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Abstract
1.	 Research	linking	functional	traits	to	competitive	ability	of	coexisting	species	has	
largely	 relied	on	 rectilinear	 correlations,	 yielding	 inconsistent	 results.	Based	on	
concepts	borrowed	from	natural	selection	theory,	we	propose	that	trait–competi-
tion	relationships	can	generally	correspond	to	three	univariate	selection	modes:	
directional	 (a	 rectilinear	 relationship),	 stabilising	 (an	n-shaped	 relationship),	 and	
disruptive	 (a	 u-shaped	 relationship).	 Moreover,	 correlational	 selection	 occurs	
when	two	traits	 interact	 in	determining	competitive	ability	and	 lead	to	an	opti-
mum	trait	combination	(i.e.,	a	bivariate	nonlinear	selection	mode).

2.	 We	tested	our	ideas	using	two	independent	datasets,	each	one	characterising	a	
group	of	species	according	to	(a)	their	competitive	effect	on	a	target	species	in	a	
pot	 experiment	 and	 (b)	 species-level	 values	of	well-known	 functional	 traits	 ex-
tracted	from	existing	databases.	The	first	dataset	comprised	10	annual	plant	spe-
cies	frequent	in	a	summer-rainfall	desert	in	Argentina,	while	the	second	consisted	
of	37	herbaceous	species	from	cool	temperate	vegetation	types	in	Canada.	Both	
experiments	had	a	replacement	design	where	the	identity	of	neighbours	was	ma-
nipulated	holding	total	plant	density	in	pots	constant.	We	modelled	the	competi-
tive	ability	of	neighbours	(i.e.,	the	log	inverse	of	target	plant	biomass)	as	a	function	
of	traits	using	normal	multiple	regression.

3.	 Leaf	 dry	matter	 content	 (LDMC)	was	 consistently	 subjected	 to	 negative	 direc-
tional	selection	in	both	experiments	as	well	as	to	stabilising	selection	among	tem-
perate	 species.	 Leaf	 size	 was	 subjected	 to	 stabilising	 selection	 among	 desert	
species	while	among	temperate	species,	leaf	size	underwent	correlational	selec-
tion	in	combination	with	specific	leaf	area	(SLA):	selection	on	SLA	was	negative	
directional	for	large-leaved	species,	while	it	was	slightly	positive	for	small-leaved	
species.

4.	 Synthesis.	Multiple	quadratic	 regression	adds	functional	 flexibility	 to	trait-based	
community	ecology	while	providing	a	standardised	basis	for	comparison	among	
traits	and	environments.	Our	analyses	of	two	datasets	from	contrasting	environ-
mental	conditions	indicate	(a)	that	leaf	dry	matter	content	can	capture	an	impor-
tant	 component	 of	 plant	 competitive	 ability	 not	 accounted	 for	 by	widely	 used	
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1  | INTRODUC TION

Competition	has	 long	been	considered	a	key	biotic	factor	determin-
ing	the	structure	of	local	communities	(see	reviews	in	Cahill,	Kembel,	
Lamb,	&	Keddy,	2008;	Webb,	Ackerly,	McPeek,	&	Donoghue,	2002).	
More	 recently,	 quantitative	 functional	 traits	 have	 also	 been	 rec-
ognised	as	 important	drivers	of	both	community	assembly	and	eco-
system	 processes	 (Keddy,	 1992;	 Lavorel	 &	 Garnier,	 2002;	 McGill,	
Enquist,	Weiher,	&	Westoby,	2006).	However,	 there	 is	still	a	 limited	
understanding	of	how	plant	traits	relate	to	the	outcome	of	competi-
tive	interactions	between	species	(Kunstler	et	al.,	2016),	a	link	that	has	
been	a	 long-standing	conundrum	for	ecologists	 (Grace,	1990).	Most	
studies	have	related	traits	to	competitive	ability	within	a	community	
or	a	group	of	selected	interacting	species	via	linear	correlations	(e.g.,	
Freckleton	 &	Watkinson,	 2001;	 Gaudet	 &	 Keddy,	 1988;	 Goldberg,	
1996;	Keddy,	Nielsen,	Weiher,	&	Lawson,	2002;	Kunstler	et	al.,	2016;	
Rosch,	VanRooyen,	&	Theron,	1997;	but	see	Gross	et	al.,	2009).	This	
approach,	however,	has	yielded	inconsistent	results	across	studies	and	
environments	 precluding	 generalisation	 and	 identification	 of	 traits	
that	 could	be	broadly	 linked	with	 competitive	 ability	 (Craine,	2005;	
Goldberg,	 1996;	 Leishman,	 1999).	 Building	 on	 concepts	 borrowed	
from	natural	selection	theory,	we	argue	that	rectilinear	functions	are	
not	the	only	possible	expectation	for	trait–competition	relationships	
and	that	this	realisation	may	help	explain	inconsistent	results.

Competitive	ability	 is	understood	here	as	the	ability	of	an	 indi-
vidual	 to	 limit	 the	performance	of	a	neighbouring	 individual	 (i.e.,	 a	
competitive	 effect)	 and/or	 to	withstand	 the	 competitive	 effect	 of	
neighbours	 (i.e.,	a	competitive	 response;	Goldberg	&	Landa,	1991).	
We	define	a	functional	trait	as	a	measurable	feature	of	plants	that	
determines	performance	(e.g.,	growth)	and,	ultimately,	fitness	(McGill	
et	al.,	2006;	Shipley	et	al.,	2016;	Violle	et	al.,	2007).	With	these	ele-
ments,	we	propose	a	 framework	based	on	 the	Darwinian	principle	
stating	that	competition	is	a	selective	force	in	plant	communities	(see	
e.g.,	Aarssen,	1989	for	a	comprehensive	review).	Traditionally,	natu-
ral	selection	has	been	thought	to	act	in	three	basic	ways	or	“modes”	
upon	 a	 functional	 trait	within	 a	 population:	 directional,	 stabilising,	
and	 disruptive	 (Endler,	 1986;	 Lande	 &	 Arnold,	 1983).	 Directional	
selection	is	generally	described	by	a	monotonic	relationship	(e.g.,	a	
straight	line)	in	which	values	at	one	end	of	a	single	functional	trait	axis	
are	favoured	(Mitchell-Olds	&	Shaw,	1987).	Stabilising	selection	is	an	
n-shaped,	 optimum	 relationship	 in	which	 intermediate	 trait	 values	
are	favoured,	whereas	disruptive	selection	is	a	u-shaped	relationship	

in	which	both	ends	of	the	functional	trait	are	favoured.	Directional	
selection	can	occur	jointly	with	either	stabilising	or	disruptive	selec-
tion,	shifting	 the	maximum	or	minimum	(respectively)	 towards	one	
extreme	of	the	range	of	observed	phenotypes	(Endler,	1986;	Lande	&	
Arnold,	1983).	An	important	premise	of	our	framework	is	that,	since	
natural	selection	acts	on	individuals,	the	consequences	are	reflected	
at	the	population	level	but	also	at	the	community	level	(Shipley,	2010;	
Vellend,	2010).	Therefore,	trait	values	that	determine	an	individuals’	
competitive	ability	would	affect	its	fitness	within	a	given	community	
(Aarssen,	1989;	Aerts,	1999;	File,	Murphy,	&	Dudley,	2012;	Goldberg,	
1996),	and	could	be	thus	subjected	to	any	of	these	three	basic	modes	
of	selection	and	their	combinations	(Figure	1).

competitive	traits,	such	as	specific	leaf	area,	leaf	size,	and	plant	height	and	(b)	that	
optimum	relationships	(either	univariate	or	bivariate)	between	competitive	ability	
and	plant	traits	may	be	more	common	than	previously	realised.

