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July 26, 2012

Abstract

We address a conjecture introduced by Massoulié (2007), concern-
ing the large deviations of the stationary measure of bandwidth-sharing
networks functioning under the Proportional fair allocation. For Marko-
vian networks, we prove that Proportional fair and an associated re-
versible allocation are geometrically ergodic and have the same large
deviations characteristics using Lyapunov functions and martingale ar-
guments. For monotone networks, we give a more direct proof of the
same result relying on stochastic comparisons that hold for general ser-
vice requirement distribution. These results comfort the intuition that
Proportional fairness is ‘close’ to allocations of service being insensitive
to the service time requirement.

1 Introduction

Bandwidth-sharing networks describe the evolution of the number of flows
(or calls) in a communication network where different classes of traffic com-
pete for the bandwidth.

They have become a standard modeling tool over the past decades for
modeling communication networks [4, 11] and have been used in particular
to represent the flow level dynamics of a wide range of wireline and wireless
networks [2], generalizing henceforth more traditional voice traffic models [7].

In queuing theory, these models boil down to a particular class of pro-
cessor sharing networks with state-dependent service rates. Assuming that
class-i flows arrive subject to a Poisson process of intensity λi and require
exponentially distributed service times of mean µi (the arrival processes of
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all classes being mutually independent), and in the absence of internal rout-
ing, the stochastic process X = (X1, . . . ,XN ) describing the number of flows
(or calls) in progress in the network is a multi-dimensional birth and death
process with transition rates:

q(x, x− ei) = µiφi(x),

q(x, x+ ei) = λi,

where x = (x1, . . . , xN ) is the number of flows in each class of traffic. The
service rates of the N traffic classes φ = (φi(·))

N
i=1 encodes the particular-

ities of the network resulting from the specific topology, technology, radio
conditions, interference and multi-diversity effects and the packet protocols
and congestion control mechanisms in use. In a wireline network, the vector
φ(x) is usually assumed to belong for all x to a polyhedron describing the
capacities constraints of each link that are used by the different routes while
for wireless networks, φ(x) generally belongs to a more complicated closed
convex set containing 0 corresponding to the achievable rates. In many situ-
ations like TDMA or CDMA data networks, the capacity set can be assumed
to be convex but this is not necessarily the case for decentralized schemes
like for the 802.11 WLAN. However, it has been shown that the capacity
sets in that case are log-convex (see [9]).

Some specific bandwidth allocations have received a lot of attention in
recent years. These include the max-min fair allocation and the proportional
fair allocation (PF) that maximize a log-utility function. More generally, Mo
and Walrand introduce the following family of utility functions:

Uα(x, η) =

N
∑

i=1

xi
η1−α
i

1− α
, α ∈ (1,∞),

U1(x, η) =

N
∑

i=1

xi log(ηi), α = 1,

including as special cases the proportional fair allocation and the max-min
fair allocation for α tending ∞. On the other hand, the balanced fairness
allocation (BF) was defined in [3] as the allocation ensuring the reversibility
of the Markov process X and maximizing the probability of the network to
be empty (among the ‘reversible’ allocations).
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More generally, the selection of a specific bandwidth allocation is moti-
vated by several properties of the resulting process X. Among those prop-
erties, the following ones are of particular interest:

1. maximal stability: one expects the bandwidth sharing mechanism to
stabilize the system whenever it can be stabilized,

2. decentralized protocol: the bandwidth allocation can be implemented
in the network using decentralized schemes,

3. robustness: when changing the traffic conditions1 and in particular
the service time distribution (but keeping the mean flow size fixed),
one could expect the stationary measure of X to remain the same, in
which case the system and the bandwidth allocation are said to be
insensitive,

4. relaxed robustness : the large deviations characteristics do not depend
on the service time distribution, except for its mean and coincide with
the large deviations of the most efficient insensitive allocation.

