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Abstract
1.	 Research linking functional traits to competitive ability of coexisting species has 
largely relied on rectilinear correlations, yielding inconsistent results. Based on 
concepts borrowed from natural selection theory, we propose that trait–competi-
tion relationships can generally correspond to three univariate selection modes: 
directional (a rectilinear relationship), stabilising (an n‐shaped relationship), and 
disruptive (a u‐shaped relationship). Moreover, correlational selection occurs 
when two traits interact in determining competitive ability and lead to an opti-
mum trait combination (i.e., a bivariate nonlinear selection mode).

2.	 We tested our ideas using two independent datasets, each one characterising a 
group of species according to (a) their competitive effect on a target species in a 
pot experiment and (b) species‐level values of well‐known functional traits ex-
tracted from existing databases. The first dataset comprised 10 annual plant spe-
cies frequent in a summer‐rainfall desert in Argentina, while the second consisted 
of 37 herbaceous species from cool temperate vegetation types in Canada. Both 
experiments had a replacement design where the identity of neighbours was ma-
nipulated holding total plant density in pots constant. We modelled the competi-
tive ability of neighbours (i.e., the log inverse of target plant biomass) as a function 
of traits using normal multiple regression.

3.	 Leaf dry matter content (LDMC) was consistently subjected to negative direc-
tional selection in both experiments as well as to stabilising selection among tem-
perate species. Leaf size was subjected to stabilising selection among desert 
species while among temperate species, leaf size underwent correlational selec-
tion in combination with specific leaf area (SLA): selection on SLA was negative 
directional for large‐leaved species, while it was slightly positive for small‐leaved 
species.

4.	 Synthesis. Multiple quadratic regression adds functional flexibility to trait‐based 
community ecology while providing a standardised basis for comparison among 
traits and environments. Our analyses of two datasets from contrasting environ-
mental conditions indicate (a) that leaf dry matter content can capture an impor-
tant component of plant competitive ability not accounted for by widely used 
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1  | INTRODUC TION

Competition has long been considered a key biotic factor determin-
ing the structure of local communities (see reviews in Cahill, Kembel, 
Lamb, & Keddy, 2008; Webb, Ackerly, McPeek, & Donoghue, 2002). 
More recently, quantitative functional traits have also been rec-
ognised as important drivers of both community assembly and eco-
system processes (Keddy, 1992; Lavorel & Garnier, 2002; McGill, 
Enquist, Weiher, & Westoby, 2006). However, there is still a limited 
understanding of how plant traits relate to the outcome of competi-
tive interactions between species (Kunstler et al., 2016), a link that has 
been a long‐standing conundrum for ecologists (Grace, 1990). Most 
studies have related traits to competitive ability within a community 
or a group of selected interacting species via linear correlations (e.g., 
Freckleton & Watkinson, 2001; Gaudet & Keddy, 1988; Goldberg, 
1996; Keddy, Nielsen, Weiher, & Lawson, 2002; Kunstler et al., 2016; 
Rosch, VanRooyen, & Theron, 1997; but see Gross et al., 2009). This 
approach, however, has yielded inconsistent results across studies and 
environments precluding generalisation and identification of traits 
that could be broadly linked with competitive ability (Craine, 2005; 
Goldberg, 1996; Leishman, 1999). Building on concepts borrowed 
from natural selection theory, we argue that rectilinear functions are 
not the only possible expectation for trait–competition relationships 
and that this realisation may help explain inconsistent results.

Competitive ability is understood here as the ability of an indi-
vidual to limit the performance of a neighbouring individual (i.e., a 
competitive effect) and/or to withstand the competitive effect of 
neighbours (i.e., a competitive response; Goldberg & Landa, 1991). 
We define a functional trait as a measurable feature of plants that 
determines performance (e.g., growth) and, ultimately, fitness (McGill 
et al., 2006; Shipley et al., 2016; Violle et al., 2007). With these ele-
ments, we propose a framework based on the Darwinian principle 
stating that competition is a selective force in plant communities (see 
e.g., Aarssen, 1989 for a comprehensive review). Traditionally, natu-
ral selection has been thought to act in three basic ways or “modes” 
upon a functional trait within a population: directional, stabilising, 
and disruptive (Endler, 1986; Lande & Arnold, 1983). Directional 
selection is generally described by a monotonic relationship (e.g., a 
straight line) in which values at one end of a single functional trait axis 
are favoured (Mitchell‐Olds & Shaw, 1987). Stabilising selection is an 
n‐shaped, optimum relationship in which intermediate trait values 
are favoured, whereas disruptive selection is a u‐shaped relationship 

in which both ends of the functional trait are favoured. Directional 
selection can occur jointly with either stabilising or disruptive selec-
tion, shifting the maximum or minimum (respectively) towards one 
extreme of the range of observed phenotypes (Endler, 1986; Lande & 
Arnold, 1983). An important premise of our framework is that, since 
natural selection acts on individuals, the consequences are reflected 
at the population level but also at the community level (Shipley, 2010; 
Vellend, 2010). Therefore, trait values that determine an individuals’ 
competitive ability would affect its fitness within a given community 
(Aarssen, 1989; Aerts, 1999; File, Murphy, & Dudley, 2012; Goldberg, 
1996), and could be thus subjected to any of these three basic modes 
of selection and their combinations (Figure 1).

competitive traits, such as specific leaf area, leaf size, and plant height and (b) that 
optimum relationships (either univariate or bivariate) between competitive ability 
and plant traits may be more common than previously realised.

