55, 56]. All
of them were based on the Dirac-Coulomb Hamiltonian,
employing the default choice for a Hamiltonian of the
Dirac code. It uses an energy correction to avoid the
explicit calculation of (SS|SS) integrals [57].

In all calculations, Dyall’s relativistic acv4z basis sets
(dyall.acv4z) were employed for hydrogen (K. G. Dyall,
unpublished), fluorine, carbon, chlorine [58], bromine
and iodine [59], together with uncontracted Gaussian ba-
sis sets and the common gauge-origin (CGO) approach
(additional calculations employing GIAOs are given in
Supplemental Material [60]). The small component basis
sets for relativistic calculations were generated by apply-
ing the unrestricted kinetic balance prescription (UKB)

[52]. In addition, the Gaussian nuclear charge distribu-
tion was used [61].

Most of response calculations have been carried out at
the 4c-PolProp/RPA level of approach employing Dirac
Hartree-Fock (DHF) wave functions. Non-relativistic
values of σ andM (reported here as σNR−para, σNR−dia

and MNR−elec) were obtained scaling the speed of light
to c = 100c0. The value of the speed of light in vacuum
used throughout all 4c calculations was c0 = 137.0359998
a.u..

The gauge origin for the external magnetic potential
was always placed at the molecular center of mass. Then
a direct comparison with the SR results can be safely
made. Furthermore, the values of σFA and νFA,S were
calculated for the following anions: 19F−, 35Cl−, 79Br−

and 127I−, instead of the neutral atoms in order to con-
sider closed-shell systems.

The influence of electron correlation effects was stud-
ied through Dirac Kohn-Sham (DKS) DFT calculations
performed employing the Dirac code. DFT calculations
are also based on the 4c Dirac-Coulomb Hamiltonian
and have been done using a variety of NR exchange-
correlation functionals in the following categories: (i) the
generalized gradient approximation (GGAs), functionals
KT3 [62] and BP86 [63, 64], and (ii) the hybrid functional
PBE0 [65].

IV. RESULTS AND DISCUSSION

In this Section, 4c calculations of SR constants at
RPA and DFT levels of theory are compared with avail-
able experimental data for hydrogen and halogen atoms.
Afterwards, each term of σM−VY is analyzed separately
in order to learn about the underlying physics that
may be influencing both, the paramagnetic-like (e-e) and
diamagnetic-like (p-p) contributions to σY . In line with
this, results of 4c calculations of the isotropic shieldings
are compared with those obtained from the application of
the M-V model. Then, an analysis of semi-experimental
values of absolute shieldings is introduced, where ex-
perimental SR constants are included into the M-V
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model together with highly accurate calculations of σFAY

and 1
2c

(
νSiso,Y − νFA,SY

)
to obtain values of σM−Viso,Y (semi-

expt). In the last subsection we shall give an analysis of
the electronic origin of MC and σC for 13C.

A. Four component calculations of the tensor M

Results of calculations of parallel and perpendicular
components of MX , and the isotropic contribution to
MH are displayed in Table II. We start analyzing MX .
As expected, relativistic effects inMX increase as ZX be-
comes higher. Besides, those effects have opposite signs
on the perpendicular and parallel tensor elements. This
fact makes that relativistic effects on isotropic values of
MX become smaller than the ones in each component.

Results of calculations at 4c-PBE0 level of theory are,
by far, the best fitting to experimental data. Those val-
ues are within error bars of experiments for both, per-
pendicular and parallel components of the nuclear spin-
rotation tensor and for all nuclei, but not for the chlorine
nucleus in CH3Cl. For this last case a discrepancy be-
tween calculated and experimental values is found, even
if the experimental error bar is particularly large. So it
may be interesting to know whether new measurements
can confirm which one of both numbers is the most ac-
curate.

Furthermore, only 4c calculations reproduce in an ad-
equate manner the experimental anisotropies of the SR
tensor of halogens, i.e. the differences between M⊥,X and
M‖,X , as it can be seen from results given in Table II.
In order to be more clear about this fact, we take the
iodine nucleus as an example. The experimental value of
its anisotropy is (−0.298± 0.097) kHz, whereas the NR-
PBE0 and 4c-PBE0 calculations give −3.4299 kHz and
−0.2693 kHz, respectively.

Concerning electron correlation our results show that
they are larger than the relativistic effects in all cases.
These last ones are less than 1.6 kHz for M⊥,X and up to
3.0 kHz for M‖,X . On the other hand, correlation effects
are 6.0 kHz at most for both perpendicular and parallel
components of MX .