The PF allocation satisfies properties (1) and (2) but fails to satisfy
property (3) on general topologies. On the other hand, the BF allocation
satisfies (1) and (3) but it is not known whether it satisfies (2) [2]. On the
one hand, it was shown in [10] that an appropriate modification of the pro-
portional fair allocation, called modified proportional fair allocation, (mPF)
coinciding asymptotically (point-wise) with PF, has the same large devia-
tions characteristics as BF. On the other hand, it has been recently proven
that an insensitive allocation being maximal stable, is asymptotically equiv-
alent (point-wise) to PF [15]. However, it remained an open problem to
prove that the large deviation characteristics of the stationary measure of
the PF allocation itself coincide with those of mPF, and BF as it was con-
jectured in [10].

Our contribution is the following. We first recall the principles of the
Freidlin and Wentzell theory for birth and death processes on Z

N with rates
being Lipschitz and with bounded logarithms. As underlined for instance
in [14], it is very demanding to extend these results to processes on state
spaces with boundaries since the technical conditions of the classical theory

1When the size distributions of the flows are not exponentially distributed, the process

X is not Markov by itself anymore and the dynamics have to be defined using the residual

service time.
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are never fullfilled. (Remark that boundness of the logarithm is never veri-
fied for birth and death processes living in the orthant, while the Lipschitz
assumption is not verified in our case for several network topologies).

A main contribution of the present article consists in overcoming these
difficulties for the specific processes we are studying. We first show that for
Poisson arrivals and exponentially distributed flow sizes, the stationary dis-
tribution πPF of the number of flows associated with PF and the stationary
distribution πmPF associated with the mPF allocation have the same large
deviations characteristics. More precisely:

Theorem 1. For all x ∈ Z
N
+ :

1

n
log
( πPF (nx)

πmPF (nx)

)

≤ O(n−
1
2
+ǫ), ∀ǫ > 0.

In the particular case that x ∈ N
N the bound can be improved to O(n−1).

This is achieved by first proving the geometric ergodicity of both the
mPF allocation and the PF allocation. For that purpose, we exhibit ap-
propriate Lyapunov functions, relying on some structural results of PF de-
scribed in [10]. This then allows us to use simple martingale arguments.

Finally, for monotone networks and generally distributed flow size, we
give a more direct proof establishing that the large deviations characteristics
are actually insensitive to the service time distribution. This shows that the
proportional fair allocations indeed satisfy properties (1) and (2) and (4) at
least on monotone topologies.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the allocations functions used in the sequel as well as several of their
properties. In Section 3, we show that the rate function of the proportional
fair allocation coincides for Markovian dynamics to the rate function of Bal-
anced fairness. In Section 4, we prove property (4) for monotone networks
using stochastic comparisons.

2 Properties of bandwidth sharing allocations

Notations We define here a few notations that we need in the sequel.
R+ denotes the set of non-negative real numbers. The bandwidth allocation
vector is denoted φ(x) ≡ (φi(x))i=1...N . For any vector v in R

N , and function
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f : R → R, we denote f(v) the vector (f(vi))i=1...N . Similarly, we also use
the notation av for

∏N
i=1 a

vi
i . The usual scalar product in R

N between u and
v is denoted 〈u, v〉. We use || · ||p to denote the lp-norm, but we reserve | · | to

denote the l1-norm: |v| =
∑N

i=1 |vi|. For x, y ∈ R
N , we also use the notation

x ≤ y to denote the partial order xi ≤ yi for all i = 1 . . . N . Finally, given a
set C and function f : R → R, we shall denote f(C) the set {f(η) : η ∈ C}.

2.1 Gradient allocations

In the characterization of the large deviations of the stationary regime, we
shall rely on two properties of the allocation function φ playing a crucial
role and being intrinsically related: being a gradient allocation or a discrete
gradient allocation.

Definition 1. A bandwidth allocation is called gradient if there exists a
function P : RN → R (that we call a continuous potential) such that

log(φ(x)) = −∇P (x), ∀x ∈ R
N
+ \ {0}.