K E Y W O R D S

community assembly, competition experiment, correlational selection, leaf dry matter content, 
leaf size, phenotypic selection, plant–plant interactions, quadratic regression, specific leaf 
area, stabilising selection

F I G U R E  1  Trait–competition relationships according to the 
possible combinations of three univariate selection modes: 
stabilising, disruptive, and directional. Competitive ability (Yi) can 
be quantified via inverse measures of target species’ performance 
(e.g., mortality and the inverse of plant biomass) in the presence 
of neighbour species i, each one having a trait value ti. Selection 
patterns are characterised using quadratic regression models of 
the form Yi = α + β ti + γti

2, where α is the y‐intercept (set to zero 
in all panels), β is the linear selection gradient, and γ discriminates 
between stabilising (when negative, top row) and disruptive (when 
positive, bottom row) selection
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The three basic selection modes described above consider single 
traits in isolation and, based on methods used by evolutionary biol-
ogists (Lande & Arnold, 1983), they can be characterised using qua-
dratic regression models of the form Yi = α + β ti + γti

2 + εi (Figure 1). 
Here, Yi is the competitive ability of neighbour species i, each one 
having a value of the trait t; α is the y‐intercept, β is the linear selec-
tion gradient, and γ estimates the average curvature of the function 
and discriminates between stabilising (when negative) and disruptive 
(when positive) selection; ε is an error term associated to species 
i. These basic selection modes are also referred to as “univariate” 
in the evolutionary literature, in the sense that traits do not inter-
act with each other to affect fitness (see e.g., Kingsolver, Diamond, 
Siepielski, & Carlson, 2012; Phillips & Arnold, 1989).

When considering multiple traits in pairs, the full quadratic re-
gression model may take the following form

Here, partial regression coefficients βj and γj, respectively, mea-
sure univariate linear and nonlinear selection on trait j (see e.g., 
Phillips & Arnold, 1989). This multivariate approach allows for the 
estimation of direct selection on a given trait (βj and γj) controlling 
statistically for indirect selection due to measured correlated traits 
(Lande & Arnold, 1983). Subscript k is used jointly with j to identify 
all possible two‐way interactions between traits, giving n(n‐1)/2 co-
efficients θjk to be estimated. Both subscripts assign the same labels 
to traits, from 1 to n, and estimated θjk’s are those where j<k (cfr. 
equation 3 in Phillips & Arnold, 1989). For instance, in the case of 
four traits (n = 4), six interaction coefficients would be estimated, 
namely θ12, θ13, θ14, θ23, θ24, and θ34. Interaction coefficients (also 
known as cross‐product terms) measure whether selection on one 
trait ( j) depends on the values of another (k) and vice versa. This 
bivariate mode of selection has been referred to as “correlational 
selection” by evolutionary biologists (see e.g., Endler, 1986) since it 
would operate changing the covariance between two traits (Lande & 
Arnold, 1983). Correlational selection coefficients produce curved 
response surfaces (peaks, valleys, saddles, or ridges) and thus indi-
cate nonlinear selection along axes that are not parallel to the axes 
represented by single traits (Phillips & Arnold, 1989). Regression on 
traits standardised to zero mean and unit variance yield standardised 
selection metrics that enable comparisons among different types of 
traits and organisms (Kingsolver et al., 2012; Lande & Arnold, 1983).

Underlying mechanisms of community‐level selection modes 
have been recently discussed in the context of community assembly 
(Rolhauser & Pucheta, 2017). Here, we build on these ideas and on 
previous analyses of community‐level trait–competition relationships. 
Directional selection would arise when traits determine a hierarchy of 
competitive ability (Goldberg, 1996; Goldberg & Landa, 1991; Keddy 
et al., 2002; Kunstler et al., 2012, 2016). For example, potential height 
in light‐limited environments, where competition is clearly asymmet-
rical and the tallest species become the best competitors (Givnish, 
1987; Kunstler et al., 2016; Westoby, Falster, Moles, Vesk, & Wright, 

2002). Stabilising (optimum) selection may occur when two or more 
antagonistic agents determine a functional trade‐off (Rolhauser & 
Pucheta, 2017), a process known as environmental filtering when such 
factors are abiotic (Kraft et al., 2015; see also Lasky, Sun, Su, Chen, 
& Keitt, 2013 who modelled environmental filtering using Gaussian, 
instead of quadratic functions). This may be particularly the case of 
productivity‐related traits, assuming that determinants of productiv-
ity are homogeneous over the area occupied by a community (Grime, 
2006). In contrast, within‐site environmental heterogeneity would 
allow for niche partitioning and the functional divergence of compet-
itive species (Adler, Fajardo, Kleinhesselink, & Kraft, 2013; Rolhauser 
& Pucheta, 2017), that is, a disruptive selection of competitive ability. 
Further, the importance of explicitly evaluating trait–trait interactions 
on individual fitness at the community level (referred to here as cor-
relational selection) has been recently noted, although empirical evi-
dence is largely scarce (Laughlin & Messier, 2015).

