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762 E. Cattani et al.

1 Introduction

A fundamental topic in mathematics and its applications is the study of systems of n poly-
nomial equations in n unknowns x = (x1, x2, . . . , xn) over an algebraically closed field K :

f1(x) = f2(x) = · · · = fn(x) = 0. (1.1)

Here we consider Laurent polynomials with fixed support sets A1, A2, . . . , An ⊂ Z
n :

fi (x) =
∑

a∈Ai

ci,a xa (i = 1, 2, . . . , n). (1.2)

If the coefficients ci,a are generic then, according to Bernstein’s Theorem [3], the
number of solutions of (1.1) in the algebraic torus (K ∗)n equals the mixed volume
MV(Q1, Q2, . . . , Qn) of the Newton polytopes Qi = conv(Ai ) in R

n . However, for special
choices of the coefficients ci,a , two or more of these solutions come together in (K ∗)n and
create a point of higher multiplicity. The conditions under which this happens are encoded
in an irreducible polynomial in the coefficients, whose zero locus is the variety of ill-posed
systems [18, §I-4]. While finding this polynomial is usually beyond the reach of symbolic
computation, it is often possible to describe some of its invariants. Our aim here is to char-
acterize its degree.

An isolated solution u ∈ (K ∗)n of (1.1) is a non-degenerate multiple root if the n gradient
vectors ∇x fi (u) are linearly dependent, but any n − 1 of them are linearly independent. This
condition means that u is a regular point on the curve defined by any n −1 of the equations in
(1.1). We define the discriminantal variety as the closure of the locus of coefficients ci,a for
which the associated system (1.1) has a non-degenerate multiple root. If the discriminantal
variety is a hypersurface, we define the mixed discriminant of the system (1.1) to be the unique
(up to sign) irreducible polynomial �A1,...,An with integer coefficients in the unknowns ci,a

which defines it. Otherwise we say that the system is defective and set �A1,...,An = 1.
In the non-defective case, we may identify �A1,...,An with an A-discriminant in the sense

of Gel’fand, Kapranov and Zelevinsky [12]. A is the Cayley matrix (2.1) of A1, . . . , An . This
matrix has as columns the vectors in the lifted configurations ei × Ai ∈ Z

2n for i = 1, . . . , n.
The relationship between �A1,...,An and the A-discriminant will be made precise in Sect. 2.
In Sect. 3 we focus on the case n = 2. Here, the mixed discriminant �A1,A2 expresses the
condition for two plane curves { f1 = 0} and { f2 = 0} to be tangent at a common smooth
point. In Theorem 3.3 we present a general formula for the bidegree (δ1, δ2) of �A1,A2 . In
nice special cases, to be described in Corollary 3.15, that formula simplifies to

δ1 = area(Q1 + Q2) − area(Q1) − perim(Q2),

δ2 = area(Q1 + Q2) − area(Q2) − perim(Q1),
(1.3)

where Qi is the convex hull of Ai and Q1 + Q2 is their Minkowski sum. The area is
normalized so that a primitive triangle has area 1. The perimeter of Qi is the cardinality of
∂ Qi ∩ Z

2.
The formula (1.3) applies in the classical case, where f1 and f2 are dense polynomials

of degree d1 and d2. Here, �A1,A2 is the classical tact invariant [17, §96] whose bidegree
equals

(δ1, δ2) = (d2
2 + 2d1d2 − 3d2, d2

1 + 2d1d2 − 3d1). (1.4)
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Mixed discriminants 763

See Benoist [2] and Nie [15] for the analogous formula for n dense polynomials in n vari-
ables. The right-hand side of (1.3) is always an upper bound for the bidegree of the mixed
discriminant, but in general the inequality is strict. Indeed, consider two sparse polynomials

f1(x1, x2) = c10 + c11xd1
1 + c12xd1

2 and f2(x1, x2) = c20 + c21xd2
1 + c22xd2

2 , (1.5)

with d1 and d2 positive coprime integers, then the bidegree drops from (1.4) to

(d2
2 + 2d1d2 − 3d2 · min{d1, d2}, d2

1 + 2d1d2 − 3d1 · min{d1, d2}). (1.6)

In Sect. 4 we prove that the degree of the mixed discriminant, in the natural Z
n-grading,

is a piecewise polynomial function in the coordinates of the points in A1, A2, . . . , An .

Theorem 1.1 The degree of the mixed discriminant cycle is a piecewise linear function in
the Plücker coordinates on the mixed Grassmannian G(2n, I). It is linear on the tropical
matroid strata of G(2n, I) determined by the configurations A1, . . . , An. The formula on
each maximal stratum is unique modulo the linear forms on ∧2n

R
m that vanish on G(2n, I).

Here, the cycle refers to the mixed discriminant raised to a power that expresses the index
in Z

n of the sublattice affinely spanned by A1 ∪· · ·∪ An . The mixed Grassmannian G(2n, I)

parameterizes all 2n-dimensional subspaces of R
m that arise as row spaces of Cayley matrices

(2.1) with m = ∑n
i=1 |Ai | columns, and I is the partition of {1, . . . , m} specified by the n

configurations. This Grassmannian is regarded as a subvariety in the exterior power ∧2n
R

m ,
via the Plücker embedding by the maximal minors of the matrix (2.1). See Definition 4.2 for
details. The mixed Grassmannian admits a combinatorial stratification into tropical matroid
strata, and our assertion says that the degree of the mixed discriminant cycle is a polynomial
on these strata. The proof of Theorem 1.1 is based on tropical algebraic geometry, and
specifically on the combinatorial construction of the tropical discriminant in [7].

2 Cayley configurations

Let A1, . . . , An be configurations in Z
n , defining Laurent polynomials as in (1.2). We shall

relate the mixed discriminant �A1,...,An to the A-discriminant, where A is the Cayley matrix

A = Cay(A1, . . . , An) =

⎛

⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
A1 A2 · · · An

⎞

⎟⎟⎟⎟⎟⎠
(2.1)

This matrix has 2n rows and m = ∑n
i=1 |Ai | columns, so 0 = (0, . . . , 0) and

1 = (1, . . . , 1) denote row vectors of appropriate lengths. The columns of the “lower”
matrix [A1 A2, . . . , An] consist of the vectors in each Ai in any fixed arbitrary order.

We introduce n new variables y1, y2, . . . , yn and encode our system (1.1) by one auxiliary
polynomial with support in A, via the Cayley trick:

φ(x, y) = y1 f1(x) + y2 f2(x) + · · · + yn fn(x).

We denote by �A the A-discriminant as defined in [12]. That is, �A is the unique (up to
sign) irreducible polynomial with integer coefficients in the unknowns ci,a which vanishes
whenever the hypersurface {(x, y) ∈ (K ∗)2n : φ(x, y) = 0} is not smooth. Equivalently,
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764 E. Cattani et al.