K E Y W O R D S

community	assembly,	competition	experiment,	correlational	selection,	leaf	dry	matter	content,	
leaf	size,	phenotypic	selection,	plant–plant	interactions,	quadratic	regression,	specific	leaf	
area,	stabilising	selection

F I G U R E  1  Trait–competition	relationships	according	to	the	
possible	combinations	of	three	univariate	selection	modes:	
stabilising,	disruptive,	and	directional.	Competitive	ability	(Yi)	can	
be	quantified	via	inverse	measures	of	target	species’	performance	
(e.g.,	mortality	and	the	inverse	of	plant	biomass)	in	the	presence	
of	neighbour	species	i,	each	one	having	a	trait	value	ti.	Selection	
patterns	are	characterised	using	quadratic	regression	models	of	
the	form	Yi = α + β ti + γti

2,	where	α	is	the	y-intercept	(set	to	zero	
in	all	panels),	β	is	the	linear	selection	gradient,	and	γ	discriminates	
between	stabilising	(when	negative,	top	row)	and	disruptive	(when	
positive,	bottom	row)	selection
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The	three	basic	selection	modes	described	above	consider	single	
traits	in	isolation	and,	based	on	methods	used	by	evolutionary	biol-
ogists	(Lande	&	Arnold,	1983),	they	can	be	characterised	using	qua-
dratic	regression	models	of	the	form	Yi = α + β ti + γti

2 + εi	(Figure	1).	
Here,	Yi	 is	the	competitive	ability	of	neighbour	species	 i,	each	one	
having	a	value	of	the	trait	t; α	is	the	y-intercept,	β	is	the	linear	selec-
tion	gradient,	and	γ	estimates	the	average	curvature	of	the	function	
and	discriminates	between	stabilising	(when	negative)	and	disruptive	
(when	 positive)	 selection;	 ε	 is	 an	 error	 term	 associated	 to	 species	
i.	 These	basic	 selection	modes	 are	 also	 referred	 to	 as	 “univariate”	
in	 the	evolutionary	 literature,	 in	 the	sense	that	 traits	do	not	 inter-
act	with	each	other	to	affect	fitness	(see	e.g.,	Kingsolver,	Diamond,	
Siepielski,	&	Carlson,	2012;	Phillips	&	Arnold,	1989).

When	considering	multiple	traits	 in	pairs,	 the	full	quadratic	re-
gression	model	may	take	the	following	form

Here,	partial	regression	coefficients	βj and γj,	respectively,	mea-
sure	 univariate	 linear	 and	 nonlinear	 selection	 on	 trait	 j	 (see	 e.g.,	
Phillips	&	Arnold,	1989).	This	multivariate	approach	allows	 for	 the	
estimation	of	direct	selection	on	a	given	trait	 (βj and γj)	controlling	
statistically	for	indirect	selection	due	to	measured	correlated	traits	
(Lande	&	Arnold,	1983).	Subscript	k	is	used	jointly	with	j	to	identify	
all	possible	two-way	interactions	between	traits,	giving	n(n-1)/2	co-
efficients	θjk	to	be	estimated.	Both	subscripts	assign	the	same	labels	
to	 traits,	 from	1	 to	n,	 and	estimated	θjk’s	 are	 those	where	 j<k	 (cfr.	
equation	3	 in	Phillips	&	Arnold,	1989).	For	 instance,	 in	 the	case	of	
four	 traits	 (n	=	4),	 six	 interaction	 coefficients	would	 be	 estimated,	
namely θ12,	θ13,	θ14,	θ23,	θ24,	 and	θ34.	 Interaction	coefficients	 (also	
known	as	cross-product	terms)	measure	whether	selection	on	one	
trait	 ( j)	 depends	 on	 the	 values	 of	 another	 (k)	 and	 vice	 versa.	 This	
bivariate	mode	 of	 selection	 has	 been	 referred	 to	 as	 “correlational	
selection”	by	evolutionary	biologists	(see	e.g.,	Endler,	1986)	since	it	
would	operate	changing	the	covariance	between	two	traits	(Lande	&	
Arnold,	1983).	Correlational	 selection	coefficients	produce	curved	
response	surfaces	(peaks,	valleys,	saddles,	or	ridges)	and	thus	indi-
cate	nonlinear	selection	along	axes	that	are	not	parallel	to	the	axes	
represented	by	single	traits	(Phillips	&	Arnold,	1989).	Regression	on	
traits	standardised	to	zero	mean	and	unit	variance	yield	standardised	
selection	metrics	that	enable	comparisons	among	different	types	of	
traits	and	organisms	(Kingsolver	et	al.,	2012;	Lande	&	Arnold,	1983).

Underlying	 mechanisms	 of	 community-level	 selection	 modes	
have	been	recently	discussed	in	the	context	of	community	assembly	
(Rolhauser	&	Pucheta,	2017).	Here,	we	build	on	 these	 ideas	and	on	
previous	analyses	of	community-level	trait–competition	relationships.	
Directional	selection	would	arise	when	traits	determine	a	hierarchy	of	
competitive	ability	(Goldberg,	1996;	Goldberg	&	Landa,	1991;	Keddy	
et	al.,	2002;	Kunstler	et	al.,	2012,	2016).	For	example,	potential	height	
in	light-limited	environments,	where	competition	is	clearly	asymmet-
rical	 and	 the	 tallest	 species	 become	 the	 best	 competitors	 (Givnish,	
1987;	Kunstler	et	al.,	2016;	Westoby,	Falster,	Moles,	Vesk,	&	Wright,	

2002).	Stabilising	 (optimum)	selection	may	occur	when	two	or	more	
antagonistic	 agents	 determine	 a	 functional	 trade-off	 (Rolhauser	 &	
Pucheta,	2017),	a	process	known	as	environmental	filtering	when	such	
factors	are	abiotic	 (Kraft	et	al.,	2015;	see	also	Lasky,	Sun,	Su,	Chen,	
&	Keitt,	2013	who	modelled	environmental	 filtering	using	Gaussian,	
instead	of	quadratic	 functions).	This	may	be	particularly	 the	case	of	
productivity-related	traits,	assuming	that	determinants	of	productiv-
ity	are	homogeneous	over	the	area	occupied	by	a	community	(Grime,	
2006).	 In	 contrast,	 within-site	 environmental	 heterogeneity	 would	
allow	for	niche	partitioning	and	the	functional	divergence	of	compet-
itive	species	(Adler,	Fajardo,	Kleinhesselink,	&	Kraft,	2013;	Rolhauser	
&	Pucheta,	2017),	that	is,	a	disruptive	selection	of	competitive	ability.	
Further,	the	importance	of	explicitly	evaluating	trait–trait	interactions	
on	individual	fitness	at	the	community	level	(referred	to	here	as	cor-
relational	selection)	has	been	recently	noted,	although	empirical	evi-
dence	is	largely	scarce	(Laughlin	&	Messier,	2015).