In this work, we are particularly focused on the competitive 
effects of neighbours on a target species (or “phytometer”). We 
thus measure competitive ability (Yi) as an inverse function of tar-
get species performance (Sackville Hamilton, 1994). We test our 
ideas using two datasets from contrasting environmental condi-
tions, each one characterising a set of neighbour species accord-
ing to (a) their competitive effects against a target species in a pot 
experiment and (b) species‐level values of well‐known and widely 
used functional traits (see e.g., Pérez‐Harguindeguy et al., 2013). 
The first dataset comprised annual plant species frequent in a 
summer‐rainfall desert in Argentina (Rolhauser & Pucheta, 2016), 
while the second consisted of herbaceous species living in a range 
of temperate vegetation types in Canada (Keddy et al., 2002). On 
top of serving as independent examples, we used these datasets to 
explore different aspects of trait‐based competition. While linking 
species‐level trait values to species‐level competitive effects has 
been a widely used approach (e.g., Freckleton & Watkinson, 2001; 
Gaudet & Keddy, 1988; Goldberg, 1996; Keddy et al., 2002; Rosch 
et al., 1997), it is important to acknowledge that competition oper-
ates at the individual level where stochastic processes may obscure 
the deterministic role of trait‐based mechanisms (Chase, 2014). We 
thus used our desert annual plants dataset to explore the extent 
to which the three univariate selection modes (directional, stabi-
lising and disruptive) based on species‐level trait values can ex-
plain individual‐level competitive effects. Further, the temperate 
herbaceous plants dataset contained a relatively large number of 
species characterised by a small number of traits providing us the 
necessary degrees of freedom to fit the full quadratic regression 
(Equation 1) and evaluate the relative strength of correlational se-
lection of species‐level competitive effects.

2  | MATERIAL S AND METHODS

2.1 | Desert annual plants dataset

This dataset contained species‐level trait values and individual‐level 
quantifications of competitive effects. The latter were obtained 

(1)Yi=𝛼+

n
∑

j=1

𝛽jtij+

n
∑

j=1

𝛾jt
2

ij
+

n
∑

j<k

𝜃jktijtik+𝜀i



4  |    Journal of Ecology ROLHAUSER et al.

from a pot experiment specially designed to test our ideas on the 
three basic, univariate selection modes. The experiment had a “re-
placement” design where the identity of neighbours within experi-
mental units was manipulated holding total plant density constant. 
This design is particularly suitable for questions based on the func-
tional similarity of competing species (Sackville Hamilton, 1994). The 
experimental units were 1.5 L black plastic (nursery) pots, where 
one target‐species individual coexisted for ~60 days with one indi-
vidual of a neighbour species. We used 10 different neighbour spe-
cies (see list in Table S1 in Appendix S1) which were all warm season 
annuals frequent in an open shrubland (31°43′18″S, 68°08′17″W) 
located in the central‐northern Monte Desert, Argentina (hereafter 
called “the study site,” Rolhauser & Pucheta, 2016). The target spe-
cies was Tribulus terrestris (Zygophyllaceae; hereinafter referred to 
as Tribulus), an abundant exotic species in our study site (Rolhauser 
& Pucheta, 2016, 2017). Tribulus was also included as a neighbour 
species to explore how intraspecific competition mapped onto the 
trait–competition scenario.

The pot experiment was conducted in the experimental field of 
the Universidad Nacional de San Juan (~46 km away from the study 
site) during the summer of 2013–2014. All plants involved in this ex-
periment (i.e., both target and neighbour plants in each pot) origi-
nated from seeds contained in soil and debris (see below) collected 
in the study site. Water sheet flow in the field accumulates large 
amounts of non‐dormant seeds of desert annuals in naturally occur-
ring obstructions or dams (Rolhauser, 2015). In these dams, seeds 
are mixed with soil and other coarse material transported by water 
such as twigs and dry leaves, and we call this “debris mixture.” In 
November 2013, we collected seed‐rich debris mixture and topsoil 
from open areas among shrubs to fill the pots. In late January 2014, 
we filled each pot with five parts of topsoil and topped them with 
one part of debris mixture. Pots were placed in a large garden bed of 
1.5 m by 10 m built on the ground and arranged EW. The bed allowed 
us to water the pots relatively easily by pulses of submersion and 
capillary rise. In each pulse, we filled the bed with water up to half 
the height of the pots and maintained this level for about 30 minutes 
to allow the entire substrate in each pot to imbibe. During germina-
tion and establishment stages, we watered the pots every second 
day to prevent topsoil desiccation (mimicking field conditions after 
a large rain event that would trigger massive germination). After this 
stage (see below), we watered the pots whenever the superficial 
substrate of at least one pot lightened (a sign of water deficit), re-
sulting in a watering frequency that ranged between 3 and 7 per 
days. This watering method reflected to some extent the restricted 
and pulsating nature of resource supply in deserts (Reynolds, Kemp, 
Ogle, & Fernandez, 2004).

Seedling emergence started 4 days after the first watering, and 
we surveyed species diversity of seedlings in each pot. A month later 
(late February), we considered the establishment phase completed, 
and we thinned plants to obtain the desired combinations of species. 
When possible (i.e., when more than one individual of the neces-
sary species were present), thinning was carried out so that both 
individuals were placed centred on either side of an imaginary line 

dividing the pots in half (maximum distance between individuals was 
constrained by the diameter of pots, ~12 cm). We managed to obtain 
at least 12 replicates for all neighbour species except for Solanum eu‐
acanthum, for which only six replicates were available (Appendix S1). 
At this stage, larger plants started shading those in adjacent pots. 
We thus rearranged pots to form blocks in order to homogenise 
conditions among experimental units. Blocks were formed accord-
ing to the height of the tallest individual in each pot, so that block 
one contained pots with the tallest plants, and so on; the position 
of pots within each block was randomised. This resulted in a ran-
domised incomplete block design since the number of replicates was 
not equal across neighbour species (see the resulting assignment of 
pots into blocks in Table S3 in Appendix S1). Towards the end of 
April 2014, all remaining individuals had seeded and many of them 
had already begun to senesce, therefore we decided to terminate 
the experiment. The duration of the experiment largely coincided 
with the length of the growing season of naturally occurring plants 
in the field, of about 3 months. Harvest of above‐ground plant bio-
mass was carried out in blocks, except for those individuals that died 
during the experiment and were immediately harvested. Both target 
and neighbour plants within a pot were harvested simultaneously. 
As a result, from the 146 Tribulus plants used (30 and 116, respec-
tively, from pots with conspecific and heterospecific neighbours), 79 
were harvested following mortality patterns during the experiment 
(~54%) and the remaining 64 were harvested following the blocking 
design at the end of the experiment. Harvested plants were oven‐
dried at 60°C for at least 72 hours and then weighed.

