
   

  

   

   
 

   

   

 

   

   176 Int. J. Automation and Control, Vol. 13, No. 2, 2019    
 

   Copyright © 2019 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

A linear algebra controller based on reduced order 
models applied to trajectory tracking for mobile 
robots: an experimental validation 

Leonardo Guevara, Oscar Camacho*,  
Andrés Rosales and Javier Guevara 
Departamento de Automatización y Control Industrial, 
Escuela Politécnica Nacional, 
Quito, 170517, Ecuador 
Email: cesar.guevara01@epn.edu.ec 
Email: oscar.camacho@epn.edu.ec 
Email: andres.rosales@epn.edu.ec 
Email: dario.guevara@epn.edu.ec 
*Corresponding author 

Gustavo Scaglia 
Facultad de Ingeniería, 
Instituto de Ingeniería Química-CONICET, 
Universidad Nacional de San Juan, 
Av. San Martin (Oeste) 1109,  
San Juan, Argentina 
Email: gscaglia@unsj.edu.ar 

Abstract: A linear algebra controller (LACr) based on an empirical linear 
model of the system is presented in this paper. The controller design is based 
on a first order plus dead time (FOPDT) model and can be tuned using the 
characteristic parameters obtained from the reaction curve. In previous studies, 
the versatility of this proposed controller was tested by simulations, proving be 
an alternative to control many kinds of processes. In this paper, the proposed 
controller is implemented for trajectory tracking using a real mobile robot 
platform. The performance results are compared against a PI controller using 
the ISE performance index to measure it. 
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1 Introduction 

Scaglia et al. (2009) proposed an easy and simple technique that allows controlling a 
diversity of nonlinear systems based on linear algebra and numerical methods concepts to 
design control algorithms. The methodology consists of searching the conditions under 
which a system of linear equations has an exact solution and establishing the desired 
control values for tracking the error to zero. 

Several works use the above mentioned methodology to design control algorithms for 
diverse applications such as chemical processes (Quintero et al., 2009; Suvire et al., 
2013; Scaglia et al., 2014; Rómoli et al., 2015) or Robotics (Scaglia et al., 2009, 2015; 
Rosales et al., 2010; Serrano et al., 2015; Capito et al., 2016.) For all of these previous 
applications, controllers were designed based on the complete model of the process. 
Besides, there are two problems with the use of a model as far as industrial processes are 
concerned. First, the development of a complete model is difficult due to the complexity 
of the process and to the lack of knowledge about process parameters. Second, most 
process models relating the controlled and the manipulated variables are of a higher-
order. Therefore, the traditional numerical method procedure can produce a more 
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complex controller. For each process, a different control law is synthesised, resulting in a 
designed controller for the process under study. 

An efficient alternative modelling method for a process control is the use of an 
empirical model with low order linear models with dead time (Smith and Corripio, 1997). 
Usually, first-order-plus dead time (FOPDT) models are adequate for process control 
analysis and design. In many cases, mobile robotics as well as chemical processes, can be 
represented by FOPDT models (Capito et al., 2016). 

With this background in mind, Guevara et al. (2016a) proposed the design of a 
controller based on systems with an open loop behaviour such as a FOPDT model. The 
resulting controller presented a general and fixed structure with tuning parameters as a 
function of the characteristic parameters of the process. Therefore, that controller is easy 
to implement in a programmable platform and can be applied to different kind of 
processes if they have similar comportment like a FOPDT model. The proposed 
controller has been tested for higher order linear systems and then on nonlinear chemical 
processes (Guevara et al., 2016b) obtaining good performance results. All the tests were 
performed on the controller using simulations. 

The aim of this work is to test the proposed controller on a real process. This work 
shows the application of the suggested controller for tracking the trajectory of a mobile 
robot. The objective is to find the control actions that order the mobile robot to reach the 
Cartesian position (x, y) with an adequate orientation for each sampling period. In 
previous works, several control strategies have been proposed for trajectory tracking, 
designed considering the kinematic model (Hedjar et al., 2005; Kühne et al., 2005) or 
dynamic robot models (Brennan and Alleyine, 2002; Shuli, 2005). In this work, an 
approximated model of the robot is used and the controller tests are performed on 
different types of trajectories maintaining a set point of linear speed. The results are 
evaluated using a performance index and compared to the results of a PID controller. 