In	 this	 work,	 we	 are	 particularly	 focused	 on	 the	 competitive	
effects	 of	 neighbours	 on	 a	 target	 species	 (or	 “phytometer”).	We	
thus	measure	competitive	ability	(Yi)	as	an	inverse	function	of	tar-
get	 species	 performance	 (Sackville	Hamilton,	 1994).	We	 test	 our	
ideas	 using	 two	 datasets	 from	 contrasting	 environmental	 condi-
tions,	each	one	characterising	a	 set	of	neighbour	 species	accord-
ing	to	(a)	their	competitive	effects	against	a	target	species	in	a	pot	
experiment	and	(b)	species-level	values	of	well-known	and	widely	
used	 functional	 traits	 (see	 e.g.,	 Pérez-Harguindeguy	 et	al.,	 2013).	
The	 first	 dataset	 comprised	 annual	 plant	 species	 frequent	 in	 a	
summer-rainfall	desert	 in	Argentina	 (Rolhauser	&	Pucheta,	2016),	
while	the	second	consisted	of	herbaceous	species	living	in	a	range	
of	temperate	vegetation	types	in	Canada	(Keddy	et	al.,	2002).	On	
top	of	serving	as	independent	examples,	we	used	these	datasets	to	
explore	different	aspects	of	trait-based	competition.	While	linking	
species-level	 trait	 values	 to	 species-level	 competitive	 effects	 has	
been	a	widely	used	approach	(e.g.,	Freckleton	&	Watkinson,	2001;	
Gaudet	&	Keddy,	1988;	Goldberg,	1996;	Keddy	et	al.,	2002;	Rosch	
et	al.,	1997),	it	is	important	to	acknowledge	that	competition	oper-
ates	at	the	individual	level	where	stochastic	processes	may	obscure	
the	deterministic	role	of	trait-based	mechanisms	(Chase,	2014).	We	
thus	used	our	desert	annual	plants	dataset	 to	explore	 the	extent	
to	which	 the	 three	univariate	 selection	modes	 (directional,	 stabi-
lising	 and	 disruptive)	 based	 on	 species-level	 trait	 values	 can	 ex-
plain	 individual-level	 competitive	 effects.	 Further,	 the	 temperate	
herbaceous	plants	dataset	contained	a	 relatively	 large	number	of	
species	characterised	by	a	small	number	of	traits	providing	us	the	
necessary	degrees	of	 freedom	 to	 fit	 the	 full	 quadratic	 regression	
(Equation	1)	and	evaluate	the	relative	strength	of	correlational	se-
lection	of	species-level	competitive	effects.

2  | MATERIAL S AND METHODS

2.1 | Desert annual plants dataset

This	dataset	contained	species-level	trait	values	and	individual-level	
quantifications	 of	 competitive	 effects.	 The	 latter	 were	 obtained	
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from	a	pot	experiment	 specially	designed	 to	 test	our	 ideas	on	 the	
three	basic,	univariate	selection	modes.	The	experiment	had	a	“re-
placement”	design	where	the	identity	of	neighbours	within	experi-
mental	units	was	manipulated	holding	total	plant	density	constant.	
This	design	is	particularly	suitable	for	questions	based	on	the	func-
tional	similarity	of	competing	species	(Sackville	Hamilton,	1994).	The	
experimental	 units	 were	 1.5	L	 black	 plastic	 (nursery)	 pots,	 where	
one	target-species	individual	coexisted	for	~60	days	with	one	indi-
vidual	of	a	neighbour	species.	We	used	10	different	neighbour	spe-
cies	(see	list	in	Table	S1	in	Appendix	S1)	which	were	all	warm	season	
annuals	 frequent	 in	an	open	shrubland	 (31°43′18″S,	68°08′17″W)	
located	in	the	central-northern	Monte	Desert,	Argentina	(hereafter	
called	“the	study	site,”	Rolhauser	&	Pucheta,	2016).	The	target	spe-
cies was Tribulus terrestris	 (Zygophyllaceae;	hereinafter	 referred	 to	
as Tribulus),	an	abundant	exotic	species	in	our	study	site	(Rolhauser	
&	Pucheta,	2016,	2017).	Tribulus	was	also	 included	as	a	neighbour	
species	to	explore	how	intraspecific	competition	mapped	onto	the	
trait–competition	scenario.

The	pot	experiment	was	conducted	in	the	experimental	field	of	
the	Universidad	Nacional	de	San	Juan	(~46	km	away	from	the	study	
site)	during	the	summer	of	2013–2014.	All	plants	involved	in	this	ex-
periment	 (i.e.,	both	 target	and	neighbour	plants	 in	each	pot)	origi-
nated	from	seeds	contained	in	soil	and	debris	(see	below)	collected	
in	 the	 study	 site.	Water	 sheet	 flow	 in	 the	 field	 accumulates	 large	
amounts	of	non-dormant	seeds	of	desert	annuals	in	naturally	occur-
ring	obstructions	or	dams	 (Rolhauser,	2015).	 In	 these	dams,	 seeds	
are	mixed	with	soil	and	other	coarse	material	transported	by	water	
such	 as	 twigs	 and	dry	 leaves,	 and	we	 call	 this	 “debris	mixture.”	 In	
November	2013,	we	collected	seed-rich	debris	mixture	and	topsoil	
from	open	areas	among	shrubs	to	fill	the	pots.	In	late	January	2014,	
we	filled	each	pot	with	five	parts	of	topsoil	and	topped	them	with	
one	part	of	debris	mixture.	Pots	were	placed	in	a	large	garden	bed	of	
1.5	m	by	10	m	built	on	the	ground	and	arranged	EW.	The	bed	allowed	
us	 to	water	 the	pots	 relatively	easily	by	pulses	of	 submersion	and	
capillary	rise.	In	each	pulse,	we	filled	the	bed	with	water	up	to	half	
the	height	of	the	pots	and	maintained	this	level	for	about	30	minutes	
to	allow	the	entire	substrate	in	each	pot	to	imbibe.	During	germina-
tion	and	establishment	stages,	we	watered	 the	pots	every	second	
day	to	prevent	topsoil	desiccation	(mimicking	field	conditions	after	
a	large	rain	event	that	would	trigger	massive	germination).	After	this	
stage	 (see	 below),	 we	 watered	 the	 pots	 whenever	 the	 superficial	
substrate	of	at	 least	one	pot	 lightened	(a	sign	of	water	deficit),	 re-
sulting	 in	 a	watering	 frequency	 that	 ranged	 between	3	 and	7	 per	
days.	This	watering	method	reflected	to	some	extent	the	restricted	
and	pulsating	nature	of	resource	supply	in	deserts	(Reynolds,	Kemp,	
Ogle,	&	Fernandez,	2004).

Seedling	emergence	started	4	days	after	the	first	watering,	and	
we	surveyed	species	diversity	of	seedlings	in	each	pot.	A	month	later	
(late	February),	we	considered	the	establishment	phase	completed,	
and	we	thinned	plants	to	obtain	the	desired	combinations	of	species.	
When	 possible	 (i.e.,	when	more	 than	 one	 individual	 of	 the	 neces-
sary	 species	were	 present),	 thinning	was	 carried	 out	 so	 that	 both	
individuals	were	placed	centred	on	either	side	of	an	imaginary	line	

dividing	the	pots	in	half	(maximum	distance	between	individuals	was	
constrained	by	the	diameter	of	pots,	~12	cm).	We	managed	to	obtain	
at	least	12	replicates	for	all	neighbour	species	except	for	Solanum eu‐
acanthum,	for	which	only	six	replicates	were	available	(Appendix	S1).	
At	 this	 stage,	 larger	plants	 started	shading	 those	 in	adjacent	pots.	
We	 thus	 rearranged	 pots	 to	 form	 blocks	 in	 order	 to	 homogenise	
conditions	among	experimental	units.	Blocks	were	formed	accord-
ing	to	the	height	of	the	tallest	individual	in	each	pot,	so	that	block	
one	contained	pots	with	the	tallest	plants,	and	so	on;	the	position	
of	pots	within	each	block	was	 randomised.	This	 resulted	 in	 a	 ran-
domised	incomplete	block	design	since	the	number	of	replicates	was	
not	equal	across	neighbour	species	(see	the	resulting	assignment	of	
pots	 into	 blocks	 in	 Table	 S3	 in	Appendix	 S1).	 Towards	 the	 end	 of	
April	2014,	all	remaining	individuals	had	seeded	and	many	of	them	
had	 already	begun	 to	 senesce,	 therefore	we	decided	 to	 terminate	
the	 experiment.	 The	 duration	 of	 the	 experiment	 largely	 coincided	
with	the	length	of	the	growing	season	of	naturally	occurring	plants	
in	the	field,	of	about	3	months.	Harvest	of	above-ground	plant	bio-
mass	was	carried	out	in	blocks,	except	for	those	individuals	that	died	
during	the	experiment	and	were	immediately	harvested.	Both	target	
and	neighbour	plants	within	a	pot	were	harvested	simultaneously.	
As	a	result,	from	the	146	Tribulus	plants	used	(30	and	116,	respec-
tively,	from	pots	with	conspecific	and	heterospecific	neighbours),	79	
were	harvested	following	mortality	patterns	during	the	experiment	
(~54%)	and	the	remaining	64	were	harvested	following	the	blocking	
design	at	the	end	of	the	experiment.	Harvested	plants	were	oven-
dried	at	60°C	for	at	least	72	hours	and	then	weighed.