All neighbour species were characterised in terms of eight func-
tional traits: leaf size (LS, area), leaf dissection index (LD, perime-
ter/√area), specific leaf area (SLA, area/dry weight), leaf dry matter 
content (LDMC, dry weight/fresh weight), specific root length (SRL, 
length/dry weight), specific root volume (SRV, volume/dry weight), 
maximum plant height (H), and seed mass (SM, dry weight). Species‐
level trait values for these species were extracted from our local da-
tabase (published in Rolhauser & Pucheta, 2017). Briefly, 10 healthy 
individuals per species were collected to characterise leaf and root 
traits, whereas at least eight individuals per species were used to es-
timate seed dry mass values (Rolhauser & Pucheta, 2017). Collection 
timing (between November 2010 and March 2014) and place (in 
shrub understories or in open spaces) depended on the temporal 
and spatial distribution of species; field measurements of maximum 
plant height were also carried out within this time frame (Rolhauser 
& Pucheta, 2017). Using the individual‐level trait values from which 
these species averages were obtained, we show here that variation 
among species included in this experiment is much greater than vari-
ation within species, which justifies the use of species average val-
ues (Appendix S1).

2.2 | Temperate herbaceous plants dataset

This dataset contained species‐level estimates of both trait values 
and competitive effects. Data on the competitive effects of tem-
perate herbaceous species living in eastern Ontario, Canada, were 
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obtained from Keddy et al. (2002). The plants used in this experiment 
were collected from a range of vegetation types in eastern Ontario, 
including old fields with either deep clay or shallow sandy soils over 
Precambrian gneiss, old fields with shallow soils over limestone, 
rock barrens over Precambrian gneiss, and alvars, which are envi-
ronments characterised by shallow soils over flat limestone (Nielsen, 
1993). All collection sites were located within the cool temperate 
ecoclimatic province of Canada (Strong, Zoltai, & Ironside, 1989).

The experiment had a replacement design similar to ours, where 
Trichostema brachiatum (Lamiaceae; hereinafter referred to as 
Trichostema) was the target species. The experiment included 63 
neighbour species and two environmental treatments: stress (using 
0.5 L pots) and control (using 1 L pots). Data on widely used func-
tional traits for these species were not available in the original paper 
and were extracted from the TRY database (Kattge et al., 2011). Trait 
data were not available for all species used in Keddy et al. experi-
ment, and the resulting dataset was limited to 37 species character-
ised in terms of plant height, LDMC, LS, and SLA (see list of species 
in Appendix S2; references for these data include Aubin, Beaudet, 
& Messier, 2000; Aubin et al., 2012; Aubin, Messier, & Kneeshaw, 
2005; Aubin & Ricard, 2000; Masse, Prescott, Müller, & Grayston, 
2016; Morris, 2014; Wiebe, Morris, Luckai, & Reid, 2013). The TRY 
database provided several trait values for most of these species. We 
thus estimated maximum plant height for each species as the 99% 
quantile of observed values. For the remaining traits, we computed 
“typical” trait values for each species as the arithmetic mean of ob-
served values.

2.3 | Data analysis

Data analysis was performed on each dataset independently. Based 
on a quadratic regression framework (Equation 1), our general ap-
proach consisted of using stepwise variable selection to find the 
best combination of traits to explain neighbours’ competitive ef-
fects. Competitive effects of neighbour species i were calculated as 
the log inverse of the above‐ground dry biomass of target‐species 
individuals, denoted as ln(1/Bi). In the case of the conspecific treat-
ment in the desert‐annuals experiment, two values of Tribulus ln(1/Bi) 
were obtained from each pot, which were averaged to obtain a single 
measure per pot. Backward elimination was conducted when avail-
able degrees of freedom allowed fitting a full initial model, while 
forward addition was performed when this was not possible (see 
below). The importance of model terms was assessed based on the 
small sample (or second‐order) Akaike information criterion (AICc), 
which decreases with model fit and sample size, and increases with 
the number of parameters (Burnham & Anderson, 2003). It is thus a 
useful measure for variable selection; for example, the removal of the 
least important term in a model would generate the largest decrease 
(or the smallest increase) in AICc. AICc was calculated using the pack-
age AICcmodavg in r (Mazerolle, 2016). In general, quadratic terms 
were considered for all continuous predictors, that is, traits and other 
covariates (see below). Quadratic terms were always evaluated in the 
presence of the corresponding linear term (see e.g., Lande & Arnold, 

1983). Thus, linear terms were removed only if the corresponding 
quadratic term had been previously removed during backward elimi-
nation, while quadratic terms were added only if the corresponding 
linear term had been previously added during a forward procedure. 
The degree of collinearity (i.e., the correlation among predictors) in 
the resulting best models was diagnosed using variance‐inflation fac-
tors (VIF) calculated with the function vif of the package car in r (Fox 
& Weisberg, 2011). Predictors with VIF >10 may be seriously affected 
by collinearity and the simplest remedial measure is to drop them 
from the model (Kutner, Nachtsheim, Neter, & Li, 2005).