�A is the defining equation of the dual variety (X A)∨ when this variety is a hypersurface.
Here, X A denotes the projective toric variety in P

m−1 associated with the Cayley matrix A.
If (X A)∨ is not a hypersurface, then no such unique polynomial exists. We then set �A = 1
and refer to A as a defective configuration. It is useful to keep track of the lattice index

i(A) = i(A, Z
2n) = [Z2n : Z· A],

where Z·A is the Z-linear span of the columns of A. The discriminant cycle is the polynomial

�̃A = �
i(A)
A .

The same construction makes sense for the mixed discriminant and it results in the mixed
discriminant cycle �̃A1,...,An . The exponents i(A) will be compatible in the following theo-
rem.

Theorem 2.1 The mixed discriminant equals the A-discriminant of the Cayley matrix:

�A1,...,An = �A.

This result is more subtle than it may seem at first glance. It implies that (A1, . . . , An)

is defective if and only if A is defective. The two discriminantal varieties can differ in that
case.

Example 2.2 Let n = 2 and consider the Cayley matrix

A =
⎛

⎝
1 0
0 1
A1 A2

⎞

⎠ =

⎛

⎜⎜⎝

1 1 1 0 0 0
0 0 0 1 1 1
0 1 2 0 0 0
0 0 0 0 1 2

⎞

⎟⎟⎠ .

The corresponding system (1.1) consists of two univariate quadrics in different variables:

f1(x1) = c10 + c11x1 + c12x2
1 = 0 and f2(x2) = c20 + c21x2 + c22x2

2 = 0.

This system cannot have a non-degenerate multiple root, for any choice of coefficients ci j , so
the (A1, A2)-discriminantal variety is empty. On the other hand, the A-discriminantal variety
is non-empty. It has codimension two and is defined by c2

11 − 4c10c12 = c2
21 − 4c20c22 = 0.

Proof of Theorem 2.1 We may assume i(A) = 1. Let u ∈ (K ∗)n be a non-degenerate mul-
tiple root of f1(x) = · · · = fn(x) = 0. Our definition ensures the existence of a unique
(up to scaling) vector v ∈ (K ∗)n such that

∑n
i=1 vi∇x fi (u) is the zero vector. The pair

(u, v) ∈ (K ∗)2n is a singular point of the hypersurface defined by φ(x, y) = 0. By project-
ing into the space of coefficients ci,a , we see that the (A1, . . . , An)-discriminantal variety is
contained in the A-discriminantal variety. Example 2.2 shows that this containment can be
strict.

We now claim that �A 
= 1 implies �A1,...,An 
= 1. This will establish the proposition
because �A1,...,An is a factor of �A, and �A is irreducible, so the two discriminants are
equal. Each point (u, v) ∈ (K ∗)2n defines a point on X A. If �A 
= 1, the dual variety (X A)∨
is a hypersurface in the dual projective space (Pm−1)∨. Moreover, see e.g. [13], a generic
hyperplane in the dual variety is tangent to the toric variety X A at a single point.

Consider a generic point on the conormal variety of X A in P
2n−1 × (Pm−1)∨. It is rep-

resented by a pair ((u, v), c), where (u, v) ∈ (K ∗)2n and c is the coefficient vector of a
polynomial φ(x, y) such that (u, v) is the unique singular point on {φ(x, y) = 0}. The
coefficient vector c defines a point on the (A1, . . . , An)-discriminantal variety unless we can
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Mixed discriminants 765

relabel the matrices A1, . . . , An in such a way that the gradients of f1, . . . , fn−1 are linearly
dependent at u. Assuming that this holds, we let

n−1∑

i=1

ti∇x fi (u) = 0

be the dependency relation and set t = (t1, . . . , tn−1, 0) 
= 0. The point ((t + u, v), c) lies
on the conormal variety of X A. This implies that the generic hyperplane defined by c is
tangent to X A at two distinct points (u, v) 
= (t + u, v), which cannot happen. It follows that
�A1,...,An 
= 1, as we wanted to show. This concludes our proof. ��
Example 2.3 Let n = 2 and A1 = A2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, a unit square. Then

f1(x1, x2) = a00 + a10x1 + a01x2 + a11x1x2,

f2(x1, x2) = b00 + b10x1 + b01x2 + b11x1x2.

The Cayley configuration A is the standard 3-dimensional cube. The A-discriminant is known
to be the hyperdeterminant of format 2×2×2, by [12, Chapter 14], which equals

�A1,A2 = a2
00b2

11 − 2a00a01b10b11 − 2a00a10b01b11 − 2a00a11b00b11

+4a00a11b01b10 + a2
01b2

10 + 4a01a10b00b11 − 2a01a10b01b10

−2a01a11b00b10 + a2
10b2

01 − 2a10a11b00b01 + a2
11b2

00.

Theorem 2.1 tells us that this hyperdeterminant coincides with the mixed discriminant of f1

and f2. Note that the bidegree equals (δ1, δ2) = (2, 2), and therefore (1.3) holds.

We now shift gears and focus on defective configurations. We know from Theorem 2.1 that
(A1, . . . , An) is defective if and only if the associated Cayley configuration A is defective.
While there has been some recent progress on characterizing defectiveness [7,10,14], the
problem of classifying defective configurations A remains open, except in cases when the
codimension of A is at most four [6,8] or when the toric variety X A is smooth or Q-factorial
[4,9]. Recall that X A is smooth if and only if, at each every vertex of the polytope Q =
conv(A), the first elements of A that lie on the incident edge directions form a basis for the
lattice spanned by A. The variety X A is Q-factorial when Q is a simple polytope, that is,
when every vertex of Q lies in exactly dim(Q) facets. Note that smooth implies Q-factorial.

We set dim(A) = dim(Q), and we say that A is dense if A = Q ∩ Z
d . A subset F ⊂ A is

called a face of A, denoted F ≺ A, if F is the intersection of A with a face of the polytope
Q. We denote by sn the standard n-simplex and by σn the configuration of its vertices.

When A is the Cayley configuration of A1, . . . , An ⊂ Z
n , the codimension of A is m −2n.

This number is usually rather large. For instance, if all n polytopes Qi = conv(Ai ) are full-
dimensional in R

n then codim(A) � n · (n −1), and thus, for n � 3, we are outside the range
where defective configurations have been classified. However, if n = 2 and the configurations
A1 and A2 are full-dimensional we can classify all defective configurations.

Proposition 2.4 Let A1, A2 ⊂ Z
2 be full-dimensional configurations. Then, (A1, A2) is

defective if and only if, up to affine isomorphism, A1 and A2 are both translates of p · σ2,
for some positive integer p.