This paper is organised as follows: Section 2 briefly presents the basic concepts of 
controller design and its application. Section 3 shows the methodology for designing 
controllers using Linear Algebra and developing the proposed controller. In Section 4, the 
simulation results compare the proposed controller to the conventional design. Then, the 
real time experiments are presented where the proposed controller is compared to a PID 
controller. Finally, in Section 5 conclusions and future works are discussed. 

2 Background 

This section provides an overview of basic conceptual issues needed for the development 
of the proposed controller and its application within the field of mobile robotics. 

2.1 Unicycle robot 

Unicycle is a mobile robot whose structure consists of two fixed wheels on the same axis, 
controlled independently and to provide greater stability, an additional wheel with no 
controls. The traction-steering system works by the difference in speed between the fixed 
wheels, allowing independent linear and angular velocity control. 

The advantages of the unicycle type mobile robot is high mobility, high traction and 
simplicity in its configuration. It also implies restriction when moving in lateral 
directions. Like a car, it is only allowed to move forward or backward. 
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The Pioneer 3DX (Figure 1) is a unicycle mobile robot created by adept mobile 
robots, the reference platform for robotic research thanks to its versatility, reliability, and 
durability. 

Figure 1 Pioneer 3DX (see online version for colours) 

 

The Pioneer 3DX has an internal microcontroller that manages low-level actions, 
including acquiring sensor data such as sonars, encoders or additional accessories such as 
clamps. Its purpose is to maintain the desired course and speed of the platform using a 
low level PID that controls PWM signals sent to the motors. 

To carry out more advanced and high-level control actions requires the connection of 
a PC in a client-server using serial communication. Actions such as: avoidance of 
obstacles, route planning, pattern recognition, location-navigation and more are possible. 

2.2 Numerical methods 

A numerical method is a procedure by which an approximate solution to a problem is 
obtained by performing elementary arithmetic operations or purely logical calculations. 
In general, these methods apply when a numerical value is needed as a solution to a 
mathematical problem, and analytical procedures (algebraic manipulations, differential 
equation theory or integration methods) are very complex or incapable of giving a 
response. Due to this, numerical methods are procedures frequently used by physicists 
and engineers, whose development has been favoured by the need to obtain approximate 
solutions, although the precision is not complete. 

The efficiency or loss of information during the calculation of the approximation 
often depends on the ease of implementation of the algorithm and the special 
characteristics and limitations of the calculation instruments (computers). 

2.2.1 Euler approximation 

This approximation (Figure 2) is used for discretising the derivative term, replacing it by 
a finite difference. The required precision by the numerical method used here is smaller 
than the one required simulating a system. This is so because, when state feedback is 
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used at each sampling time, any shift between the approximation and the real system can 
then be corrected so that no accumulative errors exist. The approximation is only used to 
find the best manner to go from the current state to the following one, and not to 
duplicate the entire system evolution. Euler’s method allows achieve very good simulated 
and practical results, as can be seen on the following works as well (Rómoli et al., 2017; 
Serrano et al., 2017; Pantano et al., 2017). Therefore, the Euler approximation method 
can be chosen instead of other methods and it can be concluded that Euler’s method 
election is a proper choice. 

Hence, if the slope value is known in a period, the value of the next state could be 
estimated using a linear approximation (Hildebrand, 1987). The discrete approximation 
of a derivative is represented by: 

( 1) ( )
( )

n n
n

y y
y

T
 (1) 

Figure 2 Euler approximation 

 

2.3 First order plus dead time model 

In industrial processes, the reaction curve is an often-used method for identifying 
dynamic models (Camacho and Smith, 2000). It is simple to use and provides adequate 
models for many applications. The curve is obtained by introducing a step change in the 
controller output and recording the transmitter output. The curve allows to obtain the 
characteristics model parameters. The FOPDT model approximates the actual  
higher-order process. Therefore, a first order plus time delay model (2), can adequately 
represent industrial process dynamics over a range of frequencies (Smith and Corripio, 
1997). Figure 3 shows the reaction curve procedure and the response is called a FOPDT. 

The transfer function of a FOPDT system is represented by: 

0( )( )
( ) 1

t sy s keG s
u s τs

 (2) 

where k is the gain, τ is the time constant and t0 is the dead time or delay. 
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Figure 3 Typical response of a FOPDT system 

 

3 Controller design 

This section is divided in two parts. The first part presents the general methodology for 
designing the LACr. The second part presents the proposed self-regulating processes, 
using a FOPDT process model. 