Turning now to the analysis of the isotropic values of
MH we want first to highlight that both effects, relativis-
tic and electron correlation, are very small. This behavior
is different to the one observed in hydrogen halides. In
these last molecules the HALA effects (due to the inclu-
sion of relativity in the calculations) strongly contribute
to MH [66]. This means that, for methyl halides, heavy-
atom effects are not efficiently transmitted through two-
bonds. Again electron correlation effects are higher than
the relativistic ones. On the other hand, electron corre-
lation effects grows up in the opposite direction as com-
pared to the relativistic effects, meaning from CH3I to
CH3F.

B. Accuracy of the M-V model

Since 2016, the M-V model was successfully applied to
a few set of linear molecules which include the following
dihalogen molecules: XY (X, Y = H, F, Cl, Br, I, At)
[15], and some others like UV (U = Li, Na, K, Rb, Cs,
Cu, Ag, Au, H, F, Cl, Br, I; V = H, I), AgZ and CsZ (Z
= H, F, Cl, Br, I) [16]. In those cases, NMR shielding
constants were accurately reproduced. So, if the same
happens also for methyl halides it would mean that our
model could also be safely applied to some non-linear
molecules.

In Table III perpendicular and parallel tensor elements
of σX , in terms of (e-e) and (p-p) contributions are

given. The same occurs with σM−VX . The differences

among the (e-e) contributions to σX and σM−VX increase
as ZX grows, whereas the opposite trend is found for
the differences between their (p-p) contributions. They
are less than 1.6 ppm (in absolute values) for all halo-
gen atoms. Besides, the M-V model better reproduces

the values of σ
(e−e)
‖,X than those of σ

(e−e)
⊥,X . Further-

more, in agreement with earlier works [17, 18], the dif-
ferences in the (p-p) contributions of both components,

i.e. σ
(p−p)
⊥,X − σM−V (p−p)

⊥,X and σ
(p−p)
‖,X − σM−V (p−p)

‖,X , have

opposite signs. Then, the model M-V reproduces σ
(p−p)
iso,X

better than their individual tensor elements. The same
behavior is found in the NR Ramsey-Flygare relationship
[14, 17–19]. The behavior of the (e-e) contributions to
σX and to each one of the three terms of the rhs of Eq. (5)
are shown in Fig. 1. According to the Ramsey-Flygare

relationship, the NR limit of σ
(e−e)
X (which is equal to

σNR−paraX ) is such that the last two terms of that equa-
tion are zero. This fact allows for to realize that rela-
tivistic effects in M

(e−e)
X are much smaller than those

in σ
(e−e)
X (see Fig. 1). The highest relativistic effects

(in percentage) appear for M
(e−e)
‖,I (12.8%) followed by

M
(e−e)
⊥,I (10.4%). Besides, for all cases other than iodine

the relativistic effects in M
(e−e)
⊥,X and M

(e−e)
‖,X are smaller

than 5%.

In addition, it is clearly seen that relativistic effects in

σ
(e−e)
X grow up from fluorine to iodine, and this occurs for

both, perpendicular and parallel tensor components. In

particular, relativistic effects in σ
(e−e)
‖,I contribute around

1662.00 ppm. According to the M-V model, this quite

large value (its NR limit is σNR−para‖,I = −62.55 ppm) is

mainly due to the core contribution of σ
FA(e−e)
I− , whose

NR limit is equal to zero.

In order to highlight the accuracy of our model
we performed a deeper analysis of the shield-
ing of iodine nucleus in methyl iodide. Calcu-

lations of
mpI
gI

(
M

(e−e)
⊥,I −MNR−elec

⊥,I

)
, σ

FA(e−e)
I− and

1
2c

(
ν
S(e−e)
⊥,I − νFA,S(e−e)I−

)
at RPA level of approach give
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TABLE II: Results (in kHz) of NR and 4c calculations of M⊥(X), M‖(X) and Miso(H) for CH3X molecules (X =
F, Cl, Br and I).