Proof Let A = Cay(A1, A2). Both A1 and A2 appear as faces of A. In order to prove that A
is non-defective, it suffices to exhibit a 3-dimensional non-defective subconfiguration (see [5,
Proposition 3.1] or [10, Proposition 3.13]). Let u1, u2, u3 be non-collinear points in A1 and
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766 E. Cattani et al.

v1, v2 distinct points in A2. The subconfiguration {u1, u2, u3, v1, v2} of A is 3-dimensional
and non-defective if and only if no four of the points lie in a hyperplane or, equivalently, if
the vector v2 − v1 is not parallel to any of the vectors u j − ui , j 
= i . We can always find
such subconfigurations unless A1 and A2 are the vertices of triangles with parallel edges. In
the latter case, we can apply an affine isomorphism to get A1 = p · σ2 and A2 a translate
of ±q · σ2, where p and q are positive integers. The total degree of the mixed discriminant
equals

deg(�p·σ2,q·σ2) = (p2 + q2 + pq − 3 min{p, q}2)/gcd(p, q)2,

deg(�p·σ2,−q·σ2) = (p + q)2/gcd(p, q)2.

The first formula follows from (1.6) and it is positive unless p = q . The second formula will
be derived in Example 3.10. It always gives a positive number. This concludes our proof.

Similar arguments can be used to study the case when one of the configurations is one-
dimensional. However, it is more instructive to classify such defective configurations from
the bidegree of the mixed discriminant. This will be done in Sect. 3.

Corollary 2.5 Let A1 and A2 be full-dimensional configurations in Z
2. Then the mixed

discriminantal variety of (A1, A2) is either a hypersurface or empty.

Remark 2.6 The same result holds in n dimensions when the toric variety X A is smooth and
A1, . . . , An are full-dimensional configurations in Z

n . Under these hypotheses, (A1, . . . , An)

is defective if and only if each Ai is affinely equivalent to p · σn , with p ∈ N. In particular,
the mixed discriminantal variety of (A1, . . . , An) is either a hypersurface or empty. The “if”
direction is straightforward: we may assume i(A) = 1 and p = 1 by replacing Z

n with the
lattice spanned by pe1, . . . , pen . Then, the system (1.1) consists of linear equations, and it
is clearly defective. The “only-if” direction is derived from results in [9]: (A1, . . . , An) is
defective if and only if the (2n − 1)-dimensional polytope Q = conv(A) is isomorphic to a
Cayley polytope of at least t + 1 ≥ n + 1 configurations of dimension k < t that have the
same normal fan. As we already have a Cayley structure of n configurations in dimension n,
we deduce t = n and k = n −1. Then, we should have Q � sn−1 × sn � sn × sn−1. After an
affine transformation, all n polytopes Qi are standard n-simplices and all Ai are translates
of σn . This shows that A has an “inverted” Cayley structure of n + 1 copies of σn−1.

We expect Proposition 2.4 to hold in n dimensions without the smoothness hypothesis
in Remark 2.6. Clearly, whenever the mixed volume of Q1, . . . , Qn is 1, then there are
no multiple roots and we have �A1,...,An = 1. The following result gives a necessary and
sufficient condition for being in this situation: up to affine equivalence, this is just the linear
case.

Proposition 2.7 If A1, . . . , An are n-dimensional configurations in Z
n then the mixed vol-

ume MV(Q1, . . . , Qn) is 1 if and only if, up to affine isomorphism, each Ai is a translated
of σn.

Proof We shall prove the “only-if” direction by induction on n. Suppose that
MV(Q1, Q2, . . . , Qn) = 1. By the Alexsandrov–Fenchel inequality, we have vol(Qi ) = 1
for all i , where the volume form is normalized so that the standard n-simplex has volume 1.
Since the mixed volume function is monotone in each coordinate, for any choice of edges li
in Qi we have

0 ≤ MV(l1, l2, . . . , ln) ≤ MV(l1, Q2, . . . , Qn) ≤ MV(Q1, . . . , Qn) = 1.
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Mixed discriminants 767

Since all polytopes Qi are full-dimensional, we can pick n linearly independent edges
l1, . . . , ln . Therefore MV(l1, . . . , ln) > 0 and MV(l1, l2, . . . , ln) = MV(l1, Q2, . . . , Qn) =
1. In particular, the edge l1 has length one. After a change of coordinates we may assume that
l1 = en , the nth standard basis vector. Denote by π the projection of Z

n onto Z
n/Z·en � Z

n−1

and the corresponding map of R-vector spaces. We then have MV(π(Q2), . . . , π(Qn)) = 1.
By the induction hypothesis, we can transform the first n − 1 coordinates and translate

the configurations A2, . . . , An so that π(A2) = · · · = π(An) = σn−1. This means that
Ai ⊂ σn−1 ×Z·en . Now, let ai be a point in Ai not lying in the coordinate hyperplane xn = 0.
Then 1 ≤ vol(conv(σn−1, ai )) ≤ vol(Qi ) = 1, and we conclude that Qi = conv(σn−1, ai ).
But, since vol(Qi ) = 1, it follows that ai = bi ± en , for some bi ∈ σn−1. By repeating this
process with an edge of A1 containing the point a1, we see that all bi ’s are equal and that the
sign of en in all ai ’s is the same. This shows that, after an affine isomorphism and a suitable
translation, we have A1 = · · · = An = σn , yielding the result.

3 Two curves in the plane

In this section we study the condition for two plane curves to be tangent. This condition is the
mixed discriminant in the case n = 2. Our primary goal is to prove Theorem 3.3, which gives
a formula for the bidegree of the mixed discriminant cycle of two full-dimensional planar
configurations A1 and A2. Remark 3.11 addresses the degenerate case when one of the Ai

is one-dimensional. Our main tool is the connection between discriminants and principal
determinants. In order to make this connection precise, and to define all the terms appearing
in (3.3), we recall some basic notation and facts. We refer to [10,12] for further details.

Let A ⊂ Z
d and Q the convex hull of A. As is customary in toric geometry, we assume that

A lies in a rational hyperplane that does not pass through the origin. This holds for Cayley
configurations (2.1). Given any subset B ⊂ A we denote by Z·B, respectively R·B, the linear
span of B over Z, respectively over R. For any face F ≺ A we define the lattice index

i(F, A) := [R·F ∩ Z
d : Z·F].

We set i(A) = i(A, A) = [Zd : Z·A]. We consider the A-discriminant �A and the principal
A-determinant E A. They are defined in [12] under the assumption that i(A) = 1. If i(A) > 1
then we change the ambient lattice from Z

d to Z· A, and we define the associated cycles

Ẽ A = Ei(A)
A and �̃A = �

i(A)
A .

The expressions on the right-hand sides are computed relative to the lattice Z· A.

Remark 3.1 The principal A-determinant of [12, Chapter 10] is a polynomial E A in the
variables cα , α ∈ A. Its Newton polytope is the secondary polytope of A, and its degree
is (d + 1) vol(conv(A)), where vol = volZ·A is the normalized lattice volume for Z· A. We
always have deg(Ẽ A) = (d + 1) vol

Zd (conv(A)), where vol
Zd is the normalized lattice

volume for Z
d .

We state the factorization formula of Gel’fand, Kapranov and Zelevinsky [12, Theorem
1.2, Chapter 10] for the principal A-determinant as in Esterov [10, Proposition 3.10]:

Ẽ A = ±�̃A ·
∏

F≺A

�̃
u(F,A)
F . (3.1)

The product runs over all proper faces of A. The exponents u(F, A) are computed as follows.
Let π denote the projection to R· A/R·F and 	 the normalized volume form on R· A/R·F .
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768 E. Cattani et al.