Recall that the proportional fair allocation is defined by the optimization
problem associated to a capacity set C as follows:

φPF (x) = argmax
η∈C

U1(η, x) = argmax
η∈C

〈x, log(η)〉.

Following Massoulié [10], observe that the proportional fair bandwidth
allocation is gradient. Indeed, let δ∗A the support function of a bounded
convex set A i.e.:

δ∗A(x) = max
η∈A

〈x, η〉.

Proposition 1. Assume that the set C is log-convex, i.e., the set log(C) is
convex, then

log(φPF (x)) = ∇δ∗log(C)(x), ∀x ∈ R
N
+ \ {0}.

Proof.

The function δ∗ is sub-differentiable because it is convex and finite (see
[13]) for all x ∈ R

N
∗ . The unicity of the sub-gradient comes from the strict

concavity of the log function and implies the differentiability.
✷

In the sequel, we always assume that C is convex and contains the set
{η :

∑

ηi ≤ c} for some c > 0. Of course, this is not a restriction for
applications. We denote by PPF ≡ δ∗log(C).
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2.2 Reversible allocations

Definition 2. A bandwidth allocation is called reversible or discrete gradi-
ent, if there exists a function P̃ : RN → R (that we call a discrete potential)
such that for all x ∈ N

N , i = 1, . . . , N :

log(φi(x)) = −DP̃ (x) ≡ P̃ (x)− P̃ (x− ei).

In the latter case, the stationary measure of the process is easily de-
scribed:

Proposition 2. The process X̃ associated with a reversible allocation with
discrete potential P̃ is reversible (in the usual sense) and its stationary mea-
sure (when it exists) is:

π(x) = Cλx exp(P̃ (x)).

Assume further that 1
n P̃ (nx) → γ(x) as n→ ∞. Then:

lim
n→∞

1

n
log π(nx) = −

(

γ(x)−

N
∑

i=1

xi log(λi)
)

.

A particular role in what follows shall be played by two reversible alloca-
tions ‘close’ to PF: the modified PF allocation (mPF) and the BF allocation
which we now define mathematically.

Definition 3 (Modified proportional fair and Balanced fair allocations).

log(φmPF (x)) = −DP̃PF (x),

with PPF the continuous potential associated with PF, and

log(φBF (x)) = −DP̃ (x),

where the potential P̃ is recursively defined by:

P̃ (x) = 0,

P̃ (x) = max{a > 0 : P̃ (x− ei)− a ∈ log(C)}.

We have the following large deviations results for the BF allocation:

Proposition 3. (Massoulié, 2007)

lim
n→∞

1

n
log πBF (nx) = PmPF (x).
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The main challenge of the subsequent analysis is to provide similar re-
sults for the Proportional fair allocation itself and hence verify that both
allocations share the same large deviations characteristics. The main diffi-
culty of this program is that the stationary measure of a network under the
proportional fair allocation does not have a closed form in general (except
in the very particular cases of symmetric hypergrids).

2.3 Stability

We state two stability results, one for the original stochastic system, and one
for the deterministic analogue Both results are well known for Markovian
bandwidth sharing networks in [1]. Massoulié extended the stability results
to general service time distributions in [10].

Theorem 2 ([10]). The stability set of the process X associated with the
PF allocation is contained in, and contains the interior of the set S = C̄.

Remark 2.1. For Markov processes, a direct proof follows from taking x 7→
∑N

i=1
x2
i

λi
as a Lyapunov function.

Define now the deterministic dynamical system (DS)x0
by

ẋi =
(

λi − φi(x)
)

1xi>0, (1)

x(0) = x0. (2)

It was proved [8] (see also [10]) that the fluid limits of the process X are
solutions of this dynamical system at all regular points.

2.4 Examples

We illustrate the above description on a few toy examples.

Example 1 (Single link). Consider first a single link shared by N classes.
This corresponds to choosing C = {

∑ ηi
µi

≤ 1}, where the {µi} correspond to
the mean flow sizes. In this case, the proportional fair allocation coincides
with the balanced fairness allocation. Its service rates are given by:

φi(x) = µi
xi
|x|
.