NR 4c Expt

Molec Nuc Comp RPA BP86 PBE0 KT3 RPA BP86 PBE0 KT3

CH3F F ⊥ 6.2594 2.4380 3.7170 0.0005 6.2557 2.4360 3.7149 -0.0134 4.50± 0.58a

F ‖ -45.0782 -65.0642 -57.4576 -63.7227 -45.2198 -65.2510 -57.6251 -63.9125 -55.7± 1.2a

H iso 5.6462 5.2498 5.3795 5.3746 5.6603 5.2676 5.3957 5.3933

CH3Cl Cl ⊥ -1.8819 -2.6344 -2.3548 -2.5833 -1.8772 -2.6332 -2.3525 -2.5854 -2.150± 0.063b

Cl ‖ -3.6698 -5.0344 -4.5309 -4.9215 -3.7069 -5.0948 -4.5833 -4.9827 -7.0± 1.6c

H iso 5.6034 5.3640 5.4383 5.4873 5.6209 5.3881 5.4601 5.4874

CH3Br Br ⊥ -10.1826 -14.5261 -12.9952 -14.2724 -9.8760 -14.4345 -12.8472 -14.2405 -12.63± 0.10d

Br ‖ -14.3106 -19.9670 -17.9759 -19.9978 -15.0453 -21.2517 -19.0814 -21.2982 -18.8± 1.7d

H iso 5.5808 5.3708 5.4342 5.4653 5.6241 5.4388 5.4952 5.5365

CH3I I ⊥ -14.8484 -19.9219 -18.0681 -19.5614 -13.2497 -19.5386 -17.4197 -19.2467 -17.398± 0.0475e

I ‖ -11.5564 -16.1591 -14.6382 -16.4485 -13.0986 -19.0835 -17.1504 -19.4188 -17.10± 0.085e

H iso 5.6514 5.5083 5.5236 5.5599 5.6915 5.5702 5.6111 5.6652

a Taken from Ref. [36].
b Taken from Ref. [35].
c Taken from Ref. [29].
d Taken from Ref. [30].
e Taken from Ref. [34]. Standard deviations computed as one half of the reported errors.

TABLE III: Calculated values (in ppm) of ⊥ and ‖
components of σX and σM−VX in terms of their (e-e)
and (p-p) contributions. Four-component calculations

were performed at the RPA level of approach.

σ
(e−e)
X σ

M−V (e−e)
X ∆(e−e) σ

(p−p)
X σ

M−V (p−p)
X ∆(p−p)

X = F

⊥ 6.14 6.40 -0.26 505.19 519.11 -13.92

‖ -48.31 -48.18 -0.13 489.33 479.41 9.92

X = Cl

⊥ -222.18 -221.79 -0.39 1157.30 1166.89 -9.59

‖ 9.66 9.76 -0.10 1129.47 1125.35 4.12

X = Br

⊥ -173.30 -172.34 -0.96 2956.06 2963.95 -7.89

‖ 411.54 411.78 -0.24 2920.03 2916.75 3.28

X = I

⊥ 516.04 517.64 -1.60 4932.43 4939.19 -6.76

‖ 1599.67 1600.09 -0.42 4894.33 4892.44 1.89

(as shown in Fig. 1a) 171.73 ppm, 1913.47 ppm and
81.81 ppm, respectively. The addition of all of them

gives 2167.01 ppm, and the relativistic effect in σ
(e−e)
⊥,I

(i.e. σ
(e−e)
⊥,I − σNR−para⊥,I ) is 2165.41 ppm. Therefore,

the difference between relativistic effects of σ
(e−e)
⊥,I and

σ
M−V (e−e)
⊥,I amount to only −1.60 ppm, meaning that it

is less than 0.1 % (as seen in Table III). Then, it can safely
be stated that the model M-V accurately reproduces the

relativistic effects for σ
(e−e)
⊥,I .

Furthermore, the application of our model to the

study of σ
(e−e)
‖,I gives even better results. In Eq. (8)

it is seen that relativistic effects arises from the follow-

ing three factors:
mpI
gI

(
M

(e−e)
‖,I −MNR−elec

‖,I

)
, σ

FA(e−e)
I−

and 1
2c

(
ν
S(e−e)
‖,I − νFA,S(e−e)I−

)
. Their 4c-RPA values are

−8.25 ppm, 1913.47 ppm and −242.80 ppm, respectively
(see Fig. 1b), being the addition of the three equal to

1662.42 ppm, while σ
(e−e)
‖,I − σNR−para‖,I = 1662.00 ppm.

So, in this case the difference between them is −0.42 ppm
(as reported in Table III).