All	neighbour	species	were	characterised	in	terms	of	eight	func-
tional	 traits:	 leaf	 size	 (LS,	 area),	 leaf	 dissection	 index	 (LD,	 perime-
ter/√area),	specific	leaf	area	(SLA,	area/dry	weight),	leaf	dry	matter	
content	(LDMC,	dry	weight/fresh	weight),	specific	root	length	(SRL,	
length/dry	weight),	specific	root	volume	(SRV,	volume/dry	weight),	
maximum	plant	height	(H),	and	seed	mass	(SM,	dry	weight).	Species-
level	trait	values	for	these	species	were	extracted	from	our	local	da-
tabase	(published	in	Rolhauser	&	Pucheta,	2017).	Briefly,	10	healthy	
individuals	per	species	were	collected	to	characterise	leaf	and	root	
traits,	whereas	at	least	eight	individuals	per	species	were	used	to	es-
timate	seed	dry	mass	values	(Rolhauser	&	Pucheta,	2017).	Collection	
timing	 (between	 November	 2010	 and	 March	 2014)	 and	 place	 (in	
shrub	 understories	 or	 in	 open	 spaces)	 depended	 on	 the	 temporal	
and	spatial	distribution	of	species;	field	measurements	of	maximum	
plant	height	were	also	carried	out	within	this	time	frame	(Rolhauser	
&	Pucheta,	2017).	Using	the	individual-level	trait	values	from	which	
these	species	averages	were	obtained,	we	show	here	that	variation	
among	species	included	in	this	experiment	is	much	greater	than	vari-
ation	within	species,	which	justifies	the	use	of	species	average	val-
ues	(Appendix	S1).

2.2 | Temperate herbaceous plants dataset

This	dataset	contained	species-level	estimates	of	both	 trait	values	
and	 competitive	 effects.	Data	 on	 the	 competitive	 effects	 of	 tem-
perate	herbaceous	species	 living	 in	eastern	Ontario,	Canada,	were	
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obtained	from	Keddy	et	al.	(2002).	The	plants	used	in	this	experiment	
were	collected	from	a	range	of	vegetation	types	in	eastern	Ontario,	
including	old	fields	with	either	deep	clay	or	shallow	sandy	soils	over	
Precambrian	 gneiss,	 old	 fields	 with	 shallow	 soils	 over	 limestone,	
rock	barrens	over	Precambrian	gneiss,	 and	alvars,	which	 are	envi-
ronments	characterised	by	shallow	soils	over	flat	limestone	(Nielsen,	
1993).	All	 collection	 sites	were	 located	within	 the	 cool	 temperate	
ecoclimatic	province	of	Canada	(Strong,	Zoltai,	&	Ironside,	1989).

The	experiment	had	a	replacement	design	similar	to	ours,	where	
Trichostema brachiatum	 (Lamiaceae;	 hereinafter	 referred	 to	 as	
Trichostema)	 was	 the	 target	 species.	 The	 experiment	 included	 63	
neighbour	species	and	two	environmental	treatments:	stress	(using	
0.5	L	pots)	and	control	 (using	1	L	pots).	Data	on	widely	used	func-
tional	traits	for	these	species	were	not	available	in	the	original	paper	
and	were	extracted	from	the	TRY	database	(Kattge	et	al.,	2011).	Trait	
data	were	not	available	 for	all	 species	used	 in	Keddy	et	al.	experi-
ment,	and	the	resulting	dataset	was	limited	to	37	species	character-
ised	in	terms	of	plant	height,	LDMC,	LS,	and	SLA	(see	list	of	species	
in	Appendix	S2;	references	for	these	data	 include	Aubin,	Beaudet,	
&	Messier,	2000;	Aubin	et	al.,	2012;	Aubin,	Messier,	&	Kneeshaw,	
2005;	Aubin	&	Ricard,	2000;	Masse,	Prescott,	Müller,	&	Grayston,	
2016;	Morris,	2014;	Wiebe,	Morris,	Luckai,	&	Reid,	2013).	The	TRY	
database	provided	several	trait	values	for	most	of	these	species.	We	
thus	estimated	maximum	plant	height	for	each	species	as	the	99%	
quantile	of	observed	values.	For	the	remaining	traits,	we	computed	
“typical”	trait	values	for	each	species	as	the	arithmetic	mean	of	ob-
served values.

2.3 | Data analysis

Data	analysis	was	performed	on	each	dataset	independently.	Based	
on	 a	 quadratic	 regression	 framework	 (Equation	1),	 our	 general	 ap-
proach	 consisted	 of	 using	 stepwise	 variable	 selection	 to	 find	 the	
best	 combination	 of	 traits	 to	 explain	 neighbours’	 competitive	 ef-
fects.	Competitive	effects	of	neighbour	species	i	were	calculated	as	
the	 log	 inverse	 of	 the	 above-ground	dry	 biomass	 of	 target-species	
individuals,	denoted	as	ln(1/Bi).	 In	the	case	of	the	conspecific	treat-
ment	in	the	desert-annuals	experiment,	two	values	of	Tribulus	ln(1/Bi)	
were	obtained	from	each	pot,	which	were	averaged	to	obtain	a	single	
measure	per	pot.	Backward	elimination	was	conducted	when	avail-
able	 degrees	 of	 freedom	 allowed	 fitting	 a	 full	 initial	 model,	 while	
forward	 addition	 was	 performed	 when	 this	 was	 not	 possible	 (see	
below).	The	importance	of	model	terms	was	assessed	based	on	the	
small	 sample	 (or	 second-order)	 Akaike	 information	 criterion	 (AICc),	
which	decreases	with	model	fit	and	sample	size,	and	increases	with	
the	number	of	parameters	(Burnham	&	Anderson,	2003).	It	is	thus	a	
useful	measure	for	variable	selection;	for	example,	the	removal	of	the	
least	important	term	in	a	model	would	generate	the	largest	decrease	
(or	the	smallest	increase)	in	AICc.	AICc	was	calculated	using	the	pack-
age	AICCmodavg in r	 (Mazerolle,	 2016).	 In	 general,	 quadratic	 terms	
were	considered	for	all	continuous	predictors,	that	is,	traits	and	other	
covariates	(see	below).	Quadratic	terms	were	always	evaluated	in	the	
presence	of	the	corresponding	linear	term	(see	e.g.,	Lande	&	Arnold,	

1983).	 Thus,	 linear	 terms	were	 removed	 only	 if	 the	 corresponding	
quadratic	term	had	been	previously	removed	during	backward	elimi-
nation,	while	quadratic	terms	were	added	only	if	the	corresponding	
linear	term	had	been	previously	added	during	a	forward	procedure.	
The	degree	of	collinearity	 (i.e.,	 the	correlation	among	predictors)	 in	
the	resulting	best	models	was	diagnosed	using	variance-inflation	fac-
tors	(VIF)	calculated	with	the	function	vif	of	the	package	car	in	r	(Fox	
&	Weisberg,	2011).	Predictors	with	VIF	>10	may	be	seriously	affected	
by	 collinearity	 and	 the	 simplest	 remedial	measure	 is	 to	 drop	 them	
from	the	model	(Kutner,	Nachtsheim,	Neter,	&	Li,	2005).