For the desert annual plants dataset, Tribulus ln(1/Bi) was mod-
elled as a function of neighbour traits using multiple Gaussian lin-
ear mixed‐effects models (i.e., assuming normal errors) using the 
function lme of the package nlme in r (Pinheiro & Bates, 2000). 
Functional traits (standardised to zero mean and unit variance) 
and harvest date (centred) were modelled as fixed effect predic-
tors, whereas blocks were included in all models as random effects. 
Harvest date was included to account for the effect of individual 
age on growth. The relatively small number of species prevented a 
backward elimination of traits, so we carried out a forward selection 
process instead (Appendix S3). Models were fitted by the maximum 
likelihood method to allow for meaningful comparisons during vari-
able selection (Mazerolle, 2016; Pinheiro & Bates, 2000). We refer to 
these models as “trait‐based.”

For the temperate herbaceous plants dataset, the response 
variable was proportional to Trichostema ln(1/Bi). Originally, Keddy 
et al. (2002) published their results in terms of average neighbour 
species “relative competitive performance.” This was calculated as 
RCPi = B0 − Bi)/B0, where B0 was the average above‐ground biomass 
of Trichostema when grown alone, and Bi when grown with neigh-
bour species i (Keddy et al., 2002). Since the value of B0 was not 
provided in the original paper, we assumed it to be 1g (which would 
suffice for comparative purposes) and calculated Bi as (1 − RCPi)*1g. 
Given the absence of individual‐level observations, competitive ef-
fects were related to traits using fixed‐effects Gaussian linear mod-
els, for which we used the function lm in r (Fox & Weisberg, 2011). 
In this case, plant traits were log‐transformed to control for extreme 
values and then standardised. The initial model contained both lin-
ear and quadratic terms of all four traits, all possible cross‐products 
terms, and all possible interactions between stress treatment and 
trait‐related terms. This model was simplified through backward 
elimination (Appendix S3).

We also described the multivariate functional variation across 
the species in each dataset using principal component analysis based 
on standardised single functional traits (see Appendix S2). We used 
the resulting principal components (PCs) as predictors of neigh-
bours’ competitive ability the same way we did for single traits, and 
we refer to these models as “PC‐based.” Retained PCs (the first three 
in the case of desert annuals, and the first two in the case of temper-
ate species) were meaningful in terms of the Kaiser–Guttman crite-
rion, that is, their eigenvalues were larger than one (Borcard, Gillet, & 
Legendre, 2011, see full results in Appendix S2). The best PC‐based 
models were selected through backward elimination (Appendix S3).
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Univariate trait–competition relationships described by the best 
model for each dataset were illustrated using component‐plus‐resid-
ual plots, also called partial residual plots (Fox & Weisberg, 2011). In 
general, a partial residual associated with observation i in response 
to predictor j, denoted epartial,ij, is calculated by adding the fitted lin-
ear component corresponding to this predictor (i.e., the prediction 
made by j for observation i keeping all other covariates at their aver-
age value, ρij) to the corresponding residual of the full model (ei), that 
is, epartial,ij = ρij + ei (Fox & Weisberg, 2011). Partial residuals epartial,ij 
are then plotted against predictor j. In our case, ρij for trait tj equals 
α + βj tij + γjtij

2 (see Equation 1) since all remaining traits in models 
have zero mean. In addition, we used two‐dimensional filled contour 
plots (Mittal, 2011) to illustrate predicted trait–competition relation-
ships where correlational selection was detected.

3  | RESULTS

3.1 | Desert annual plants

The best trait‐based model explaining neighbour competitive effect 
on Tribulus –quantified as ln(1/Bi)– included LDMC, LS, potential 
plant height (H) and SRL, along with harvest date (Table 1). Trait–
competition relationship for LS was consistent with stabilising selec-
tion, without a significant directional component (Table 1; Figure 2). 
Relationships for LDMC and SRL were negative directional and posi-
tive directional for H (Table 1; Figure 2). In addition, Tribulus ln(1/Bi) 
decreased linearly with harvest date, which reflects that individuals 
that died earlier were smaller (Figure 2). All VIFs in this model were 
<7.2, indicating tolerable collinearity.

The best PC‐based model included the first and third PCs 
(Table 1). Traits most strongly related with PC1 were SLA (positively) 
and LDMC (negatively), whereas SRL and H were most strongly re-
lated (positively) with PC3 (Appendix S2). This model showed lower 
performance (i.e., both higher AICc and VIFs) compared to the best 

trait‐based model (Table 1). Hence, we will not look into the details 
of interpreting the PC‐based model, although it is noteworthy that 
trait–competition relationships were negative directional for PC1 
and stabilising for PC3 (Table 1).

3.2 | Temperate herbaceous plants

The best trait‐based model fitted to these data combined LDMC, SLA, 
and LS (Table 2). There was a combination of negative directional and 
stabilising selection on LDMC (Figure 3a). We also found correlational 
selection on SLA and LS (Table 2). Selection on SLA was negative 
directional within large‐leaved species, while it was slightly positive 
within small‐leaved species (Figure 3b). Furthermore, selection on LS 
was positive directional for low‐SLA species and negative for high‐SLA 
species (Figure 3c). The resulting selection surface is represented by a 
saddle with an off‐centred saddle point. Competitive ability peaks at 
low SLA and large LS and decreases steeply towards either high SLA 
or small LS (Figure 3d). The stress treatment resulted in a relatively 
small (and marginally significant) decrease in the overall competitive 
ability of neighbours (Table 2). There were no significant interactions 
between stress treatment and traits (Table 2; Appendix S3), implying 
that none of the functional patterns listed above were affected by 
this factor. All VIFs in this model were <1.6, indicating very low col-
linearity. PCs were not significantly related to the competitive ability 
of these species (Appendix S3).