Concerning the (p-p) contributions (see Eq. (9)), we

observe that relativistic contributions to σ
(p−p)
⊥(‖),Y are

mainly given by those of σ
FA(p−p)
Y . In the special case

of iodine we found that there is an accurate matching
between 4c and the M-V values at the RPA level of ap-

proach (see Table III). Besides, σ
FA(p−p)
I− = 4890.21 ppm,

σ
(p−p)
⊥,I = 4932.43 ppm and σ

(p−p)
‖,I =4894.33 ppm, so that

almost the whole contribution to σ
(p−p)
⊥(‖),I is of an atomic

nature. Therefore, we note that (p-p) contributions to
shieldings are such that: (i) they are almost completely
described by σFA(p−p), and (ii) parallel and perpendic-
ular tensor elements have values of σ(p−p) − σM−V (p−p)
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FIG. 1: Perpendicular and parallel contributions (in ppm) to σ
(e−e)
X , M

(e−e)
X , σ

FA(e−e)
X and ν

S(e−e)
X − νFA,S(e−e)X

for the X nuclei in CH3X molecules (X = F, Cl, Br, I). Calculations were performed at the relativistic RPA level of

approach. Values of σNR−paraX are also displayed.

with opposite signs (see Table III). Then the value of

σ
(p−p)
iso − σM−V (p−p)

iso is highly reduced, as happens when
calculations are performed within the NR regime [17, 18].

An additional point must be raised here. The error in-
troduced by including NMR shieldings of anions instead
of the shielding of neutral free atoms, as it should be, can
be estimated working within the NR regime. As an ex-
ample, for iodine such a difference is found to be between
−5.3 and −5.1 ppm, according to the level of theory em-
ployed (see Supplemental Material [60]). Even though
such differences (calculation of anions instead of neutral
atoms) do not change the main statements pointed out
above, they do contribute to a better reproduction of
isotropic values by employing the model M-V.

C. Isotropic shieldings and spans of halogens

The application of model M-V give new and power-
ful tools to the analysis of the electronic origin of the

relativistic effects on σiso,X . As we did above we shall
analyze now the (e-e) and (p-p) contributions to it.

First of all we should highlight here that σ
(e−e)
iso,X rep-

resents only up to 15% of the total shielding for io-
dine (7% for bromine, 23% for chlorine and 10% for
fluorine). This means that the (p-p) term gives the

largest contribution, being its M
(p−p)
iso,X values almost zero

in all cases, as expected [22, 66]. Besides, as stated re-

cently in Ref. [15], the differences ν
S(p−p)
iso,X − νFA,S(p−p)X

are also vanishingly small. Therefore, σ
M−V (p−p)
iso,X ≈

mp

3gX
Tr (Mnuc

X ⊗ I)+σ
FA(p−p)
X , being this expression close

to the Ramsey-Flygare relationship for σNR,diaiso,X [17, 18].

Furthermore, almost all (more than 99%) of the relativis-

tic effects of σ
(p−p)
iso,X come from the relativistic effects of

σ
FA(p−p)
X . These effects become larger as ZX increase,

being less than 13% in the case of iodine.

The NR limits of both, σ
(e−e)
iso,X and M

L(e−e)
iso,X fulfill the
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Ramsey-Flygare relationship but their corresponding rel-
ativistic effects have opposite signs. This is what un-
derlies the breakdown of that well-known relation when
heavy atoms are involved. On the other hand, the values

of σ
M−V (e−e)
iso,X have a very good agreement with those

of σ
(e−e)
iso,X . This is so because the M-V model includes

the contributions (from largest to smallest) of σ
FA(e−e)
X ,

M
S(e−e)
iso,X and ν

S(e−e)
iso,X − ν

FA,S(e−e)
X , which are all zero

in the NR limit. It is worth to stress that all of them
are important in order to get the values of σ

M−V (e−e)
iso,X

close to σ
(e−e)
iso,X (see Supplemental Material [60]). In

the case of iodine, for instance, when σ
FA(e−e)
X and

ν
S(e−e)
iso,X −νFA,S(e−e)X are neglected, 95% of the relativistic

effects of σ
(e−e)
iso,I are not included. This means that the

relativistic effects of M
(e−e)
iso,I represent only around 5%

of the relativistic effects of σ
(e−e)
iso,I . Therefore, the inade-

quate replacement of MNR−para
iso,X by M

(e−e)
iso,X as equivalent

to the NR Ramsey-Flygare relationship (a proposal re-
cently adopted in several works), gives incomplete and
so, wrong results [4, 6, 13, 67].