For	the	desert	annual	plants	dataset,	Tribulus	 ln(1/Bi)	was	mod-
elled	as	a	 function	of	neighbour	 traits	using	multiple	Gaussian	 lin-
ear	 mixed-effects	 models	 (i.e.,	 assuming	 normal	 errors)	 using	 the	
function	 lme	 of	 the	 package	 nlme	 in	 r	 (Pinheiro	 &	 Bates,	 2000).	
Functional	 traits	 (standardised	 to	 zero	 mean	 and	 unit	 variance)	
and	 harvest	 date	 (centred)	 were	 modelled	 as	 fixed	 effect	 predic-
tors,	whereas	blocks	were	included	in	all	models	as	random	effects.	
Harvest	 date	was	 included	 to	 account	 for	 the	 effect	 of	 individual	
age	on	growth.	The	relatively	small	number	of	species	prevented	a	
backward	elimination	of	traits,	so	we	carried	out	a	forward	selection	
process	instead	(Appendix	S3).	Models	were	fitted	by	the	maximum	
likelihood	method	to	allow	for	meaningful	comparisons	during	vari-
able	selection	(Mazerolle,	2016;	Pinheiro	&	Bates,	2000).	We	refer	to	
these	models	as	“trait-based.”

For	 the	 temperate	 herbaceous	 plants	 dataset,	 the	 response	
variable	was	proportional	 to	Trichostema	 ln(1/Bi).	Originally,	Keddy	
et	al.	 (2002)	published	 their	 results	 in	 terms	of	 average	neighbour	
species	 “relative	competitive	performance.”	This	was	calculated	as	
RCPi = B0	−	Bi)/B0,	where	B0	was	the	average	above-ground	biomass	
of	Trichostema	when	grown	alone,	and	Bi	when	grown	with	neigh-
bour	 species	 i	 (Keddy	 et	al.,	 2002).	 Since	 the	 value	 of	B0	was	 not	
provided	in	the	original	paper,	we	assumed	it	to	be	1g	(which	would	
suffice	for	comparative	purposes)	and	calculated	Bi	as	(1	−	RCPi)*1g.	
Given	the	absence	of	individual-level	observations,	competitive	ef-
fects	were	related	to	traits	using	fixed-effects	Gaussian	linear	mod-
els,	for	which	we	used	the	function	lm	in	r	(Fox	&	Weisberg,	2011).	
In	this	case,	plant	traits	were	log-transformed	to	control	for	extreme	
values	and	then	standardised.	The	initial	model	contained	both	lin-
ear	and	quadratic	terms	of	all	four	traits,	all	possible	cross-products	
terms,	 and	 all	 possible	 interactions	 between	 stress	 treatment	 and	
trait-related	 terms.	 This	 model	 was	 simplified	 through	 backward	
elimination	(Appendix	S3).

We	 also	 described	 the	multivariate	 functional	 variation	 across	
the	species	in	each	dataset	using	principal	component	analysis	based	
on	standardised	single	functional	traits	(see	Appendix	S2).	We	used	
the	 resulting	 principal	 components	 (PCs)	 as	 predictors	 of	 neigh-
bours’	competitive	ability	the	same	way	we	did	for	single	traits,	and	
we	refer	to	these	models	as	“PC-based.”	Retained	PCs	(the	first	three	
in	the	case	of	desert	annuals,	and	the	first	two	in	the	case	of	temper-
ate	species)	were	meaningful	in	terms	of	the	Kaiser–Guttman	crite-
rion,	that	is,	their	eigenvalues	were	larger	than	one	(Borcard,	Gillet,	&	
Legendre,	2011,	see	full	results	in	Appendix	S2).	The	best	PC-based	
models	were	selected	through	backward	elimination	(Appendix	S3).
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Univariate	trait–competition	relationships	described	by	the	best	
model	for	each	dataset	were	illustrated	using	component-plus-resid-
ual	plots,	also	called	partial	residual	plots	(Fox	&	Weisberg,	2011).	In	
general,	a	partial	residual	associated	with	observation	i	in	response	
to	predictor	j,	denoted	epartial,ij,	is	calculated	by	adding	the	fitted	lin-
ear	component	corresponding	to	this	predictor	 (i.e.,	 the	prediction	
made by j	for	observation	i	keeping	all	other	covariates	at	their	aver-
age	value,	ρij)	to	the	corresponding	residual	of	the	full	model	(ei),	that	
is,	epartial,ij = ρij + ei	(Fox	&	Weisberg,	2011).	Partial	residuals	epartial,ij 
are	then	plotted	against	predictor	j.	In	our	case,	ρij	for	trait	tj	equals	
α + βj tij + γjtij

2	 (see	Equation	1)	 since	 all	 remaining	 traits	 in	models	
have	zero	mean.	In	addition,	we	used	two-dimensional	filled	contour	
plots	(Mittal,	2011)	to	illustrate	predicted	trait–competition	relation-
ships	where	correlational	selection	was	detected.

3  | RESULTS

3.1 | Desert annual plants

The	best	trait-based	model	explaining	neighbour	competitive	effect	
on Tribulus	 –quantified	 as	 ln(1/Bi)–	 included	 LDMC,	 LS,	 potential	
plant	 height	 (H)	 and	 SRL,	 along	with	 harvest	 date	 (Table	1).	 Trait–
competition	relationship	for	LS	was	consistent	with	stabilising	selec-
tion,	without	a	significant	directional	component	(Table	1;	Figure	2).	
Relationships	for	LDMC	and	SRL	were	negative	directional	and	posi-
tive	directional	for	H	(Table	1;	Figure	2).	In	addition,	Tribulus	ln(1/Bi)	
decreased	linearly	with	harvest	date,	which	reflects	that	individuals	
that	died	earlier	were	smaller	(Figure	2).	All	VIFs	in	this	model	were	
<7.2,	indicating	tolerable	collinearity.

The	 best	 PC-based	 model	 included	 the	 first	 and	 third	 PCs	
(Table	1).	Traits	most	strongly	related	with	PC1	were	SLA	(positively)	
and	LDMC	(negatively),	whereas	SRL	and	H	were	most	strongly	re-
lated	(positively)	with	PC3	(Appendix	S2).	This	model	showed	lower	
performance	(i.e.,	both	higher	AICc	and	VIFs)	compared	to	the	best	

trait-based	model	(Table	1).	Hence,	we	will	not	look	into	the	details	
of	interpreting	the	PC-based	model,	although	it	is	noteworthy	that	
trait–competition	 relationships	 were	 negative	 directional	 for	 PC1	
and	stabilising	for	PC3	(Table	1).