4  | DISCUSSION

4.1 | Competitive trait selection in desert annual 
plants

Two traits related with the quality of plant tissues were retained in 
the best model, that is, LDMC and SRL. High LDMC could result from 
small cells with thick walls which would confer leaf elasticity and 

TA B L E  1  Statistical summaries of the best trait‐based and PC‐based models explaining the competitive effects in a pot experiment of 10 
annual species that are frequent in a site within the Monte Desert (Argentina)

Model Variable Estimate SE df t value p value VIF

Best trait‐based, 
AICc = 251.9

Harvest date −0.028 0.003 1/110 −10.78 <0.0001 1.02

Leaf dry matter content −0.387 0.099 1/110 −3.92 0.0002 3.80

Leaf size −0.141 0.113 1/110 −1.25 0.2133 5.16

Leaf size2 −0.223 0.062 1/110 −3.59 0.0005 1.91

Plant height 0.413 0.132 1/110 3.12 0.0023 7.11

Specific root length −0.304 0.118 1/110 −2.57 0.0115 5.79

Best PC‐based, 
AICc = 261.8

Harvest date 0.142 0.062 1/112 −10.04 <0.0001 1.02

PC1 −0.142 0.125 1/112 2.28 0.0244 4.35

PC3 −0.131 0.069 1/112 −1.14 0.2582 7.23

PC32 −0.027 0.003 1/112 −1.89 0.0616 10.19

Estimated parameters are shown along with their standard errors. Significance of model terms was evaluated using marginal tests based on the t‐dis-
tribution. AICc: small sample Akaike information criterion; df: numerator/denominator degrees of freedom; VIF: variance‐inflation factor; PC: principal 
component. See Figure 2 for a graphical representation of the trait‐based model.
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allow tolerance to water limitation, but would limit photosynthesis 
under moist conditions (Niinemets, 2001). We would thus expect a 
negative directional pattern in the absence of water stress, where 
species with low LDMC are most competitive. Our results coincide 
with this expectation and further suggest that the experimental con-
ditions (full sunlight and 1.5 L pots) may have been generally benign 
for these desert species.

Specific root length represents a trade‐off between resource 
acquisition and the associated dry mass costs of building and main-
taining roots (see Pérez‐Harguindeguy et al., 2013 and references 

therein). High SRL can result from having a low diameter or low tissue 
density and may be beneficial in disturbed soils with high resource 
availability (Eissenstat, 1991). However, thick roots exert more pene-
trative force on soil and transport more water, while those with high 
tissue density tend to have higher longevity (Pérez‐Harguindeguy 
et al., 2013). Our results showed a negative directional selection 
on SRL. Given our pulsating watering system, we speculate that the 
higher competitive ability of low‐  vs. high‐SRL species may have 
been the result of (a) faster water extraction from the soil during 
pulses via thicker roots and/or (b) the maintenance of active root 
systems during inter‐pulses via more resistant roots. Overall, these 
results indicate that a seemingly conservative strategy underground 
(i.e., low‐SRL) may be coupled with an acquisitive strategy above‐
ground (i.e., low‐LDMC) to confer plants high competitive ability. 
They thus support the recent view that selective pressures may dif-
fer between above‐ and belowground organs (Bergmann, Ryo, Prati, 
Hempel, & Rillig, 2017).

The best trait‐based model also included two traits related to the 
size of individuals and their organs, that is, potential plant height (H), 
on which selection was positive directional, and LS, on which selec-
tion was stabilising. In general, both H and LS are positively related 
with competitive ability when light is the limiting resource, but tall 
plants and large leaves are energetically costly and would be ineffi-
cient if light is not limiting (Givnish, 1987; Westoby et al., 2002). In 
addition, small leaves create a thinner boundary layer favouring both 
gas exchange and heat dissipation (Givnish, 1987; Westoby et al., 
2002). Our results indicate that taller plants may have outcompeted 
target‐species individuals through better access to direct sunlight. 
In contrast, the optimum LS found here suggests opposite selecting 
forces perhaps associated to a trade‐off between light interception 
vs. gas exchange and heat dissipation. Overall, these results suggest 
that selective pressures on LS and H were at least partially uncou-
pled and support the stance that they may be associated with differ-
ent aspects of the ecological strategies of coexisting species (Falster 
& Westoby, 2003).

At our study site, both tough‐leaved and succulent annuals can 
dominate the open spaces among shrubs (Rolhauser & Pucheta, 
2016). This is at odds with our experimental results and suggests 
that the success of species in the field may not be entirely dictated 
by their competitive ability. Other factors, such as the ability to re-
spond to seasonal precipitation and drought (e.g., Angert, Huxman, 
Chesson, & Venable, 2009) may also be important for these annual 
plants. Interspecific differences in such responses across years 
(Angert et al., 2009), coupled with limited seed dispersal (Venable, 
Flores‐Martinez, Muller‐Landau, Barron‐Gafford, & Becerra, 2008) 
might counterbalance the competitive differences found here and 
possibly explain annual species coexistence at our study site.