This form is normalized with respect to the lattice π(Zd), so that the fundamental domain
with respect to integer translations has volume (dim(R· A) − dim(R·F))!. We set

u(F, A) := 	(conv(π(A)) \conv(π(A\F))).

Remark 3.2 The positive integers u(F, A) are denoted cF,A in [10]. If i(A) = 1 then u(F, A)

is the subdiagram volume associated with F , as in [12, Theorem 3.8, Chapter 5].

We now specialize to the case of Cayley configurations A = Cay(A1, A2), where
A1, A2 ⊂ Z

2 are full-dimensional. Here, A is a 3-dimensional configuration in the hyper-
plane x1 + x2 = 1 in R

4. Note that i(A, Z
4) = i(A1 ∪ A2, Z

2). The configurations A1 and
A2 are facets of A.

We say that F is a vertical face of A if F ≺ A but F 
≺ Ai , i = 1, 2. The vertical facets
of A are either triangles or two-dimensional Cayley configurations defined by edges e ≺ A1

and f ≺ A2. This happens if e and f are parallel and have the same orientation, that is, if
they have the same inward normal direction when viewed as edges in Q1 and Q2. We call
such edges strongly parallel and denote the vertical facet they define by V (e, f ).

Let Ei denote the set of edges of Ai and set

P = {(e, f ) ∈ E1 × E2 : e is strongly parallel to f }.
We write 
(e) for the normalized length of an edge e with respect to the lattice Z

2. For v ∈ A1

we define

mm(v) = MV(Q1, Q2) − MV(conv(A1\v), Q2), (3.2)

and similarly for v ∈ A2. This quantity is the mixed multiplicity of v in (A1, A2).

Theorem 3.3 Let A1 and A2 be full-dimensional configurations in Z
2. Then

δ1 := degA1
(�̃A1,A2) = area(Q2) + 2 MV(Q1, Q2)

−
∑

(e, f )∈P
min{u(e, A1), u( f, A2)} 
( f ) −

∑

v∈Vert A1

mmult (v).

(3.3)

δ2 := degA2
(�̃A1,A2) = area(Q1) + 2 MV(Q1, Q2)

−
∑

(e, f )∈P
min{u(e, A1), u( f, A2)} 
(e) −

∑

v∈Vert A2

mm(v).

Theorem 3.3 is the main result in this section. We shall derive it from the following formula
[which is immediate from (3.1)] for the bidegree of our mixed discriminant:

bideg(�̃A1,A2) = bideg(Ẽ A) −
2∑

k=1

∑

F≺Ak

u(F, A)bideg(�̃F ) −
∑

F≺A
vertical

u(F, A)bideg(�̃F ).

(3.4)

Note the need for the cycles �̃A1,A2 , Ẽ A and �̃F in this formula. We shall prove Theorem 3.3
by studying each term on the right-hand side of (3.4), one dimension at a time. A series of
lemmas facilitates the exposition.
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Lemma 3.4 The bidegree bideg(E A) of the principal A-determinantal cycle Ẽ A equals

(3 area(Q1) + area(Q2) + 2 MV(Q1, Q2), area(Q1) + 3 area(Q2) + 2 MV(Q1, Q2)).

(3.5)

Proof By [12], the total degree of Ẽ A is 4 vol(Q). From any triangulation of A we can see

vol(Q) = area(Q1) + area(Q2) + MV(Q1, Q2).

Examining the tetrahedra in a triangulation reveals that the bidegree is given by (3.5). ��
Any pyramid is a defective configuration; hence, the vertical facets of Q that are

triangles do not contribute to the right-hand side of (3.4) and can be safely ignored
from now on. In particular, we see that the only non-defective vertical facets are the
trapezoids V (e, f ) for (e, f ) ∈ P . The following lemma explains their contribution
to (3.4).

Lemma 3.5 Let V (e, f ) be the vertical facet of A associated with (e, f ) ∈ P . Then

(1) bideg(�̃V (e, f )) = (
( f ), 
(e)),
(2) u(V (e, f ), A) = min{u(e, A1), u( f, A2)}.
Proof The configuration V (e, f ) is the Cayley lift of two one-dimensional configurations.
Its discriminantal cycle is the resultant of two univariate polynomials of degree 
(e) and

( f ), so (1) holds. In order to prove (2), we note that u(V (e, f ), Q) equals the normalized
length of a segment in R

3/R ·V (e, f ) starting at the origin and ending at the projection of
a point in A1 or A2. This image is the closest point to the origin in the line generated by
the projection of Q. Thus, the multiplicity u(V (e, f ), A) is the minimum of u(e, A1) and
u( f, A2). ��

We next study the horizontal facets of A given by A1 and A2.

Lemma 3.6 The discriminant cycle of the plane curve defined by Ai has total degree

deg(�̃Ai ) = 3 area(Qi ) −
∑

e∈EdgesAi

u(e, Ai ) deg(�̃e) −
∑

v∈Vert Ai

u(v, Ai ),

where u(v, Ai ) = area(Qi ) − area(conv(Ai \v)).

Proof This is a special case of (3.4) because deg(Ẽ Ai ) = 3 · area(Qi ) and deg(�̃v) = 1 for
any vertex v ∈ Ai . The statement about u(v, Ai ) is just its definition. ��

Next, we consider the edges of A. The vertical edges are defective since they consist of
just two points. Thus we need only examine the edges of A1 and A2.

Lemma 3.7 Let e be an edge of Ai . Then u(e, A) = u(e, Ai ).

Proof Consider the projection π : Qi → R
2/R·e. The image π(Qi ) is a segment of length

M1 = max{
([0, π(m)]) : m ∈ Ai }, while conv(Ai \e) projects to a segment of length
M2 = max{
([0, π(m)]) : m ∈ (Ai \e)}. Thus u(e, Ai ) = M1 − M2. Next, consider the
projection Q → R

3/R·e. The images of A and conv(A\e) under this projection are trapezoids
in R

3/R·e. Their set-theoretic difference is a triangle of height 1 and base M2 − M1. ��
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Lemma 3.8 Let v be a vertex of Ai . Then u(v, A) = u(v, Ai ) + mm(v).

Proof Suppose v ∈ A1. The volume form 	 is normalized with respect to the lattice Z
3. The

volume of our Cayley polytope Cay(A1, A2) equals area(Q1) + area(Q2) + MV(Q1, Q2),
and the analogous formula holds for conv(A\v) = Cay(A1\v, A2). We conclude

u(v, A) = vol(Cay(A1, A2)) − vol(Cay(A1\v, A2))

= area(Q1) − area(conv(A1\v)) + MV(Q1, Q2) − MV(conv(A1\v), Q2)

= u(v, A1) + mm(v).