We start now the analysis of correlation effects in
σiso,X employing the M-V model. Among 97.0% and

101.5% of the correlation effects on both, σ
(e−e)
iso,X and

M
L(e−e)
iso,X have a similar electronic origin (see Supplemen-

tal Material [60]).
This means that, when electron correlation effects are

accurately included in M
(e−e)
X , much of these effects will

be included in σ
(e−e)
iso,X . On the other hand, correlation

effects for σ
FA(p−p)
X , which are the main contributions to

σ
(p−p)
iso,X , are smaller than 0.5 % (see Supplemental Mate-

rial [60]).

All these findings can be summarized as follows: (i)

relativistic effects in M
(e−e)
iso,X represent only a small frac-

tion of its contributions to σ
(e−e)
iso,X , whereas most of them

are due to σ
FA(e−e)
X ; (ii) correlation effects are almost

of the same value for
mp

3gX
Tr

(
M

(e−e)
X ⊗ I

)
and σ

(e−e)
iso,X ;

(iii) σ
(p−p)
iso,X are mostly independent of electronic corre-

lation effects, and (iv) relativistic effects on σ
(p−p)
iso,X are

smaller than 13%. Then, one can estimate the accuracy
of model M-V to reproduce the total values of isotropic
shieldings of halogen atoms in methyl halides by knowing

that
σM−V
iso,X−σiso,X

σiso,X
is smaller than 0.013 for fluorine, 0.006

for chlorine, 0.002 for bromine and 0.001 for iodine.

The analysis of the anisotropy of the shielding can be
performed from the span (Ω) of the halogens nuclei in
methyl halides (i.e. ΩX = σ⊥,X − σ‖,X) employing the
model M-V. In Fig. 2 the accuracy of this model in re-
producing the 4c values of the shielding’s span is ob-
served. The small differences between them are almost

completely given by their (p-p) contributions, as can be
seen in Table III.
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FIG. 2: 4c RPA values of the spans of NMR shielding,
SR tensors and results using model M-V (i.e.,

perpendicular minus parallel contributions to σX , MX

and σM−VX ) in CH3X molecules (X = F, Cl, Br, I). All
values are given in ppm.

Another fact that Fig. 2 highlights is the crucial role
that νSX plays in the reproduction of the 4c values of

ΩX . The 4c-RPA value of 1
2c

(
νS⊥,I − νS‖,I

)
in methyl io-

dide is 323.87 ppm, whereas ΩI = −1045.53 ppm for this
molecule. This not only indicates how important the rel-
ativistic effects are for accurately reproducing the values
of spans (because νS is always zero in the NR limit), but
even more important is that it confirms that νS cannot
be neglected to accurately reproduce the complete NMR
shielding tensor from its relation with the SR tensor.

D. New semi-experimental absolute values of σX

From the three terms of Eq. (10) only one, the first
one, can be either taken from calculations or from ex-
periments. Including its values from experiments, semi-
experimental values of σiso,X are obtained and given in
Table IV. The main differences among theoretical and
experimental values of σSRiso,X (see Eq. (6)), shown in the
second column of Table IV, are mainly due to the dis-
crepancies between experimental data and the calculated
values of M⊥,X (and not M‖,X , because I⊥ > I‖). As

observed in Table II the best agreement between Mexpt
⊥,X

and their calculated counterparts is found for iodine in
CH3I at the DFT/PBE0 level of theory, being the same
behavior observed in Table IV.

On the other hand, the second term of Eq. (10) can-
not be directly obtainable employing the Dirac code
because linear response calculations for open-shell elec-
tronic structures (as halogens are) are not currently im-
plemented in it. Then, they can be estimated as the sum
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TABLE IV: Semi-experimental values of σiso,X obtained from experimental values of SR constants taken from

Table II and 4c-DFT/PBE0 calculations of σFAX− , νSiso,X and νFA,SX− for halogens in methyl halides. Results in ppm.

σSR
iso,X(expt)a σFA

X− ∆σFA,NR
X

b ∆νSX
c σM−V

iso,X (semi-expt)

F -0.60±1.91 481.68 -9.62 -0.01 471.45±1.91

[-4.86]d [471.64]e[470.98]f

Cl -205.64±6.85 1179.41 -6.77 -0.07 966.93±6.85

[-213.96]d [960.21]e

Br -596.28±3.98 3439.70 -6.08 -2.73 2834.61±3.98

[-606.43]d [2825.92]e [2460.2]g

I -1280.21±2.42 6800.30 -5.28 -25.69 5489.12±2.42

[-1281.90]d [5487.96]e [4261.3]g

a Obtained as
mp

3gX
Tr

(
Mexpt

X ⊗ I
)