3.1 General methodology 

The controller proposed in this work is based on linear algebra and numerical methods 
(Scaglia et al., 2009). Consider the following first-order differential equation: 

0( , , ) (0)dy y f y t u y y
dt

 (3) 

where y represents the output of the system to be controlled, u is the control action, and t 
is the time. The values of y(t) at discrete time t = nT will be denoted as y(n), where T is the 
sampling period and n  {0, 1, 2, …}. Thus, when computing y(n+1) by knowing y(n), (3) 
should be integrated over the time interval nT  t  (n + 1)T as follows: 

( 1)

( 1) ( ) ( , , )
n T

n n

nT

y y f y t u dt  (4) 

where u remains constant during the time interval. Therefore, if the reference trajectory 
yref(t) to be followed by y(t) is known beforehand, then y(n+1) can be substituted by yref(n+1) 
into (4). Then, it is possible to calculate u(n) that represents the control action required to 
go from the current state to the desired one. 

The Euler approximation is a numerical integration method that can be used to 
calculate the integral in (4). The use of this kind of numerical method is based on the 
possibility of determining the state of the system at the next instant from state, the control 
action, and other variables. Then, can be substituted by a function of reference trajectory 
and the control action to make the output system evolve from the current value to the 
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desired one can be calculated. To accomplish this, a system of linear equations for each 
sampling period must be solved. 

3.2 Proposed approach 

This section presents the development of a general linear algebra controller (LACr), for 
self-regulating processes, using a FOPDT process model. The FOPDT model 
approximates the actual mobile robot. The development of this controller significantly 
simplifies the application of linear algebra control theory to mobile robots. Thus, to 
synthesise the controller two hypotheses are considered. 

3.2.1 First hypothesis 

The model of the mobile robot is given by: 

cos( )
sin( )

c

c

c

x v θ
y v θ

wθ

 (5) 

where, the vector (x, y, θ) defines the posture of the vehicle; (x, y) are the coordinates of 
the middle point between the driving wheels and θ denotes the heading of the vehicle 
relative to the x-axis of the world coordinate system, vc and wc are the control signals. 
That means the linear speed (vc) and the angular speed (wc) are the control signals 
(Scaglia et al., 2009; Capito et al., 2016). 

To obtain the controller using the linear algebra methodology, we begin with the 
approximation of the state equations using some numerical method, in this case the Euler 
approximation is used: 

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( )

cos
sin

n n c n n

n n c n n

n n c n

x x v θ
y y T v θ
θ θ w

 (6) 

Then, from (6), we must consider the control problem as solving a system of linear 
equations, only the terms that depend on the control actions must be moved to the first 
member. 

( ) ( 1) ( )
( )

( ) ( 1) ( )
( )

( 1) ( )

cos 0 Δ
1 1sin 0 Δ

0 1 Δ

n n n
c n

n n n
c n

n n

θ x x x
v

θ y y y
w T T

θ θ θ
 (7) 

A system of three equations with two variables that generally have no solution is 
presented in (7). The conditions for the system to have exact solution must be 
determined. 

First, an adjustment parameter is added to reduce the error to zero in a regulated and 
smooth form using the following expressions: 

( 1) ( 1) ( ) ( ) ( 1) ( )n ref n x ref n n ref n x x nx x k x x x k e  (8) 
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( 1) ( 1) ( ) ( ) ( 1) ( )n ref n y ref n n ref n y y ny y k y y y k e  (9) 

where (kx, ky) are the adjustment parameters which depend on the error value between the 
reference value and the current value of each state variable. In addition, (kx, ky) are 
positive constants, 0 < (kx, ky) < 1, which allow for adjusting the performance of the 
proposed control system, reducing the variations in the state variables. 

Then, to have an exact solution for the system of equations the vectors that multiply 
the second member, of the previous equations, must be parallel to each other and have a 
θez(n) orientation, as follows: 

( )
( )

( )

sin Δtan
cos Δ

n
n

n

θez yθez
θez x

 (10) 

( 1) ( ) ( )
( )

( 1) ( ) ( )
tan ref n y y n n

n
ref n x x n n

y k e y
θez

x k e x
 (11) 

Like (8) and (9), an adjustment parameter kθ is added to regulate the error variation for 
the θ case as follows: 

( 1) ( 1) ( ) ( ) ( 1) ( )n n θ n n n θ θ nθ θez k θez θ θez k e  (12) 

To solve the system of equations, the normal equations ATAx = ATB (Strang, 1980) so 
only the control variables are in the first member. 