��
Proof of Theorem 3.3. By symmetry, it suffices to prove (3.3). We start with the A1-degree
of the principal A-determinantal cycle Ẽ A given in (3.5). In light of (3.1), we subtract the
A1-degrees of the various discriminant cycles corresponding to all faces of A. Besides the
contribution from A1, having u(A1, A) = 1 and given by Lemma 3.6, only the vertices and
the vertical facets contribute. Using Lemmas 3.7 and 3.8, we derive the desired formula.

At this point, the reader may find it an instructive exercise to derive (1.4) and (1.6) from
Theorem 3.3, and ditto for (δ1, δ2) = (2, 2) in Example 2.3. Here are two further examples.

Example 3.9 Let A1 and A2 be the dense triangles (d1s2)∩Z
2 and (−d2s2)∩Z

2. Here, i(A) =
1 and �̃A1,A2 = �A1,A2 . We have MV(d1s2,−d2s2) = 2d1d2 and P = ∅. Computation of
the mixed areas in (3.2) yields mm(v) = d2 for vertices v ∈ A1 and mm(v) = d1 for vertices
v ∈ A2. We conclude

bideg(�A1,A2) = (d2
2 + 4d1d2 − 3d2, d2

1 + 4d1d2 − 3d1).

Example 3.10 Let A1 = d1σ2 and A2 = −d2σ2. This is the sparse version of Exam-

ple 3.9. Now, i(A) = g2, where g = gcd(d1, d2), and �̃A1,A2 = �
g2

A1,A2
. We still have

MV(d1s2,−d2s2) = 2d1d2 and P = ∅, but mm(v) = d1d2 for all vertices v ∈ A. Hence

bideg(�A1,A2) = 1

g2 (d2
2 + d1d2, d2

1 + d1d2).

Remark 3.11 From (3.4) we may also derive formulas for the bidegree of the mixed dis-
criminant in the case when one of the configurations, say A2, is one-dimensional. The main
differences with the proof of Theorem 3.3 is that now we must treat A2 as an edge, rather
than a facet, and that it is enough for an edge e of Q1 to be parallel to Q2 in order to have a
non-defective vertical facet of Q. Clearly, there are at most two possible edges of Q1 parallel
to Q2. The A2-degree of the mixed discriminant cycle now has a very simple expression:

δ2 = area(Q1) −
∑

e||Q2

u(e, A1)
(e), (3.6)

where the sum runs over all edges e of Q1 which are parallel to Q2.
In particular, if no edge of Q1 is parallel to Q2, then δ2 > 0 and (A1, A2) is not defective.

If only one edge e of Q1 is parallel to Q2 then δ2 = 0 if and only if area(Q1) = u(e, A1)
(e)
but this happens only if there is a single point of A1 not lying in the edge e. This means that
A = Cay(A1, A2) is a pyramid and hence is defective. Finally, if there are two edges e1 and e2

of Q1 parallel to Q2 then δ2 = 0 if and only if area(Q1) = u(e1, A1)
(e1)+u(e2, A1)
(e2).
This can only happen if all the points of A1 lie either in e1 or e2. In this case, A is the Cayley
lift of three one-dimensional configurations, and it is defective as well.
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Fig. 1 Geometric computation of the mixed multiplicity mm(v) via a suitable mixed subdivision of the two
polygons. The region D is shown in grey.

Our next goal is to provide a sharp geometric bound for the sum of the mixed multiplicities.
We start by providing a method to compute such invariants by means of mixed subdivisions.

Lemma 3.12 Let A1, A2 be full-dimensional in Z
2 and v ∈ A1. Any mixed subdivision

of Q∗ = conv(A1 \v) + Q2 extends to a mixed subdivision of Q = Q1+Q2. The mixed
multiplicity mm(v) is the sum of the Euclidean areas of the mixed cells in the closure D of
Q\Q∗.

Proof Let E ′
2(v) denote the collection of edges in A2 whose inner normal directions lie in

the relative interior of the dual cone to a vertex v of A1. Equivalently, E ′
2(v) consists of those

edges [b, b′] of A2 such that v + b and v + b′ are both vertices of A1 + A2. See Fig. 1.
First, assume E ′

2(v) = ∅. Then, there exists a unique b ∈ A2 such that v + b is a vertex of
Q. It follows that there exist a0, . . . , ar ∈ A1 such that D is a union of triangles of the form

D =
r⋃

i=1

conv({v + b, ai−1 + b, ai + b}), (3.7)

and [ai−1 +b, ai +b] are edges in the subdivision of Q∗. Then, we can extend the subdivision
of Q∗ by adding the triangles in (3.7). This does not change the mixed areas and mm(v) = 0.

Suppose now that E ′
2(v) = { f1, . . . , fs}, s � 1, with indices in counterclockwise order.

Let b0, . . . , bs be the vertices of A2 such that fi is the segment [bi−1, bi ]. The pairs v +
bi−1, v + bi , for i = 1, . . . , s, define edges of Q which lie in the boundary of D. Let
a0, ar ∈ A1 be the vertices of the edges of Q1 adjacent to v. We insert r − 1 points in
A1 to form a counterclockwise oriented sequence a0, a1, . . . , ar of vertices of conv(A1\v).
Then a0 + b0 and ar + bs are vertices of Q∗, and the boundary of D consists of the s
segments [v + b j−1, v + b j ], together with segments of the form [ai−1 + b j , ai + b j ] or
[ai + b j−1, ai + b j ]. Figure 1 depicts the case r = 3, s = 2. Given this data, we subdivide D
into mixed and unmixed cells. The unmixed cells are triangles {v + b j , ai+1 + b j , ai + b j }
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coming from the edges [ai + b j , ai+1 + b j ] of Q∗. The mixed cells are parallelograms
{v + b j , v + b j+1, ai + b j+1, ai + b j } built from the edges [ai + b j , ai + b j+1] of Q∗. This
subdivision is compatible with that of Q∗. ��

We write E ′
1 for the set of all edges of A1 that are not strongly parallel to an edge of A2.

The set E ′
2 is defined analogously.

Proposition 3.13 Let A1, A2 ∈ Z
2 be two-dimensional configurations. Then

(1) The sum of the lengths of all edges in the set E ′
j is a lower bound for the sum of the mixed

multiplicities over all vertices of the other configuration Ai . In symbols,
∑

v∈Vert Ai

mm(v) �
∑

e∈E ′
j


(e) for j 
= i.

(2) If E ′
j = ∅ then

∑
v∈Vert Ai

mm(v) = 0.
(3) If i(A1) = i(A2) = 1 and the three toric surfaces corresponding to A1, A2 and A1 + A2

are smooth then the bound in (1) is sharp.