, where Mexpt
X are taken from Table II.

b ∆σFA,NR
X = σFA,NR

X −σFA,NR

X− is the difference between NR/PBE0 shielding of neutral and ionized atom (see Supplemental Material

[60]).
c ∆νSX = 1

2c

(
νSiso,X − νFA,S

X−

)
.

d Four-component PBE0 calculation (see Supplemental Material [60]).
e Four-component PBE0 calculation of σiso,X (see Supplemental Material [60]).
f Experimental value taken from Ref. [37].
g Four-component BP86 calculation of σdia

X + σSR
X . Taken from Ref. [13].

of two terms: (i) the shielding of the ionized closed-shell
atom instead of the neutral atom, i.e. σFAX− , and (ii) the

NR correction given by ∆σFA,NRX = σFA,NRX − σFA,NRX− ,

where σFA,NR is calculated as a NR electronic ground-
state expectation value.

Concerning how important are electron correlation ef-
fects on the absolute values of the shieldings one should
first realize that the correlation effects are naturally in-
cluded in experimental data. So, the semi-experimental
values of absolute NMR shieldings given in Table IV do
include most of such effects.

The way to include relativistic effects requires an spe-
cial analysis. This will also shed some light on the rea-
sons of the differences between our results with the ones
recently published by Uhĺıková and Urban [13]. In or-
der to find the absolute isotropic shielding constants of

bromine and iodine they calculated σ
(e−e)
iso,X , σ

(p−p)
iso,X and

mp

3gX
Tr

(
M elec

X ⊗ I
)

(in their work, σpara, σdia and σSR,

respectively) at 4c-DFT/BP86 level of theory and em-
ploying ab initio optimized geometries. They also ob-
tained NR values by scaling the speed of light 100 times
its real value. Even though their results were obtained
using geometries and basis sets other than those em-
ployed in the present work, an appropriate compari-
son with ours are still valid. In their Table 5, they

compare calculations of σiso,X (i.e. σ
(e−e)
iso,X + σ

(p−p)
iso,X )

and
mp

3gX
Tr

(
M elec

X ⊗ I
)

+ σ
(p−p)
iso,X with values of shield-

ings mentioned as “experimental”, being them obtained
by the application of the NR Ramsey-Flygare relation-
ship (our Eq. (4)) and including experimental SR con-
stants [30, 31]. They stated that Eq. (4) “can be
used to determine the absolute nuclear shielding us-

ing a specific correction value, which will depend on
the position of an element in the periodic table” [13].

Such a correction value should be related to σ
(e−e)
iso,X −

mp

3gX
Tr

(
M elec

X ⊗ I
)
, and following Eq. (8) of our model

this is equal to σ
FA(e−e)
X + 1

2c

(
ν
S(e−e)
iso,X − νFA,S(e−e)X

)

(note that according to Ref. [22], M
elec(p−p)
X is almost

negligible in all cases). Then, this “specific correct-
ing value” should be related to an atomic contribution

(σ
FA(e−e)
X − 1

2cν
FA,S(e−e)
X ) together with another term

that depends on the environment ( 1
2cν

S(e−e)
iso,X ) [15, 16, 26].

The calculated values of
mp

3gX
Tr

(
M elec

X ⊗ I
)

+ σ
(p−p)
iso,X

published in Ref. [13] are closer to the experimental val-
ues of σexpiso,X published long time ago in Ref. 30 and Ref.

31, than σ
(e−e)
iso,X +σ

(p−p)
iso,X . Nevertheless, this is in contrast

with our findings because our calculated values of σiso,X
are in very good agreement with σM−Viso,X (semi-expt), and

far from
mp

3gX
Tr

(
M elec

X ⊗ I
)

+ σ
(p−p)
iso,X (see Table IV and

Supplemental Material [60]).
According to this analysis the model M-V is useful not

only for obtaining semi-experimental absolute values of
NMR shieldings, but also to learn more about the physics
that is behind such magnetic property.

E. Absolute shieldings of 13C

First of all we shall consider the dependence on the
shielding of carbon atoms when the isotope 13C replace
that of 12C in our calculations.