( ) ( ) ( )

( )

Δ
cos sin1 Δ

0 0
Δ

c n n n

c n

x
v θ θ

y
w T

θ
 (13) 

( )

( )

( 1) ( ) ( ) ( 1) ( ) ( )
( ) ( )

( 1) ( ) ( )

cos sin1

c n

c n

ref n x x n n ref n y y n n
n n

n θ θ n n

v
w

x k e x y k e y
θez θ

T T
θez k e θT

T

 (14) 

Remark 1: To compute ωc(n), the value of θez(n+1) is required but what (14) allows to 
calculate is θez(n). However, θez(n+1) can be estimated using the Taylor’s formula: 

2 2

( 1) ( ) 2 2n n
dθez d θez Tθez θez T C

dt dt
 (15) 

where C is the complementary term (Hildebrand, 1987). So, if the sampling time is small, 
θez(n+1) can be estimated in one of following ways: 

( 1) ( )n nθez θez  (16) 

( 1) ( ) ( ) ( 1)2n n n n
dθezθez θez T θez θez

dt
 (17) 
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2
( ) ( 1) ( ) ( 1) ( 2)

( 1) ( )
2

2
n n n n n

n n
θez θez θez θez θez Tθez θez T

T T
 (18) 

In general, the approximation in (16) provides excellent results. 

3.2.2 Second hypothesis 

The linear and angular speeds are not the control signals, but they are related through an 
unknown model, such as a FOPDT model, as follows: 

0( )( )
( ) 1

t sy s keG s
u s τs

 (19) 

For each case: 

0( )( )
( ) 1

vt s
v

v
c v

v s k eG s
v s τ s

 (20) 

0( )( )
( ) 1

wt s
w

w
c w

w s k eG s
w s τ s

 (21) 

The dead time term is replaced in the transfer function of linear speed (Camacho et al., 
1997) as follows: 

0

( )( )
( ) 1 1

v
v

c v v

v s kG s
v s τ s t s

 (22) 

To simplify, two parameters are chosen: KAv and KBv include the characteristic parameters 
(t0v, τv) as follows: 

0 1

0
[ ][time]v v

Av
t τK

t τ
 (23) 

2

0

1 [ ][time]Bv
v v

K
t τ

 (24) 

Therefore, (22) can be rewritten as: 

2

( )( )
( )

v Bv
v

c Av Bv

v s k KG s
v s s K s K

 (25) 

Then, (25) can be represented in the differential equation form as follows: 

Av Bv v Bv cv K v K v k K v  (26) 

Similarly, for the angular speed, the following is obtained: 

Aw Bw w Bw cw K w K w k K w  (27) 

Consequently, the model is: x1 = v; 2 3;  = .x v x w  
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1

1

3

21

2 12

43

4 34

cos
sin

v Bv c Av Bv

w Bw c Aw Bw

x x θ
y x θ

xθ
xx

k K v K x K xx
xx

k K w K x K xx

 (28) 

Applying the procedure described in the previous subsection, the Euler approximation is 
used to clear the discretised control action. 

( 1) ( ) 1( ) ( )

( 1) ( ) 1( ) ( )

( 1) ( ) 3( )

1( 1) 1( ) 2( )

2( 1) 2( ) ( ) 2( ) 1( )

3( 1) 3( ) 4

4( 1) 4( ) ( )

cos
sin

n n n n

n n n n

n n n

n n n

n n v Bv c n Av n Bv n

n n

n n w Bw c n

x x x θ
y y x θ
θ θ x
x x T x
x x k K v K x K x
x x x
x x k K w 4( ) 3( )Aw n Bw nK x K x

  (29) 

A system of linear equations where the unknown variables are the control actions can 
now be solved: 

( 1) ( ) 1( ) ( )

( 1) ( ) 1( ) ( )

( 1) ( ) 3( )

1( 1) 1( ) 2( )( )

3( 1) 3( ) 4( )
( )

2( 1) 2( )
2( ) 1(

cos
0 0 sin
0 0
0 0
0 0
0 0

0
0

n n n n

n n n n

n n n

n n nc n

n n n
c n

n n
Av n Bv n

v Bv

w Bw

x x Tx θ
y y Tx θ

θ θ Tx
x x Txv
x x Txw

x x
K x K xk K T

k K

)

4( 1) 4( )
4( ) 3( )

n n
Av n Bv n

x x
K x K x

T

 (30) 