4.2 | Competitive trait selection in temperate 
herbaceous plants

All three leaf traits available in this dataset were retained in the best 
model, that is, LDMC, SLA, and LS. The environmental conditions in 

F I G U R E  2  Component‐plus‐residual (C+R) plots illustrating 
the estimated relationships between trait values and competitive 
effects on a target species (1/biomass, in log scale) of 10 desert 
annual species in a pot experiment (see model summary statistics 
in Table 1). Lines show predicted values (the linear components) 
while each grey dot (dark grey dots for the target species, Tribulus 
terrestris, T) shows the sum of the component and the residual 
corresponding to each observation. Other species codes are A: 
Amaranthus standleyanus; B: Boerhavia diffusa (exotic); E: Euphorbia 
catamarcensis; F: Flaveria bidentis; G: Gomphrena martiana; P: 
Portulaca oleracea (exotic); Sa: Sclerophylax arnotii, Se: Solanum 
euacanthum; Sm: Sphaeralcea miniata. Species codes are placed 
above or below the corresponding data points in panels with 
stacked observations
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the temperate species experiment were aimed to provide plants with 
ample moisture, nutrients, and space in the control treatment, but a 
restricted offer in the stress treatment (Keddy et al., 2002), although 
we found a marginal effect of the treatment. The negative selection 
gradient observed here on LDMC suggests that these relatively be-
nign conditions may have generally favoured low‐ over high‐LDMC 
species. Nonetheless, the presence of an optimum LDMC (skewed 
towards low values) suggests that water availability may have some-
what limited the performance of species with extremely low LDMC 
even in the 1 L control pots.

Specific leaf area represents the trade‐off between potential 
growth (maximised in high‐SLA leaves) vs. leaf longevity (maximised 
in low‐SLA leaves; Westoby et al., 2002). In addition, low‐SLA leaves 
tend to have higher photosynthetic rates per unit area at high ir-
radiation levels (via higher leaf thickness) but would be inefficient 
in the shade (Niinemets, 2001). Kunstler et al. (2016) found a nega-
tive linear relationship between SLA and competitive effects among 
trees worldwide and attributed the pattern to the benefits that low 
SLA provides in terms of light interception. Notably, we found sup-
port for this negative relationship within large‐leaved species but 
not within small‐leaved species. Here, large‐leaved, low‐SLA spe-
cies were the most competitive possibly because they maximised 
both light interception and assimilation. Keddy et al. (2002) arrived 
at a similar conclusion based on the observed positive correlation 
between neighbour plant biomass and competitive effects. When 
leaves are small, however, increasing SLA was not associated with 
a decrease in competitive ability but instead with a slight increase. 
This suggests that species investing in small and thin leaves (possi-
bly cheaper) may have somewhat compensated the overall loss in 
light interception. That is, plants with high SLA and low LS may have 
managed to achieve intermediate levels of competitive ability not 
because they overtopped and shaded target‐species individuals but 
due to a rapid use of soil resources in pots.

Overall, these results seem to agree with what might be ex-
pected from the distribution of species across environments in the 
field. The most competitive species appear to be adapted to pro-
ductive environments (via low LDMC, low SLA, and large leaves, 
such as Cirsium arvense) while those with low competitive ability 

(characterised by high LDMC, high SLA and large leaves, such as 
Carex pensylvanica) may be better adapted to more restrictive en-
vironments. Consistently, the former were mostly collected in open 

Variable Estimate SE df t value p value VIF

Leaf dry matter 
content

−0.692 0.131 1/67 −5.27 <0.0001 1.44

Leaf dry matter 
content2

−0.277 0.110 1/67 −2.52 0.0140 1.57

Specific leaf area −0.420 0.119 1/67 −3.54 0.0007 1.18

Leaf size 0.160 0.114 1/67 1.41 0.1637 1.08

Specific leaf area 
* leaf size

−0.315 0.138 1/67 −2.28 0.0260 1.18

Stress −0.390 0.217 1/67 −1.80 0.0770 1.00

Estimated parameters are shown along with their standard errors. Significance of model terms was 
evaluated using marginal tests based on the t‐distribution. The R2 of this model was 0.39. Other ab-
breviations as in Table 1. See Figure 3 for a graphical representation of these results.

TA B L E  2  Statistical summaries of the 
best trait‐based model explaining the 
competitive effects in a pot experiment of 
37 herbaceous species from different 
temperate vegetation types in Canada 
(Keddy et al., 2002)

F I G U R E  3  Component‐plus‐residual (C+R) plots illustrating 
the estimated relationships between trait values and competitive 
effects on a target species (1/biomass, in log scale) of 37 temperate 
species in a pot experiment carried out by Keddy et al. (2002) (see 
model summary statistics in Table 2). Grey lines show predicted 
values (the linear components) for each of the three traits 
included in the model (a–c) keeping the remaining traits at their 
mean standardised value (i.e., zero); grey dots show the sum of 
the component and the residual corresponding to each of the 37 
species. Predictions were averaged across stress treatments since 
these effects were relatively small and marginally significant. In 
specific leaf area (SLA) and leaf size (LS) panels (which showed 
interacting effects), colour lines show predicted values for either 
high (↑) or low (↓) values of the other trait (i.e., 1.5 standard 
deviations above or below the mean, respectively). (d) Background 
colour and contour lines indicate predicted values for SLA‐LS 
combinations; grey dots represent species’ trait values and dotted 
lines are placed at 1.5 standard deviations above or below the mean 
using the same colour code as in b, c 
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fields with deep soils whereas the latter were mostly collected in 
shallow‐soils environments (Nielsen, 1993).