3.2 | Temperate herbaceous plants

The	best	trait-based	model	fitted	to	these	data	combined	LDMC,	SLA,	
and	LS	(Table	2).	There	was	a	combination	of	negative	directional	and	
stabilising	selection	on	LDMC	(Figure	3a).	We	also	found	correlational	
selection	 on	 SLA	 and	 LS	 (Table	2).	 Selection	 on	 SLA	was	 negative	
directional	within	 large-leaved	species,	while	 it	was	slightly	positive	
within	small-leaved	species	(Figure	3b).	Furthermore,	selection	on	LS	
was	positive	directional	for	low-SLA	species	and	negative	for	high-SLA	
species	(Figure	3c).	The	resulting	selection	surface	is	represented	by	a	
saddle	with	an	off-centred	saddle	point.	Competitive	ability	peaks	at	
low	SLA	and	large	LS	and	decreases	steeply	towards	either	high	SLA	
or	small	LS	 (Figure	3d).	The	stress	 treatment	resulted	 in	a	 relatively	
small	(and	marginally	significant)	decrease	in	the	overall	competitive	
ability	of	neighbours	(Table	2).	There	were	no	significant	interactions	
between	stress	treatment	and	traits	(Table	2;	Appendix	S3),	implying	
that	none	of	 the	 functional	patterns	 listed	above	were	affected	by	
this	factor.	All	VIFs	in	this	model	were	<1.6,	indicating	very	low	col-
linearity.	PCs	were	not	significantly	related	to	the	competitive	ability	
of	these	species	(Appendix	S3).

4  | DISCUSSION

4.1 | Competitive trait selection in desert annual 
plants

Two	traits	related	with	the	quality	of	plant	tissues	were	retained	in	
the	best	model,	that	is,	LDMC	and	SRL.	High	LDMC	could	result	from	
small	 cells	with	 thick	walls	which	would	 confer	 leaf	 elasticity	 and	

TA B L E  1  Statistical	summaries	of	the	best	trait-based	and	PC-based	models	explaining	the	competitive	effects	in	a	pot	experiment	of	10	
annual	species	that	are	frequent	in	a	site	within	the	Monte	Desert	(Argentina)

Model Variable Estimate SE df t value p value VIF

Best	trait-based,	
AICc	=	251.9

Harvest	date −0.028 0.003 1/110 −10.78 <0.0001 1.02

Leaf	dry	matter	content −0.387 0.099 1/110 −3.92 0.0002 3.80

Leaf	size −0.141 0.113 1/110 −1.25 0.2133 5.16

Leaf	size2 −0.223 0.062 1/110 −3.59 0.0005 1.91

Plant	height 0.413 0.132 1/110 3.12 0.0023 7.11

Specific	root	length −0.304 0.118 1/110 −2.57 0.0115 5.79

Best	PC-based,	
AICc	=	261.8

Harvest	date 0.142 0.062 1/112 −10.04 <0.0001 1.02

PC1 −0.142 0.125 1/112 2.28 0.0244 4.35

PC3 −0.131 0.069 1/112 −1.14 0.2582 7.23

PC32 −0.027 0.003 1/112 −1.89 0.0616 10.19

Estimated	parameters	are	shown	along	with	their	standard	errors.	Significance	of	model	terms	was	evaluated	using	marginal	tests	based	on	the	t-dis-
tribution.	AICc:	small	sample	Akaike	information	criterion;	df:	numerator/denominator	degrees	of	freedom;	VIF:	variance-inflation	factor;	PC:	principal	
component.	See	Figure	2	for	a	graphical	representation	of	the	trait-based	model.
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allow	tolerance	to	water	 limitation,	but	would	limit	photosynthesis	
under	moist	conditions	(Niinemets,	2001).	We	would	thus	expect	a	
negative	directional	pattern	 in	 the	absence	of	water	stress,	where	
species	with	low	LDMC	are	most	competitive.	Our	results	coincide	
with	this	expectation	and	further	suggest	that	the	experimental	con-
ditions	(full	sunlight	and	1.5	L	pots)	may	have	been	generally	benign	
for	these	desert	species.

Specific	 root	 length	 represents	 a	 trade-off	 between	 resource	
acquisition	and	the	associated	dry	mass	costs	of	building	and	main-
taining	 roots	 (see	Pérez-Harguindeguy	 et	al.,	 2013	 and	 references	

therein).	High	SRL	can	result	from	having	a	low	diameter	or	low	tissue	
density	and	may	be	beneficial	in	disturbed	soils	with	high	resource	
availability	(Eissenstat,	1991).	However,	thick	roots	exert	more	pene-
trative	force	on	soil	and	transport	more	water,	while	those	with	high	
tissue	 density	 tend	 to	 have	 higher	 longevity	 (Pérez-Harguindeguy	
et	al.,	 2013).	 Our	 results	 showed	 a	 negative	 directional	 selection	
on	SRL.	Given	our	pulsating	watering	system,	we	speculate	that	the	
higher	 competitive	 ability	 of	 low-	 vs.	 high-SRL	 species	 may	 have	
been	 the	 result	 of	 (a)	 faster	water	 extraction	 from	 the	 soil	 during	
pulses	 via	 thicker	 roots	 and/or	 (b)	 the	maintenance	 of	 active	 root	
systems	during	inter-pulses	via	more	resistant	roots.	Overall,	these	
results	indicate	that	a	seemingly	conservative	strategy	underground	
(i.e.,	 low-SRL)	may	be	 coupled	with	 an	 acquisitive	 strategy	 above-
ground	 (i.e.,	 low-LDMC)	 to	 confer	 plants	 high	 competitive	 ability.	
They	thus	support	the	recent	view	that	selective	pressures	may	dif-
fer	between	above-	and	belowground	organs	(Bergmann,	Ryo,	Prati,	
Hempel,	&	Rillig,	2017).

The	best	trait-based	model	also	included	two	traits	related	to	the	
size	of	individuals	and	their	organs,	that	is,	potential	plant	height	(H),	
on	which	selection	was	positive	directional,	and	LS,	on	which	selec-
tion	was	stabilising.	In	general,	both	H	and	LS	are	positively	related	
with	competitive	ability	when	light	is	the	limiting	resource,	but	tall	
plants	and	large	leaves	are	energetically	costly	and	would	be	ineffi-
cient	if	light	is	not	limiting	(Givnish,	1987;	Westoby	et	al.,	2002).	In	
addition,	small	leaves	create	a	thinner	boundary	layer	favouring	both	
gas	 exchange	 and	 heat	 dissipation	 (Givnish,	 1987;	Westoby	 et	al.,	
2002).	Our	results	indicate	that	taller	plants	may	have	outcompeted	
target-species	 individuals	 through	better	 access	 to	direct	 sunlight.	
In	contrast,	the	optimum	LS	found	here	suggests	opposite	selecting	
forces	perhaps	associated	to	a	trade-off	between	light	interception	
vs.	gas	exchange	and	heat	dissipation.	Overall,	these	results	suggest	
that	selective	pressures	on	LS	and	H	were	at	least	partially	uncou-
pled	and	support	the	stance	that	they	may	be	associated	with	differ-
ent	aspects	of	the	ecological	strategies	of	coexisting	species	(Falster	
&	Westoby,	2003).

At	our	study	site,	both	tough-leaved	and	succulent	annuals	can	
dominate	 the	 open	 spaces	 among	 shrubs	 (Rolhauser	 &	 Pucheta,	
2016).	 This	 is	 at	 odds	with	 our	 experimental	 results	 and	 suggests	
that	the	success	of	species	in	the	field	may	not	be	entirely	dictated	
by	their	competitive	ability.	Other	factors,	such	as	the	ability	to	re-
spond	to	seasonal	precipitation	and	drought	(e.g.,	Angert,	Huxman,	
Chesson,	&	Venable,	2009)	may	also	be	important	for	these	annual	
plants.	 Interspecific	 differences	 in	 such	 responses	 across	 years	
(Angert	et	al.,	2009),	coupled	with	 limited	seed	dispersal	 (Venable,	
Flores-Martinez,	Muller-Landau,	Barron-Gafford,	&	Becerra,	2008)	
might	 counterbalance	 the	 competitive	differences	 found	here	 and	
possibly	explain	annual	species	coexistence	at	our	study	site.