Note however that the continuous and the discrete potential functions asso-
ciated with the allocation φ do not coincide:

δ∗log(C)(x) =

N
∑

i=1

xi
|x|

log

(

xi
|x|

)

,
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while the discrete potential is given by:

P (x) = log

((

|x|

x1, . . . , xN

))

.

One can however prove using the Stirling formula that

1

n
(P (nx)− δ∗log(C)(nx)) → 0, as n→ ∞.

An extension of these formulae can be obtained for hypergrids topologies [4].

Example 2 (Tree network). A 2-level tree network with N routes is defined
by the following polyhedron for the capacity set:

P = {η ∈ R
N
+ : ηi ≤ ci,

∑

i

ηi ≤ 1 },

for some constants {ci}. An expression of the stationary measure for the
balanced fairness allocation can be found in [4]. In general (i.e., when the
tree is not degenerate), the proportional fair allocation does not coincide with
the balanced fair allocation and does not raise a reversible process. Hence
its stationary distribution can be obtained only numerically. For the case
N = 2, and max(c1, c2) ≤ 1, the proportional fair allocation is:

φ1(x) = 1− φ2(x),

φ2(x) = min(c2,
x2

x1 + x2
).

An important property of the proportional fair allocation in that case is
its monotonicity (see Section 4 for a definition) [5]:

φPF
i (x)

xi
≥
φPF
i (y)

yi
, xj ≤ yj, ∀j.

Example 3 (Wireless network). In [9], the rate region C of a 2-station
network functioning under the 802.11e protocol is studied. The rate region
is the set of achievable throughput vectors at the fine time scale (packet level).
Their findings show that the rate region, (which exact expression depends in
a complicated manner of the probabilities of transmitting) is generally not
convex but is however log-convex.
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3 Large deviations for Markovian dynamics

3.1 The Freidlin-Wentzell theory for birth and death pro-

cesses with smooth transitions

In this Section, we remind the concepts introduced by Freidlin and Wentzell
[6] allowing to get a grasp on the sample-paths large deviations of stochastic
differential equations with small noise. These results were often applied to
diffusions processes but can equally be applied (as indicated in [6]) to some
jump processes. We show here how these classical results can be used to
prove a large deviation principle for birth and death processes with “gradi-
ent” rates on Z

N .

Let Y n be a multi-dimensional birth and death process with transition
rates:

q
(x

n
,
x

n
−
ei
n

)

= nφi

(x

n

)

,

q
(x

n
,
x

n
+
ei
n

)

= nλi.

We suppose additionally that the death rates are 0-homogeneous (i.e. φ(az) =
φ(z), ∀a > 0).

Define the logaritmic moment-generating of the increment of the process
for z ∈ R

N/n, y ∈ R
N by

Hn(z, y) =
d

dt
Ez[exp(〈y, Y n(t)− z〉)]. (3)

Using the structure of the generator and the 0-homogeneity of the rates:

Hn(z, y) = n

(

∑

i

λi(e
yi/n − 1) + φi(z)(e

−yi/n − 1)

)

. (4)

We thus obtain that Hn(z, y/n) = nH(z, y/n) with

H(z, y) = 〈ey − 1, λ〉 + 〈e−y − 1, φ(z)〉. (5)

Define now the Fenchel-Legendre L transform of H:

L(x, y) = sup
θ∈RN

〈y, θ〉 −H(x, θ), (6)
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and define the action functional S : C([0, T ]) → R as follows:

ST (r) =

∫ T

0
L(rs, ṙs)ds. (7)

Now define the quasi-potential V by:

V (x) = min
r,T,r(0)=0,r(T )=x

ST (r, ṙ). (8)

Assume that the function L is such that:

sup
|x−x̃|

|L(x, y) − L(x̃, y)|

1 + L(x, y)
→ 0.