One difference may arise by the modification of the
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gauge origin position (see Eq. (3). In the present work,
the gauge origin was placed at the molecular center of
mass, which will change only a bit with the switch from
12C to 13C. Then, the shielding values are almost the
same independently of which carbon isotope is used. Fur-
thermore, when the GIAO approach is used instead of
the CGO one, the gauge origin dependence for the NMR
shieldings disappears and so they do not depend on which
carbon’s isotope is employed. Besides, the substitution of
12C by 13C will slightly change the values reported above
for tensor M of halogen and hydrogen atoms. Such dif-
ferences are expected to happen because of the small dis-
placement of the position of the molecular center of mass
due to the isotope switch. The mentioned isotopic de-
pendence clearly appears in both Mnuc and M elec (see
Eq. (1) and Eq. (2)).

On the other hand, relativistic effects for both, (e-e)
and (p-p) contributions to the shielding of carbons in
methyl halides are almost independent of the amount
of electron correlation involved. When relativistic ef-
fects are computed at RPA level of approach for σ

(e−e)
iso,C ,

their results (34.85 ppm) are close to those computed at
KT3, BP86 and PBE0 levels (33.04 ppm, 30.81 ppm and
29.97 ppm, respectively). In addition, relativistic effects

for σ
(p−p)
iso,C at the RPA level of approach (−1.51 ppm for

CH3I) are almost the same as those obtained within the
DFT approach (between −1.54 ppm and −1.50 ppm).

Furthermore, as observed in Fig. 3 almost all relativis-

tic effects on σC and MC arise from σ
(e−e)
⊥,C and M

(e−e)
⊥,C .

Considering the RPA level of approach, relativistic effects

in σ
(e−e)
⊥,C for methyl iodide represent −65.7% of its total

value. That proportion goes down as the halogen atom
becomes lighter: −12.5% for CH3Br, −3.2% for CH3Cl
and −1.2% for CH3F. From here it appears evident that
those relativistic effects grows up as ZX increases.

There is another feature that one can realize by observ-

ing Fig. 3: σ
(e−e)
⊥,C and

mpI
gC

M
(e−e)
⊥,C are close each other.

Then, they almost fulfill the NR Ramsey-Flygare rela-
tionship. This trend indicates that the addition of the fol-

lowing terms, σ
FA(e−e)
C + 1

2c

(
ν
S(e−e)
⊥,C − νFA,S(e−e)C

)
has

a small contribution in methyl halides. So, the values

of the difference σ
(e−e)
⊥,C − mpI

gC
M

(e−e)
⊥,C are always between

−1.6 ppm and 2.5 ppm.

Given that linear response calculations for open-shell
systems (as carbon atom is) are not implemented in the
Dirac code, one can estimate σFAC from its NR value.

Then, the way to calculate σFA,NRC is through the NR
limit of 1

3c20
〈0| 1
|r−RC | |0〉, where |0〉 denotes the electronic

DHF ground state of the atom. For getting such expec-
tation value the NSTDIAMAGNETIC keyword of the Dirac
program must be used. In the present work the NR limit
was reached by considering c = 100c0, and doing it we

found that σFA,NRC = 260.53 ppm. Furthermore, the
paramagnetic contributions to σFA,NR are zero within
the NR regime, being such contributions obtained as the
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NR limit of σFA(e−e).

Concerning the addition of electron correlation and rel-
ativistic effects on the (p-p) contribution to the carbon
shieldings, it can be shown (see Eqs. (9) and (10)) that
calculations of

∆
(p−p)
iso,C = σ

(p−p)
iso,C −

mp

3gC
Tr
[(
Mnuc

C +M
(p−p)
C

)
⊗ I
]
− 1

2c
ν
S(p−p)
iso,C

give results that belong to the range (261.4± 2.7) ppm
for all methyl halides and all methods (see Supplemen-
tal Material [60]). In addition to that it was shown in

Ref. [15] that 1
2cν

FA,S(p−p) is almost equal to 1
2cν

S(p−p)
iso .

As 1
2cν

S(p−p)
iso,C = −0.35 ppm for all methyl halides at both

RPA and DFT levels of approach, this means that, ac-

cording to the model M-V, σ
FA(p−p)
C should belongs to

the range (261.0 ± 2.7) ppm. Therefore, comparing the

latter results with those of σFA,NRC (=260.53 ppm) we
found that the combined electron correlation and rela-
tivistic effects in σ

FA(p−p)
C are smaller than 3.2 ppm.

All this shows an additional advantage of using the
model M-V. It gives another way to estimate relativistic
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effects for shieldings of nuclei in free atoms with high ac-
curacy, i.e., from molecular calculations of σ and M .
Some time ago few attempts were made to calculate
shieldings of free atoms [68–70], but given that 4c lin-
ear response calculations for open-shell electronic struc-
tures are not still implemented in relativistic codes, only
shieldings of neutral noble gases were obtained, as well as
shieldings of ionized atoms with closed-shell structures.
The model M-V allows for accurate estimations of NMR
shieldings for all kind of neutral atoms.