Proof We keep the notation of the proof of Lemma 3.12. Recall that the set E ′
2 is the union of

the sets E ′
2(v), where v runs over all vertices in A1. By Lemma 3.12, the mixed multiplicity

mm(v) is the sum of the Euclidean areas of the mixed cells in D. Each mixed cell is a
parallelogram {v + bk−1, v + bk, ai + bk−1, ai + bk}, so its area is 
([bk−1, bk]) · 
([v, ai ]) ·
|det(τk−1, ηi )|, where τk−1 and ηi are primitive normal vectors to the edges [bk, bk+1] and
[v, ai ]. Thus mm(v) �

∑
e∈E ′

2(v) 
(e). Since E ′
2 is the disjoint union of the sets E ′

2(v),
summing over all vertices v of A1 gives the desired lower bound. Part (2) also follows from
Lemma 3.12, as E ′

2 = ∅ implies that the subdivision of D has no mixed cells.
It remains to prove (3). In the notation of Lemma 3.12, the assumption that X A1 is smooth

implies that the segment [a0, a1] is an edge in conv(A1\v), so r = 1. Therefore, all mixed
cells in D are parallelograms with vertices {v+bk−1, v+bk, ai +bk−1, ai +bk} for i = 0, 1,
k = 1, . . . , s. This parallelogram has Euclidean area |det(ai − v, bk − bk−1)|, but, since
X A1+A2 is smooth, we have:

|det(ai − v, bk − bk−1)| = 
([v, ai ]) · 
([bk−1, bk]) = 1 · 
([bk−1, bk]).
Since E ′

2(v) = {[b0, b1], . . . , [bs−1, bs]}, this equality and Lemma 3.12 yield the result. ��
Remark 3.14 The equality

∑
v∈Vert Ai

mm(v) = ∑
e∈E ′

j

(e) in case i(A1) = i(A2) = 1

and the toric surfaces of A1, A2 and A1 + A2 are smooth, can be interpreted and proved
with tools form toric geometry. Indeed, in this case, let X1, X2 and X be the associated toric
varieties. Then, there are birational maps πi : X → Xi defined by the common refinement
of the associated normal fans, i = 1, 2. The map π1 is given by successive toric blow-ups of
fixed points of X1 corresponding to vertices v of A1 for which E ′

2(v) 
= ∅. The lenghts of the
corresponding edges occur as the intersection product of the invariant (exceptional) divisor
associated to the edge with the ample line bundle associated to A2, pulled back to X .

If Ai is dense, then it is immediate to check that u(e, Ai ) = 1 for all edges e ≺ Ai . We
conclude with a geometric upper bound for the bidegree of the mixed discriminant.

Corollary 3.15 Let A1 and A2 be full-dimensional configurations in Z
2. Then:

(1) The bidegree satisfies degAi
(�̃A1,A2)≤area(Q j )+2 MV(Q1, Q2)−perim(Q j ), j 
= i .
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(2) Equality holds in (1) if i(A1) = i(A2) = 1 and the three toric surfaces corresponding
to A1, A2 and A1 + A2 are smooth.

(3) Equality holds in (1) if Q1, Q2 have the same normal fan and one of A1 or A2 is dense.

Proof Assume i = 1. Statement (1) follows from (3.3) and
∑

(e, f )∈P
min{u(e, A1), u( f, A2)} 
( f ) +

∑

v∈A1

mm(v) �
∑

f ∈E2\E ′
2


( f )

+
∑

f ∈E ′
2


( f ) = perim(A2).

Statement (2) follows from Proposition 3.13 (3) and the fact that the smoothness condition
implies u(e, A1) = u( f, A2) = 1 for all edges e ≺ A1, f ≺ A2. Finally, if Q1 and Q2 have
the same normal fan then E ′

1 = E ′
2 = ∅, and, by Theorem 3.13 (2), all mixed multiplicities

vanish. Density of A1 or A2 implies min{u(e, A1), u( f, A2)} = 1 for every pair (e, f ) ∈ P .
Hence

∑

(e, f )∈P
min{u(e, A1), u( f, A2)}
( f ) = perim(Q2).

��
Corollary 3.15 establishes the degree formula (1.3). We end this section with an example

for which that formula holds, even though conditions (2) and (3) do not. It also shows
that, unlike for resultants [7, §6], the bidegree of the mixed discriminant can decrease
when removing a single point from A without altering the lattice or the convex hulls of the
configurations.

Example 3.16 Consider the dense configurations A1 := {(0, 0), (1, 0), (1, 1), (0, 1)} and
A2 := {(0, 0), (1, 3), (−1, 2), (0, 1), (0, 2)}. The vertex v = (0, 0) of A2 is a singular
point. However, its mixed multiplicity equals 1, so it agrees with the lattice length of the
associated edge [(0, 0), (1, 0)] in A1. Theorem 3.3 implies that the bidegree of the mixed
discriminant �A1,A2 equals (δ1, δ2) = (12, 8). If we remove the point (0, 1) from A2, the
mixed multiplicity of v is raised to 2 and the bidegree of the mixed discriminant decreases
to (12, 7).

4 The degree of the mixed discriminant is Piecewise linear

Theorem 3.3 implies that the bidegree of the mixed discriminant of A1, A2 ⊂ Z
2 is piecewise

linear in the maximal minors of the Cayley matrix A = Cay(A1, A2). In this section we
prove Theorem 1.1 which extends the same statement to arbitrary Cayley configurations, and
we describe suitable regions of linearity. Theorem 1.1 allows us to obtain formulas for the
multidegree of the mixed discriminant by linear algebraic methods, provided we are able
to compute it in sufficiently many examples. This may be done by using the ray shooting
algorithm of [7, Theorem 2.2], which has become a standard technique in tropical geometry.
We start by an example in dimension 3, which was computed using Rincón’s software [16].

Example 4.1 Consider the following three trinomials in three variables:

f = a1 x + a2 y p + a3 z p,

g = b1 xq + b2 y + b3 zq ,

h = c1 xr + c2 yr + c3 z.
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Here p, q and r are arbitrary integers different from 1. By the degree we mean the
triple of integers that records the degrees of the mixed discriminant cycle � f,g,h in the
unknowns (a1, a2, a3), (b1, b2, b3), and (c1, c2, c3). It equals the following triple of piece-
wise polynomials:

(2pqr + q2r + qr2 − q − r − 1 − p min{q, r},
2pqr + p2r + pr2 − p − r − 1 − q min{r, p},
2pqr + p2q + pq2 − p − q − 1 − r min{p, q}).

These three polynomials are linear functions in the 6 × 6-minors of the 6 × 9 Cayley matrix
A that represents ( f, g, h). The space of all systems of three trinomials will be defined as a
certain mixed Grassmannian. The 6 × 6-minors represent its Plücker coordinates.

Given m ∈ N with n ≤ m, consider a partition I = {I1, . . . , In} of the set [m] =
{1, . . . , m}. Let G(d, m) denote the affine cone over the Grassmannian of d-dimensional
linear subspaces of R

m , given by its Plücker embedding in ∧d
R

m . Thus G(d, m) is the
subvariety of ∧d

R
m cut out by the quadratic Plücker relations. For instance, for d = 2, m =

4, this is the hypersurface G(2, 4) in ∧2
R

4 � R
6 defined by the unique Plücker relation

x12x34 − x13x24 + x14x23 = 0.