The original results of Freidlin and Wentzell are stated for Lipschitz-
continuous transitions (extended to R

N ):

Theorem 3 (Freidlin and Wentzell). Assume that for each i, the function
log φi(·) is bounded and Lipschitz continuous. Let πn the stationary measure
of the birth and death processes Xn. Then, a large deviations principle holds
for the family of probabilities πn(·) with rate function V (·).

3.1.1 Further characterization of the potential

In the case of general multi-dimensional birth and death processes, it is dif-
ficult to solve the variational problem from which the potential V is defined.
However, assuming that the rates are gradient, as defined in the previous
Section, greatly simplifies the expression of the potential.

Proposition 4. Assume that the rates (allocation) φ is gradient with con-
tinuous potential P . Then the quasi-potential of the birth and death process
is equal to R(x) = −〈log(λ), x〉 + P (x).

Proof.

We first show that:

V (x) = max
xs:x0=0,xT=x

∫ T

0
〈ẋs, log

( λ

φ(xs)

)

〉ds.

The first simplification comes from the time homogeneity of the process.
Using the Euler-Lagrange principle, combined with the time homogeneity
(which implies that ∇xL = 0) the minimizing path satisfies the Beltrami
identity:

L− 〈y,∇yL〉 = 0.
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Now, observe that if θy = argmax〈y, θ〉−H(x, θ), we obtain that ∇yL = θy
and L− 〈y∇yL〉 = H(x, θy) = 0. Solving the last equation leads to:

θẋ =
1

2
log(

φ(x)

λ
),

which allows us to conclude since

L(x, ẋ) = 〈ẋ,∇yL(x, ẋ)〉 = 〈ẋ, θẋ〉.

The expression for the quasi-potential then follows from integration.
✷

We insist on the facts that this theory allows to prove the large devi-
ation rate of the stationary measure of birth and death processes only for
smooth allocations and that it becomes a very technical issue to weaken this
assumption. Also it does not provide a rate of convergence in general.

We address these issues in the next Section: we prove directly the large
deviation principle using martingale arguments by taking advantage of the
geometric ergodicity of the process.

3.2 Large-deviations results for general gradient allocations

In this Section, we call X the process associated with the PF allocation,
denoted φ and corresponding to the continuous gradient of the potential
PPF . We further denote by X̃ the process associated to the allocation φ̃
itself corresponding to the discrete gradient of PPF , i.e.:

log(φ(x)) = ∇PPF (x), (9)

log(φ̃(x)) = −DPPF (x) = (PPF (x)− PPF (x− ei))i=1...N . (10)

Structural properties of the PF allocation

From the structural representation of PF, we know that φ̃ is a perturbation
of the original rates φ in the sense that (see Lemma 9 in [10] ):

∣

∣ log(φi(x))−log(φ̃i(x))
∣

∣ =
∣

∣ log(φi(x))−(PPF (x)−PPF (x−ei))
∣

∣ ≤
1

xi
, ∀i, x.

(11)
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Geometric ergodicity

We first consider the dynamics corresponding to the Proportional fairness
allocation.

Proposition 5 (Geometric ergodicity of X). Suppose λ ∈ int(C), then there
exists a constant K such that for |x| > K:

∆G(x) ≤ −γG(x).

Hence:
∣

∣

∣
P 0
t (x)− πPF (x)

∣

∣

∣
≤ K1e

−K2t,

for some constants K1,K2 > 0, and πPF the stationary distribution of X.

Proof.

The proof has two steps. We first construct a Lyapunov function with
bounded drift. We then use this Lyapunov function to construct a new one
verifying a geometric drift inequality.

First step: let F (x) = (
∑N

i=1
x2
i

λi
)1/2. Observe that F is a norm in R

N

(hence is positive, 1− homogeneous, and diverges to infinity when |x| → ∞).
Furthermore, it is C2 for all x 6= 0 and:

∇F (x) =
xi

λiF (x)
.

Hence, there exists K > 0 such that for |x| > K

1

|x|
sup

z=x,x±ei
|
∂2F (z)

∂2xi
| ≤ ǫ.