4.2 | Competitive trait selection in temperate 
herbaceous plants

All	three	leaf	traits	available	in	this	dataset	were	retained	in	the	best	
model,	that	is,	LDMC,	SLA,	and	LS.	The	environmental	conditions	in	

F I G U R E  2  Component-plus-residual	(C+R)	plots	illustrating	
the	estimated	relationships	between	trait	values	and	competitive	
effects	on	a	target	species	(1/biomass,	in	log	scale)	of	10	desert	
annual	species	in	a	pot	experiment	(see	model	summary	statistics	
in	Table	1).	Lines	show	predicted	values	(the	linear	components)	
while	each	grey	dot	(dark	grey	dots	for	the	target	species,	Tribulus 
terrestris,	T)	shows	the	sum	of	the	component	and	the	residual	
corresponding	to	each	observation.	Other	species	codes	are	A:	
Amaranthus standleyanus;	B:	Boerhavia diffusa	(exotic);	E:	Euphorbia 
catamarcensis;	F:	Flaveria bidentis;	G:	Gomphrena martiana;	P:	
Portulaca oleracea	(exotic);	Sa:	Sclerophylax arnotii,	Se:	Solanum 
euacanthum;	Sm:	Sphaeralcea miniata.	Species	codes	are	placed	
above	or	below	the	corresponding	data	points	in	panels	with	
stacked	observations
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the	temperate	species	experiment	were	aimed	to	provide	plants	with	
ample	moisture,	nutrients,	and	space	in	the	control	treatment,	but	a	
restricted	offer	in	the	stress	treatment	(Keddy	et	al.,	2002),	although	
we	found	a	marginal	effect	of	the	treatment.	The	negative	selection	
gradient	observed	here	on	LDMC	suggests	that	these	relatively	be-
nign	conditions	may	have	generally	favoured	low-	over	high-LDMC	
species.	Nonetheless,	the	presence	of	an	optimum	LDMC	(skewed	
towards	low	values)	suggests	that	water	availability	may	have	some-
what	limited	the	performance	of	species	with	extremely	low	LDMC	
even	in	the	1	L	control	pots.

Specific	 leaf	 area	 represents	 the	 trade-off	 between	 potential	
growth	(maximised	in	high-SLA	leaves)	vs.	leaf	longevity	(maximised	
in	low-SLA	leaves;	Westoby	et	al.,	2002).	In	addition,	low-SLA	leaves	
tend	 to	 have	 higher	 photosynthetic	 rates	 per	 unit	 area	 at	 high	 ir-
radiation	 levels	 (via	higher	 leaf	 thickness)	but	would	be	 inefficient	
in	the	shade	(Niinemets,	2001).	Kunstler	et	al.	(2016)	found	a	nega-
tive	linear	relationship	between	SLA	and	competitive	effects	among	
trees	worldwide	and	attributed	the	pattern	to	the	benefits	that	low	
SLA	provides	in	terms	of	light	interception.	Notably,	we	found	sup-
port	 for	 this	 negative	 relationship	within	 large-leaved	 species	 but	
not	 within	 small-leaved	 species.	 Here,	 large-leaved,	 low-SLA	 spe-
cies	were	 the	most	 competitive	 possibly	 because	 they	maximised	
both	light	interception	and	assimilation.	Keddy	et	al.	(2002)	arrived	
at	 a	 similar	 conclusion	based	on	 the	observed	positive	 correlation	
between	 neighbour	 plant	 biomass	 and	 competitive	 effects.	When	
leaves	are	small,	however,	 increasing	SLA	was	not	associated	with	
a	decrease	in	competitive	ability	but	instead	with	a	slight	increase.	
This	suggests	that	species	investing	in	small	and	thin	leaves	(possi-
bly	 cheaper)	may	have	 somewhat	 compensated	 the	overall	 loss	 in	
light	interception.	That	is,	plants	with	high	SLA	and	low	LS	may	have	
managed	 to	 achieve	 intermediate	 levels	 of	 competitive	 ability	 not	
because	they	overtopped	and	shaded	target-species	individuals	but	
due	to	a	rapid	use	of	soil	resources	in	pots.

Overall,	 these	 results	 seem	 to	 agree	 with	 what	 might	 be	 ex-
pected	from	the	distribution	of	species	across	environments	in	the	
field.	 The	most	 competitive	 species	 appear	 to	 be	 adapted	 to	 pro-
ductive	 environments	 (via	 low	 LDMC,	 low	 SLA,	 and	 large	 leaves,	
such	 as	 Cirsium arvense)	 while	 those	 with	 low	 competitive	 ability	

(characterised	 by	 high	 LDMC,	 high	 SLA	 and	 large	 leaves,	 such	 as	
Carex pensylvanica)	may	be	better	 adapted	 to	more	 restrictive	en-
vironments.	Consistently,	the	former	were	mostly	collected	in	open	

Variable Estimate SE df t value p value VIF

Leaf	dry	matter	
content

−0.692 0.131 1/67 −5.27 <0.0001 1.44

Leaf	dry	matter	
content2

−0.277 0.110 1/67 −2.52 0.0140 1.57

Specific	leaf	area −0.420 0.119 1/67 −3.54 0.0007 1.18

Leaf	size 0.160 0.114 1/67 1.41 0.1637 1.08

Specific	leaf	area	
*	leaf	size

−0.315 0.138 1/67 −2.28 0.0260 1.18

Stress −0.390 0.217 1/67 −1.80 0.0770 1.00

Estimated	parameters	are	shown	along	with	their	standard	errors.	Significance	of	model	terms	was	
evaluated	using	marginal	tests	based	on	the	t-distribution.	The	R2	of	this	model	was	0.39.	Other	ab-
breviations	as	in	Table	1.	See	Figure	3	for	a	graphical	representation	of	these	results.

TA B L E  2  Statistical	summaries	of	the	
best	trait-based	model	explaining	the	
competitive	effects	in	a	pot	experiment	of	
37	herbaceous	species	from	different	
temperate	vegetation	types	in	Canada	
(Keddy	et	al.,	2002)

F I G U R E  3  Component-plus-residual	(C+R)	plots	illustrating	
the	estimated	relationships	between	trait	values	and	competitive	
effects	on	a	target	species	(1/biomass,	in	log	scale)	of	37	temperate	
species	in	a	pot	experiment	carried	out	by	Keddy	et	al.	(2002)	(see	
model	summary	statistics	in	Table	2).	Grey	lines	show	predicted	
values	(the	linear	components)	for	each	of	the	three	traits	
included	in	the	model	(a–c)	keeping	the	remaining	traits	at	their	
mean	standardised	value	(i.e.,	zero);	grey	dots	show	the	sum	of	
the	component	and	the	residual	corresponding	to	each	of	the	37	
species.	Predictions	were	averaged	across	stress	treatments	since	
these	effects	were	relatively	small	and	marginally	significant.	In	
specific	leaf	area	(SLA)	and	leaf	size	(LS)	panels	(which	showed	
interacting	effects),	colour	lines	show	predicted	values	for	either	
high	(↑)	or	low	(↓)	values	of	the	other	trait	(i.e.,	1.5	standard	
deviations	above	or	below	the	mean,	respectively).	(d)	Background	
colour	and	contour	lines	indicate	predicted	values	for	SLA-LS	
combinations;	grey	dots	represent	species’	trait	values	and	dotted	
lines	are	placed	at	1.5	standard	deviations	above	or	below	the	mean	
using	the	same	colour	code	as	in	b,	c	
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fields	with	 deep	 soils	whereas	 the	 latter	were	mostly	 collected	 in	
shallow-soils	environments	(Nielsen,	1993).