Definition 4.2 The mixed Grassmannian G(d, I) associated to the partition I is defined as
the linear subvariety of G(d, m) consisting of all subspaces that contain the vectors eI j :=∑

i∈I j
ei for j = 1, . . . , n. Here “linear subvariety” means that G(d, I) is the intersection

of G(d, m) with a linear subspace of the
(m

d

)
-dimensional real vector space ∧d

R
m .

The condition that a subspace ξ contains eI j translates into a system of n(m − d) linearly
independent linear forms in the Plücker coordinates that vanish on G(d, I). These linear
forms are obtained as the coordinates of the exterior products ξ ∧ eI j for j = 1, . . . , n.

We should stress one crucial point. As an abstract variety, the mixed Grassmannian
G(d, I) is isomorphic to the ordinary Grassmannian G(d−n, m−n), where the isomor-
phism maps ξ to its image modulo span(eI1 , . . . , eIn ). However, we always work with the
Plücker coordinates of the ambient Grassmannian G(d, m) in ∧d

R
m . We do not consider

the mixed Grassmannian G(d−n, m−n) in its Plücker embedding in ∧d−n
R

m−n .
Our mixed Grassmannian has a natural decomposition into finitely many strata whose

definition involves oriented matroids. On each stratum, the degree of the mixed discriminant
cycle is a linear function in the Plücker coordinates. In order to define tropical matroid
strata and to prove Theorem 1.1, it will be convenient to regard the mixed discriminant as
the A-discriminant �A of the Cayley matrix A. In fact, we shall consider �A for arbitrary
matrices A ∈ Z

d×m of rank d such that e[m] = (1, 1, . . . , 1) is in the row span of A. Then,
A represents a point ξ in the Grassmannian G(d, {[m]}). This is the proper subvariety of
G(d, m) consisting of all points whose subspace contains e[m].

In what follows we assume some familiarity with matroid theory and tropical geometry.
We refer to [7,11] for details. Given a d × m-matrix A of rank d as above, we let M∗(A)

denote the corresponding dual matroid on [m]. This matroid has rank m − d . A subset
I = {i1, . . . , ir } ⊆ [m] is independent in M∗(A) if and only if e∗

i1
, . . . , e∗

ir
are linearly

independent when restricted to ker(A), where e∗
1, . . . , e∗

m denotes the standard dual basis.
The flats of the matroid M∗(A) are the subsets J ⊆ [m] such that [m]\ J is the support of a
vector in ker(A).

Let T (ker(A)) denote the tropicalization of the kernel of A. This tropical linear space
is a balanced fan of dimension m − d in R

m . It is also known as the Bergman fan of
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M∗(A), and it admits various fan structures [11,16]. Ardila and Klivans [1] showed that
the chains in the geometric lattice of M∗(A) endow the tropical linear space T (ker(A))

with the structure of a simplicial fan. The cones in this fan are span(eJ1 , eJ2 , . . . , eJr ) where
J = {J1 ⊂ J2 ⊂ · · · ⊂ Jr } runs over all chains of flats of M∗(A). Such a cone is maximal
when r = m − d − 1. Given any such maximal chain and any index i ∈ [m], we associate
with them the following m × m matrix:

M(A, J , i) := (AT , eJ1 , eJ2 , . . . , eJm−d−1 , ei ).

Its determinant is a linear expression in the Plücker coordinates of the row span ξ of A:

det(M(A, J , i)) = ξ ∧ eJ1 ∧ eJ2 ∧ · · · ∧ eJm−d−1 ∧ ei .

Definition 4.3 Let A and A′ be matrices representing points ξ and ξ ′ in G(d, {[m]}). These
points belong to the same tropical matroid stratum if they have the same dual matroid, i.e.,

M∗(A) = M∗(A′),

and, in addition, for all i ∈ [m] and all maximal chains of flats J in the above matroid, the
determinants of the matrices M(A, J , i) and M(A′, J , i) have the same sign.

Remark 4.4 Dickenstein et al. [7] gave the following formula for the tropical A-discriminant:

T (�A) = T (ker(A)) + rowspan(A). (4.1)

This is a tropical cycle in R
m , i.e. a polyhedral fan that is balanced relative to the multiplicities

associated to its maximal cones. The dimension of T (�A) equals m − 1 whenever A is
not defective. It is clear from the formula (4.1) that T (�A) depends only on the subspace
ξ = rowspan(A), so it is a function of ξ ∈ G(d, {[m]}). The tropical matroid strata are the
subsets of G(d, {[m]}) throughout which the combinatorial type of (4.1) does not change.

Example 4.5 We illustrate the definition of the tropical matroid strata by revisiting the for-
mulas in (1.6) and Example 3.10. The Cayley matrix of the two sparse triangles equals

A = Cay(A1, A2) =

⎛

⎜⎜⎝

1 1 1 0 0 0
0 0 0 1 1 1
0 d1 0 0 d2 0
0 0 d1 0 0 d2

⎞

⎟⎟⎠ .

The matroid M∗(A) has rank 2, so every maximal chain of flats in M∗(A) consists of a single
rank 1 flat. These flats are J1 = {1, 4}, J2 = {2, 5}, and J3 = {3, 6}. The 6×6-determinants
det(M(A, J , i)) obtained by augmenting A with one vector eJk and one unit vector ei are 0,
±d1(d1 − d2), or ±d2(d1 − d2). This shows that d1 � d2 � 0 and d1 � 0 � d2 are tropical
matroid strata, corresponding to (1.6) and to Example 3.10 with d2 replaced by −d2.

Remark 4.6 The verification that two configurations lie in the same tropical matroid stratum
may involve a huge number of maximal flags if we use Definition 4.3 as it is. In practice,
we can greatly reduce the number of signs of determinants to be checked, by utilizing a
coarser fan structure on T (ker(A)). The coarsest fan structure is given by the irreducible
flats and their nested sets, as explained in [11]. Rather than reviewing these combinatorial
details for arbitrary matrices, we simply illustrate the resulting reduction in complexity when
M∗(A) is the uniform matroid. This means that any d columns of A form a basis of R

d . Then,
M∗(A) has (m − d − 1)!( m

m−d−1

)
maximal flags J1 ⊂ J2 ⊂ · · · ⊂ Jm−d−1 constructed as

follows. Let I = {i1, . . . , im−d−1} be an (m − d − 1)-subset of [m] and σ a permutation
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of [m − d − 1]. Then, we set Jk := [m] \ {iσ(1), . . . , iσ(k)}. It is clear that the sign of
det(AT , eJ1 , eJ2 , . . . , eJm−d−1 , ek ) is completely determined by the signs of the determinants

det(AT , ei1 , ei2 , . . . , eim−d−1 , ek),

where i1 < i2 < · · · < im−d−1. Hence, we only need to check
( m

m−d−1

)
conditions.

Recall that the A-discriminant cycle �̃A = �
i(A)
A is effective of codimension 1, provided

A is non-defective. The lattice index i(A) is the gcd of all maximal minors of A.