V. CONCLUDING REMARKS

Some of our previous theoretical works were focused on
the development of formalisms aimed to best calculate
absolute shielding scales by extending the well-known
non relativistic Ramsey-Flygare rule to the relativistic
regime. Its first and successful applications were made
on linear molecules. In this work we did one step further
applying that formalism to non-linear systems.

Systematic and highly accurate four-component, 4c,
calculations of spin-rotation, SR, tensors and NMR mag-
netic shieldings were performed at RPA and DFT levels
of theory for all nuclei of methyl halides. A comparison
with experimental values of the SR tensor shows that
theoretical expressions proposed in Ref. [22] accurately
describe this spectroscopic parameter. It was found that,
even though the electron correlation and relativistic ef-
fects in SR tensors are not of the same order of mag-
nitude, both effects must be introduced simultaneously
to accurately describe the behavior of the experimental
data.

Some of the most important findings of this work are
the following:

1. Experimental measurements of spin-rotation ten-
sors of nuclei that belongs to methyl halides can be
accurately reproduced by theoretical calculations.

2. The M-V model reproduces 4c calculations of
shieldings of H, C, F, Cl, Br and I with high accu-
racy (at both levels of approach, RPA and DFT).
This includes the 4c calculation of SR constants,
σFA and νS − νFA,S . Then, this model can be
safely employed to obtain semi-experimental val-
ues of σ by the combination of experimental SR

data with the calculation of σFA and νS − νFA,S .
These last values are more accurate for the heaviest
atoms.

3. Most of the electron correlation effects for the
shieldings of halogen nuclei, taken as the difference
between DFT and RPA calculations, are strongly
related with those effects in SR constants. There-
fore, when experimental data for SR are used, much
of these effects in shieldings are accurately taken
into account.

4. Relativistic effects of both properties, M and σ,
are negligible small for hydrogen nuclei in methyl
halides.

5. A comparison between experimental values and 4c
calculations of M‖,Cl at different levels of approach
shows that available experimental data for this pa-
rameter needs to be revisited.

6. We found a new procedure to estimate the free
atom NMR shieldings. This procedure requires the
calculation of M and σ of the given atom in a set
of different molecules.

Another important finding is the fact that the results
of previous models (see for instance Ref. [4], [6], [67]
and [13]), which consider the sSR constants and the
calculation of (p-p) contributions to the shieldings (its
diamagnetic-like contributions) should be taken with
caution. They usually do not take into account the con-
tributions of σFA(e−e) and νS − νFA,S which may be so
large that must be included. In addition, it should be
pointed out that their proposal of an atomic correction
may not be correct, because νS depends on the symme-
try of the molecule and it can be not negligible at all.
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[26] I. A. Aucar, C. A. Giménez, and G. A. Aucar, RSC Adv.

8, 20234 (2018).
[27] S. C. Wofsy, J. S. Muenter, and W. Klemperer,

J. Chem. Phys. 55, 2014 (1971).
[28] S. G. Kukolich and A. C. Nelson, J. Am. Chem. Soc. 95,

680 (1973).
[29] A. Dubrulle, D. Boucher, J. Burie, and J. Demaison,

Chem. Phys. Lett. 45, 559 (1977).
[30] J. Demaison, A. Dubrulle, D. Boucher, and J. Burie,

J. Chem. Phys. 67, 254 (1977).
[31] D. Boucher, J. Burie, D. Dangoisse, J. Demaison, and

A. Dubrulle, Chem. Phys. 29, 323 (1978).
[32] A. Dubrulle, J. Burie, D. Boucher, F. Herlemont, and

J. Demaison, J. Mol. Spec. 88, 394 (1981).
[33] G. Wlodarczak, D. Boucher, R. Bocquet, and J. Demai-

son, J. Mol. Spec. 124, 53 (1987).
[34] S. Carocci, A. Di Lieto, A. De Fanis, P. Minguzzi,

S. Alanko, and J. Pietila, J. Mol. Spec. 191, 368 (1998).
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isaari, J. Chem. Phys. 109, 1212 (1998).

[46] J. Vaara, K. Ruud, and O. Vahtras, J. Chem. Phys. 111,
2900 (1999).

[47] J. I. Melo, M. C. Ruiz de Azúa, C. G. Giribet, G. A. Au-
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