4.3 | Strengths, limitations, and future directions

Our	approach	provides	standardised	metrics	of	both	univariate	and	
bivariate	 nonlinear	 selection,	 along	with	widely	 used	 estimates	 of	
linear	 selection.	We	 believe	 this	 functional	 flexibility	will	 improve	
descriptions	of	trait–performance	relationships	that	may	help	reveal	
the	“function”	 in	functional	 traits	 (McGill	et	al.,	2006;	Rolhauser	&	
Pucheta,	2017).	Further,	standardisation	may	allow	simple	compari-
sons	 of	 selection	 patterns	 across	 environments.	 The	 homologous	
research	line	at	the	population	level	has	been	prolific	and	has	ena-
bled	useful	meta-analyses	describing	spatial	and	temporal	patterns	
of	phenotypic	selection	(Kingsolver	et	al.,	2012).	Here,	we	analysed	
data	 from	 a	 desert	 and	 from	 a	 temperate	 system	 (which	 included	
resource	manipulation)	and	detected	important	similarities.

First,	we	found	a	prevalence	of	stabilising	over	disruptive	selec-
tion.	Stabilising	selection	of	competitive	ability	is	largely	concordant	
with	the	view	that	traits	related	to	plant	competitive	ability	and	pro-
ductivity	should	converge	towards	optimum	values	in	homogeneous	
environments	 (Grime,	 2006).	 This	 stance	 can	 be	 mechanistically	
sustained	 on	 the	 fundamental	 morpho-physiological	 constraints	
and	 trade-offs	 that	 shape	 individuals’	 ability	 to	 acquire	 and	 retain	
resources	 and	 thus	 make	 competitive	 ability	 environment-depen-
dent	 (Aerts,	 1999;	 Austin	 &	 Smith,	 1989;	 Tilman,	 1990).	 On	 the	
contrary,	disruptive	selection,	and	more	generally	community-level	
multimodal	trait–fitness	relationships	(Laughlin	et	al.,	2015),	require	
within-site	 environmental	 heterogeneity	 and	 niche	 differentiation	
(Rolhauser	&	Pucheta,	2017).	We	 thus	argue	 that	 stabilising	 trait–
competition	relationships	may	be	more	common	than	previously	re-
alised,	particularly	in	environmentally	homogenous	sites.

Second,	LDMC	consistently	captured	an	 important	component	
of	plant	competitive	ability	that	was	not	accounted	for	by	other	traits	
included	in	the	best	models,	such	as	SLA,	LS,	and	plant	height.	This	
result	seems	particularly	relevant	since	LDMC	has	seldom	been	con-
sidered	 in	 studies	 focused	on	 trait–competition	 relationships	 (e.g.,	
Freckleton	&	Watkinson,	2001;	Gaudet	&	Keddy,	1988;	Goldberg,	
1996;	Gross	 et	al.,	 2009;	Keddy	et	al.,	 2002;	Kunstler	 et	al.,	 2016;	
Rosch	et	al.,	1997;	but	see	Liancourt,	Tielborger,	Bangerter,	&	Prasse,	
2009).	 Our	 findings	 thus	 support	 the	 notion	 that	 different	 traits	
measured	 in	 the	same	organ,	 such	as	LDMC	and	SLA,	may	 reflect	
different	ecological	functions	(Hodgson	et	al.,	2011).	Echoing	Lande	
and	Arnold	(1983),	we	stress	the	importance	of	multiple	regression	
since	patterns	of	explanatory	complementarity	among	traits,	like	the	
ones	 shown	here,	may	go	unnoticed	 in	 studies	 that	 fit	models	 for	
each	trait	separately.

Further,	 considering	 correlational	 selection	 in	 the	 temperate	
species	experiment	uncovered	changes	 in	the	functionality	of	SLA	
that	depended	on	LS.	This	pattern	may	deserve	further	examination	
and	could	as	well	 inspire	 the	 revision	of	other	 functional	 relation-
ships.	For	instance,	the	linear	decomposition	of	relative	growth	rate	
into	the	effects	of	SLA,	LDMC,	leaf	thickness,	and	leaf	mass	fraction	

(Hodgson	et	al.,	2011)	could	be	further	refined	by	allowing	for	trait–
trait	interactions.	Perhaps,	these	notions	help	identify	under	which	
circumstances	SLA	reflects	fast	plant	growth	or,	alternatively,	an	ad-
aptation	to	light	deficient	conditions	(Hodgson	et	al.,	2011).

Our	 results	 from	 the	 desert-annuals	 experiment	 showed	 that	
species-level	 functional	 traits	were	useful	predictors	of	 individual-
level	competitive	effects	and	agreed	with	results	from	a	global	study	
where	rectilinear	functions	where	used	(Kunstler	et	al.,	2016).	These	
findings	illustrate	the	utility	of	database-retrieved	trait	values	to	ex-
plain	 individual	performance	 in	a	 competitive	context,	despite	 the	
scatter	 introduced	 when	 analysing	 individuals	 instead	 of	 species.	
Theoretically,	a	better	understanding	of	individual-level	competitive	
ability	would	be	 achieved	using	 trait	 values	 of	 interacting	 individ-
uals.	 However,	 studies	 at	 the	 individual	 level	might	 be	 somewhat	
limited	since	many	important	traits	(such	as	LDMC	and	SLA)	require	
destructive	measurements	that	may	affect	individual	performance,	
which	may	be	particularly	restrictive	for	small-sized	individuals.

As	 originally	 acknowledged	 by	 Lande	 and	Arnold	 (1983),	 the	
multiple	regression	approach	“helps	to	reveal	 the	target(s)	of	se-
lection,	and	to	quantify	its	intensity,	without	identifying	the	selec-
tive	agent(s).”	Part	of	 the	problems	that	arise	when	 inferring	the	
functional	role	of	traits	stem	from	their	natural	covariation	(Lande	
&	Arnold,	1983;	Mitchell-Olds	&	Shaw,	1987).	Trait	collinearity	re-
sults	in	regression	coefficients	that	are	not	truly	estimated	while	
all	 other	 variables	 remain	 constant	 and	 are	 thus	 contingent	 to	
the	observed	 structure	of	 phenotypic	 covariation	 (Mitchell-Olds	
&	 Shaw,	 1987).	 Such	 contingency	 would	 be	 particularly	 import-
ant	for	correlative	studies	if	fitness	peaks	in	adaptive	landscapes	
change	across	environments	and	in	time	(see	Laughlin	&	Messier,	
2015).	 Conclusive	 evidence	 on	 the	 causation	 of	 selection	 needs	
the	addition	of	experimental	manipulations	(Mitchell-Olds	&	Shaw,	
1987;	Wade	&	Kalisz,	 1990).	Manipulations	 of	 trait	 distributions	
should	be	aimed	at	generating	uncorrelated	phenotypic	distribu-
tions	 across	 all	 traits,	 although	 this	may	be	 increasingly	difficult	
as	 the	 number	 of	 traits	 increases.	 Environmental	 manipulations	
would	help	uncover	the	agent	of	selection	through	the	analysis	of	
environmental	effects	on	the	shape	of	fitness	functions	(Wade	&	
Kalisz,	 1990).	Our	 analysis	 of	 the	 temperate	 species	 experiment	
showed	that	the	stress	treatment	did	not	significantly	change	the	
shape	of	trait–competition	relationships,	but	much	more	data	are	
needed	on	this	regard.	It	would	be	important	to	bear	in	mind	that	
experimental	 manipulations	 can	 either	 be	 impractical	 or	 overly	
unrealistic,	so	that	research	programmes	combining	both	observa-
tional	and	manipulative	studies	may	be	most	constructive	(Keddy,	
1989;	 Kraft	 et	al.,	 2015;	 Mitchell-Olds	 &	 Shaw,	 1987;	 Tilman,	
1989).	We	propose	that	selection	patterns	in	such	studies	can	be	
captured	and	interpreted	using	the	tools	and	concepts	presented	
here.
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