Theorem 4.7 The degree of the A-discriminant cycle is piecewise linear in the Plücker
coordinates on G(d, {[m]}). It is linear on the tropical matroid strata. The formulas on
maximal strata are unique modulo the linear forms obtained from the entries of ξ ∧ e[m].

In both Theorem 1.1 and Theorem 4.7, the notion of “degree” allows for any grading that
makes the respective discriminant homogeneous. For the mixed discriminant �A1,...,An we
are interested in the N

n-degree. Theorem 1.1 will be derived as a corollary from Theorem 4.7.

Proof of Theorem 4.7. The uniqueness of the degree formula follows from our earlier remark
that the entries of ξ ∧ e[m] are the linear relations on the mixed Grassmannian G(d, {[m]}).
We now show how tropical geometry leads to the desired piecewise linear formula.

From the representation of the tropical discriminant in (4.1), Dickenstein et al. [7, Theorem
5.2] derived the following formula for the initial monomial of the A-discriminant �A with
respect to any generic weight vector ω ∈ R

m . The exponent of the variable xi in the initial
monomial inω(�A) of the A-discriminant �A is equal to

∑

J ∈Ci,ω

| det(AT , eJ1 , . . . , eJm−d−1 , ei )|. (4.2)

Here, Ci,ω is the set of maximal chains J of M∗(A) such that the rowspan ξ of A has non-zero
intersection with the relatively open cone R>0{eJ1 , . . . , eJm−d−1 ,−ei ,−ω}.

It now suffices to prove the following statement: if two matrices A and A′ lie in the same
tropical matroid stratum, then there exist weight vectors ω and ω′ such that Ci,ω = Ci,ω′ .
This ensures that the sum in (4.2), with the absolute value replaced with the appropriate sign,
yields a linear function in the Plücker coordinates of ξ for the degree of �A and �A′ .

The condition J ∈ Ci,ω is equivalent to the weight vector ω being in the cone

R>0{eJ1 , . . . , eJm−d−1 ,−ei } + ξ.

Hence, it is convenient to work modulo ξ . This amounts to considering the exact sequence

Choosing a basis for ker(A), we can identify W � R
m−d . The columns of the matrix β define

a vector configuration B = {b1, . . . , bm} ⊂ R
m−d called a Gale dual configuration of A.

Projecting into W , we see that Ci,ω equals the set of all maximal chains J such that β(ω) lies
on the cone R>0{β(eJ1), . . . , β(eJm−d−1),−β(ei )}. It follows that

J ∈ Ci,ω if and only if β(ω) =
m∑

j=1

w j b j ∈ R>0{σJ1 , . . . , σJm−d−1 ,−bi },

where σJ := β(eJ ) = ∑
j∈J b j .
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We can also restate the definition of the tropical matroid strata in terms of Gale duals.
Namely, there exists a non-zero constant c, depending only on d , m and our choice of Gale
dual B, such that, given a maximal chain of flats J in the matroid M∗(A), we have:

det( AT , eJ1 , eJ2 , . . . , eJm−d−1 , ei ) = c · det(σJ1 , σJ2 , . . . , σJm−d−1 , bi ). (4.3)

Hence, the tropical matroid strata in G(d, {[m]}) are determined by the signs of the deter-
minant on the right-hand side of (4.3). If J ∈ Ci,ω for generic ω ∈ R

m , then the vectors
{σJ1 , . . . , σJm−d−1 , bi } in R

m−d are linearly independent. Let M(J , B, i) be the matrix whose
columns are these vectors. Then, J ∈ Ci,ω if and only if the vector x = M(J , B, i)−1β(ω)

has positive entries. By Cramer’s rule, those entries are
⎧
⎨

⎩
xk = det(σJ1 ,...,σJk−1 ,β(ω),σJk+1 ,...,σJm−d−1 ,−bi )

det(M(J ,B,i)) for 0 ≤ k < m − d,

xm = det(σJ1 ,σJ2 ,...,σJm−d−1 ,β(ω))

det(M(J ,B,i)) .
(4.4)

Suppose now that A and A′ are two configurations in the same tropical matroid stra-
tum. Let B and B ′ be their Gale duals. Then M∗(A) = M∗(A′) and the denominators
det(M(J , B, i)) and det(M(J , B ′, i)) in (4.4) have the same signs. On the other hand,
let us consider the oriented hyperplane arrangement in R

m−d consisting of the hyperplanes
HJ ,B,k,i = 〈σJ1 , . . . , σJk−1 , σJk+1 , . . . , σJm−d−1 , bi 〉, for 1 ≤ k ≤ m−d −1, i 
∈ Jm−d−1, as
well as the hyperplane HJ = 〈σJ1 , . . . , σJm−d−1〉, for all maximal chains J ∈ M∗(A) such
that σJ1 , . . . , σJm−d−1 are linearly independent. The signs of the numerators in (4.4) are deter-
mined by the oriented hyperplane arrangement just defined. Since M∗(A) = M∗(A′), we
can establish a correspondence between the cells of the complements of these arrangements
that preserves the signs in (4.4) for both A and A′, given weights ω and ω′ in corresponding
cells. This means that Ci,ω = Ci,ω′ as we wanted to show. ��

We note that the conclusion of Theorem 4.7 is also valid on tropical matroid strata where
A is defective. In that case, the A-discriminant �A equals 1, and its degree is the zero vector.
We end this section by showing how to obtain our main result on mixed discriminants.

Proof of Theorem 1.1. Suppose that A is the Cayley matrix of n configurations A1, . . . , An

and let I = {I1, . . . , In} be the associated partition of [m]. It follows from (4.2) that

degAk
(�A) =

∑

i∈Ik

∑

J∈Ci,ω

| det(AT , eJ1 , . . . , eJm−d−1 , ei )|.

By the same argument as in the proof of Theorem 4.7, we conclude that the above expression
defines a fixed linear form on ∧d

R
m for all matrices A in a fixed tropical matroid stratum.

��
In closing, we wish to reiterate that combining Theorem 1.1 with Rincón’s results in [16]

leads to powerful algorithms for computing piecewise polynomial degree formulas. Here is
an example that illustrates this. We consider the n-dimensional version of the system (1.5):

fi = ci0 + ci1xdi
1 + ci2xdi

2 + · · · + cin xdi
n fori = 1, 2, . . . , n,

where 0 ≤ d1 ≤ d2 ≤ · · · ≤ dn are coprime integers. The Cayley matrix A has 2n rows
and n2 +n columns. Using his software, Felipe Rincón computed the corresponding tropical
discriminant for n ≤ 4, while keeping the di as unknowns, and he found

degAi
(�A1,...,An ) = d1 · · · di−1di+1 · · · dn · ( di + (−n)d1 + d2 + d3 + · · · + dn).

Thus, we have a computational proof of this formula for n ≤ 4, and it remains a conjecture for
n � 5. This shows how the findings of this section may be used in experimental mathematics.
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