4.3 | Strengths, limitations, and future directions

Our approach provides standardised metrics of both univariate and 
bivariate nonlinear selection, along with widely used estimates of 
linear selection. We believe this functional flexibility will improve 
descriptions of trait–performance relationships that may help reveal 
the “function” in functional traits (McGill et al., 2006; Rolhauser & 
Pucheta, 2017). Further, standardisation may allow simple compari-
sons of selection patterns across environments. The homologous 
research line at the population level has been prolific and has ena-
bled useful meta‐analyses describing spatial and temporal patterns 
of phenotypic selection (Kingsolver et al., 2012). Here, we analysed 
data from a desert and from a temperate system (which included 
resource manipulation) and detected important similarities.

First, we found a prevalence of stabilising over disruptive selec-
tion. Stabilising selection of competitive ability is largely concordant 
with the view that traits related to plant competitive ability and pro-
ductivity should converge towards optimum values in homogeneous 
environments (Grime, 2006). This stance can be mechanistically 
sustained on the fundamental morpho‐physiological constraints 
and trade‐offs that shape individuals’ ability to acquire and retain 
resources and thus make competitive ability environment‐depen-
dent (Aerts, 1999; Austin & Smith, 1989; Tilman, 1990). On the 
contrary, disruptive selection, and more generally community‐level 
multimodal trait–fitness relationships (Laughlin et al., 2015), require 
within‐site environmental heterogeneity and niche differentiation 
(Rolhauser & Pucheta, 2017). We thus argue that stabilising trait–
competition relationships may be more common than previously re-
alised, particularly in environmentally homogenous sites.

Second, LDMC consistently captured an important component 
of plant competitive ability that was not accounted for by other traits 
included in the best models, such as SLA, LS, and plant height. This 
result seems particularly relevant since LDMC has seldom been con-
sidered in studies focused on trait–competition relationships (e.g., 
Freckleton & Watkinson, 2001; Gaudet & Keddy, 1988; Goldberg, 
1996; Gross et al., 2009; Keddy et al., 2002; Kunstler et al., 2016; 
Rosch et al., 1997; but see Liancourt, Tielborger, Bangerter, & Prasse, 
2009). Our findings thus support the notion that different traits 
measured in the same organ, such as LDMC and SLA, may reflect 
different ecological functions (Hodgson et al., 2011). Echoing Lande 
and Arnold (1983), we stress the importance of multiple regression 
since patterns of explanatory complementarity among traits, like the 
ones shown here, may go unnoticed in studies that fit models for 
each trait separately.

Further, considering correlational selection in the temperate 
species experiment uncovered changes in the functionality of SLA 
that depended on LS. This pattern may deserve further examination 
and could as well inspire the revision of other functional relation-
ships. For instance, the linear decomposition of relative growth rate 
into the effects of SLA, LDMC, leaf thickness, and leaf mass fraction 

(Hodgson et al., 2011) could be further refined by allowing for trait–
trait interactions. Perhaps, these notions help identify under which 
circumstances SLA reflects fast plant growth or, alternatively, an ad-
aptation to light deficient conditions (Hodgson et al., 2011).

Our results from the desert‐annuals experiment showed that 
species‐level functional traits were useful predictors of individual‐
level competitive effects and agreed with results from a global study 
where rectilinear functions where used (Kunstler et al., 2016). These 
findings illustrate the utility of database‐retrieved trait values to ex-
plain individual performance in a competitive context, despite the 
scatter introduced when analysing individuals instead of species. 
Theoretically, a better understanding of individual‐level competitive 
ability would be achieved using trait values of interacting individ-
uals. However, studies at the individual level might be somewhat 
limited since many important traits (such as LDMC and SLA) require 
destructive measurements that may affect individual performance, 
which may be particularly restrictive for small‐sized individuals.

As originally acknowledged by Lande and Arnold (1983), the 
multiple regression approach “helps to reveal the target(s) of se-
lection, and to quantify its intensity, without identifying the selec-
tive agent(s).” Part of the problems that arise when inferring the 
functional role of traits stem from their natural covariation (Lande 
& Arnold, 1983; Mitchell‐Olds & Shaw, 1987). Trait collinearity re-
sults in regression coefficients that are not truly estimated while 
all other variables remain constant and are thus contingent to 
the observed structure of phenotypic covariation (Mitchell‐Olds 
& Shaw, 1987). Such contingency would be particularly import-
ant for correlative studies if fitness peaks in adaptive landscapes 
change across environments and in time (see Laughlin & Messier, 
2015). Conclusive evidence on the causation of selection needs 
the addition of experimental manipulations (Mitchell‐Olds & Shaw, 
1987; Wade & Kalisz, 1990). Manipulations of trait distributions 
should be aimed at generating uncorrelated phenotypic distribu-
tions across all traits, although this may be increasingly difficult 
as the number of traits increases. Environmental manipulations 
would help uncover the agent of selection through the analysis of 
environmental effects on the shape of fitness functions (Wade & 
Kalisz, 1990). Our analysis of the temperate species experiment 
showed that the stress treatment did not significantly change the 
shape of trait–competition relationships, but much more data are 
needed on this regard. It would be important to bear in mind that 
experimental manipulations can either be impractical or overly 
unrealistic, so that research programmes combining both observa-
tional and manipulative studies may be most constructive (Keddy, 
1989; Kraft et al., 2015; Mitchell‐Olds & Shaw, 1987; Tilman, 
1989). We propose that selection patterns in such studies can be 
captured and interpreted using the tools and concepts presented 
here.
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