In order for the system to have an exact solution (Strang, 1980), the first five terms 
should be zero. Therefore, the three first terms are: 

( 1) ( ) 1( ) ( )cosn n n nx x Tx θ  (31) 

( 1) ( ) 1( ) ( )sinn n n ny y Ty θ  (32) 

( 1) ( ) 3( )n n nθ θ Tx  (33) 

where the unknown variables are x1(n) and x3(n), i.e., the linear and angular velocities as in 
the first hypothesis. Therefore, the solution will be the same as (14), except in this case 
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x1ez(n) and x3ez(n) represent the speed references that will be used for the calculation of the 
control actions. 

( ) ( )
1 ( )

3 ( )

Δ Δcos cos

Δ

n n
ez n

ez n

x yθez θezx T T
x θ

T

 (34) 

where x1ez(n) and x3ez(n) are the references for the state variables x1 and x3 (see Remark 1). 

The fourth and fifth terms also should be zero, therefore, it is necessary to satisfy: 
1( 1) 1( ) 2( ) 0n n nx x Tx  (35) 

3( 1) 3( ) 4( ) 0n n nx x Tx  (36) 

Because, the reference signals for x1 and x3 were obtained from (34) and it is important 
that linear and angular speeds gradually approach their reference values, x1(n+1) is replaced 
for x1ez(n+1) – k1e1(n) and x3(n+1) for x3ez(n+1) – k3e3(n), therefore: 

1 ( 1) 1 1( ) 1( )
2 ( )

–  
=  ez n n n

ez n
x k e x

x
T

 (37) 

3 ( 1) 3 3( ) 3( )
4 ( )

–  
=  ez n n n

ez n
x k e x

x
T

 (38) 

where x2ez(n) and x4ez(n) are the references for the state variables x2 and x4, respectively (see 
Remark 1). And, (k1, k2) are positive constants, which adjust the performance of the 
proposed control system; they satisfy 0 < (k1, k2) < 1, reducing the variations in the state 
variables. 

Finally, from (30), (34), (37) and (38): 

2 ( 1) 2 2( ) 2( )
( ) 2( ) 1( )

–  ez n n n
c n Av n Bv n v Bv

x k e x
v K x K x K k

T
 (39) 

4 ( 1) 4 4( ) 4( )
( ) 4( ) 3( )

–  ez n n n
c n Aw n Bw n w Bv

x k e x
w K x K x K k

T
 (40) 

4 Results 

In this section the proposed approach is tested. In the first section part, a comparison by 
simulations is done and then a realistic experiment is developed. For both cases the 
FOPDT model of the robot, used to design the proposed controller, is obtained. For the 
simulation experiment, the approach based on the reduced order model of the robot is 
compared against a conventional linear algebra controller designed using the complete 
model of the robot. For experimental results, the Pioneer 3DX was used. It is compared 
the performance of the LACr controller against a PI controller. The realistic results for 
tracking two trajectories (a squared one and a circular one) are presented. The integral of 
squared error (ISE) index is used to measure the performance for the controllers. 
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4.1 Empirical model of the robot from reaction curve method 

Considering that the Pioneer 3DX is a black box process, only the input and output are 
known. Then, using an identification procedure, the characteristic parameters (k, τ, t0) 
required to represent the robot as a FOPDT model are obtained. Finally, the mobile robot 
behaviour is represented by two transfer functions for linear and angular speeds. 

The real response of the robot and the approximate response to a step input for each 
speed are presented in Figure 4. 

Figure 4 Linear and angular speeds step responses (see online version for colours) 

 

The transfer functions which represent the approximate linear speed u and angular speed 
ω are represented by (38) and (39), respectively. The transfer function of the angular 
speed is considered to have a significant controllability relationship (t0/τ). 

0.221( )
0.5 1

s
uG s e

s
 (41) 

0.321( )
0.15 1

s
ωG s e

s
 (42) 
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4.2 Linear algebra controllers comparison by simulation 

In this subsection, the proposed controller based on an approximate model is compared 
with the conventional linear algebra controller based on the robot’s kinematic model. The 
conventional controller applied to trajectory tracking with the Pioneer 3DX robot is taken 
from Capito et al. (2016). 

Figures 5 and 6 show the response of both controllers for a square trajectory. A 
square trajectory is tested, setting a linear speed set point of 0.3 m/s. 

Figure 5 XY graph of square trajectory tracking (see online version for colours) 

 

Similar results shown in the graph prove that despite the use of a linear approximate 
model in the proposed controller, the robot’s response is comparable to the conventional 
controller. 

4.3 Realistic results 

In this subsection, proposed controller LACr is compared to a traditional PI. The two 
different tracking trajectories are tested: a square with each side of 4 m and a circle with a 
radius of 4 m. In both trajectories, a set point of linear speed of 0.3 m/s is applied.  
Figure 7 shows the robot’s positions during the experiments. 

4.3.1 Square trajectory 

Figure 8 illustrates the simultaneously behaviour of the two controllers on the reference 
square trajectory. Figure 9 shows the variation of linear and angular speeds during  
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trajectory tracking. Figure 10 shows the position error in each component and error norm 
during trajectory tracking. 

Figure 6 Linear and angular speed vs. time (see online version for colours) 

 

Figure 7 Robot position changes during trajectory tracking (see online version for colours) 

  

As observed in the previous figure, the PI controller presents a better response for the 
linear speed case. But, for the angular speed case, which has a controllability relationship 
close to two, the proposed approach is faster with lower overshoot when compared to PI. 
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Figure 8 XY graph of square trajectory tracking (see online version for colours) 

 

Figure 9 Linear and angular speed vs. time (see online version for colours) 
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Figure 10 Position error vs. time (see online version for colours) 

 

4.3.2 Circular trajectory 

In a similar way, as presented for the square trajectory tracking, Figures 11 to 13 are 
graphs of trajectory tracking. 

Like Figure 9, Figure 12 shows that the PI controller responds better for the linear 
speed case. For the angular speed case, which has a controllability relationship close to 
two, however, the proposed approach is faster with lower overshoot when compared to 
PI. 

4.4 Performance evaluation 

Here, a performance index compares and evaluates the proposed approach against a 
conventional one, the simulation case, and the experimental part when a PI controller is 
used. 
Table 1 ISE comparison of linear algebra controllers by simulations 

Trajectory Component 
ISE 

LACr Conventional LACr 

Square ex 0.1157 0.1297 
ey 0.09316 0.0933 
ev 0.0993 0.1021 
ew 0.2551 0.2523 
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Figure 11 XY graph of square trajectory tracking (see online version for colours) 

 

Figure 12 Linear speed and angular speed vs. time (see online version for colours) 
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Figure 13 Position error vs. time (see online version for colours) 

 

Table 2 ISE comparison of realistic trajectory tracking 

Trajectory Component 
ISE 

PI LACr 
Square ex 1.1445 1.4014 

ey 0.0926 0.081 
ev 1.3743 1.3701 
ew 0.4573 0.1164 

Circle ex 0.5829 0.5336 
ey 1.8225 1.7816 
ev 2.2751 2.2417 
ew 5.5697 5.1885 

The ISE index is calculated from the error in each component separately (ex, ey) and is 
defined as follows: 

2
0

( )
T

e t dt
ISE

T
 (43) 

Table 1 shows the results of the performance, by simulations, between the proposed 
controller and the conventional one. For this, the results are very close. 
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Table 2 summarises the results for the real experiments performed for two 
trajectories. Experiments have shown that both controllers produce similar trajectory 
tracking quality but using the performance index the LACr produces lower ISE values. 
Also, it is important to mention that the proposed approach presented a better result for 
the angular speed when the controllability relationship was greater than two. 

5 Conclusions 

A controller using linear algebra methodology was presented in this work. For designing 
purposes, a first order plus dead time model of the robot was used instead of the complete 
model of the mobile robot. 

The comparison, between the conventional controllers based on the complete model 
to the proposed controller based on a linear approximate model, showed that despite the 
empirical modelling procedure, responses were very close. 

It is not difficult to tune the proposed controller, since its parameters come from the 
FOPDT process model. It is also simple to implement with low computational 
requirements making it especially appropriate for fast, real-time trajectory tracking. 
Experimental results have demonstrated that the proposed controller is an option to track 
trajectories in a faster and simpler manner. 

The proposed controller works for tracking and regulation tasks for different 
processes in diverse fields such as robotics and chemical processes, if the systems can be 
approximated for an open-loop dynamic like a FOPDT response. The proposed approach 
presented a better result for the angular speed case when the controllability relationship is 
greater than 2. Intelligent computational procedures are considered for determining 
optimal controller tuning parameters will be studied. 
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