Using that F is 1-homogeneous, this leads for |x| > K to:

∆F (x) ≡
N
∑

i=1

λi(F (x+ ei)− F (x)) + φi(x)(F (x− ei)− F (x)),

≤ 〈λ− φ(x),∇F (x)〉 + ǫ,

= 〈λ− φ(x),
x

F (x)λ
〉+ ǫ,

=
|x|

F (x)
〈λ− φ(x),

x

|x|λ
〉+ ǫ.
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Using the definition of Proportional fairness (as the allocation maximizing
U1(·, x) and the strict concavity of the log function), for all η ∈ C,

N
∑

i=1

xi
ηi
(ηi − φi(x)) = 〈

(∂U(x, η)

ηi

)

, η − φ〉 < 0,

which implies that that there exists γ such that:

〈λ− φ(x),
x

|x|

1

λ
〉 ≤ −γ,

which in turn implies (together with the fact that F is norm-like) that there
exists γ̃ such that:

∆F (x) ≤ −γ̃, ∀x, |x| > K.

Remark also that

|∆F (x)| ≤ C, ∀x.

Second step: we now calculate the drift of G(x) = exp(δF (x)):

∆G(x) =

N
∑

i=1

λi(e
δF (x+ei) − eF (x))) + φi(x)(e

δF (x−ei) − eδF (x))),

= G(x)

N
∑

i=1

λi(e
δ(F (x+ei)−F (x))− 1) + φi(x)(e

δ(F (x−ei)−F (x) − 1)),

≤ G(x)(δ∆F (x) + C1δ
2

N
∑

i=1

exp(c|∆F (x)|) +O(δ3)),

≤ G(x)(−C2δ + C3δ
2),

≤ −γG(x).

This implies that (see [12]):

|P 0(X(t) = x)− πPF (x)| ≤ K3 exp
−K4t .

✷

We now deal with the dynamics of the modified proportional fair alloca-
tion.
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Proposition 6 (Geometric ergodicity of X̃). Suppose λ ∈ int(C), then there
exists a constant K̃ such that for |x| > K̃:

∆G(x) ≤ −γG(x).

Hence,
∣

∣

∣
P 0
t (x)− πPF (x)

∣

∣

∣
≤ K3e

−K4t,

for some constants K3,K4 > 0, πmPF being the stationary distribution of
X̃.

Proof.

We proceed as previously. The only difference consists in proving that
the perturbations of the rates are small enough to be negligible in the drift

calculations. Let F (x) = (
∑N

i=1
x2
i

λi
)1/2. For |x| > K̃, using the bounds on

the difference of φ and φ̃, we obtain that:
∣

∣φi(x)− φ̃i(x)
∣

∣ ≤ c0
∣

∣ log(φi(x)) − log(φ̃i(x))
∣

∣ ≤
c0
xi
.

Hence:

∆F (x) =

N
∑

i=1

λi(F (x+ ei)− F (x)) + φ̃i(x)(F (x− ei)− F (x)),

≤ 〈λ− φ̃(x),∇F (x)〉 + ǫ,

≤ 〈λ− φ(x),
x

F (x)λ
〉+ 〈φ(x)− φ̃(x),

x

F (x)λ
〉+ ǫ,

≤ −γ̃ + 〈φ(x)− φ̃(x),
x

F (x)λ
〉,

≤ −γ̃ +
c

|x|
.

which gives (together with the fact that F is norm-like) that there exists γ̂
such that:

∆̃F (x) ≤ −γ̂, ∀x, |x| > K̃.

Remark also that

|∆̃F (x)| ≤ C.

We can conclude following exactly as in the previous proof. ✷

Before proving the main result of this section, we establish a useful
lemma using the geometric ergodicity of the processes.
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Lemma 3.1. There exists C > 0 such that for tn = Cn, we have

log
P
0(Xtn ≥ nx)

πPF ({nx}↑)
≤ C1 exp{−C2 n}

for C1, C2 > 0, where πPF ({k}↑) =
∑

j≥k π
PF (j). The analogue inequality

is true for process X̃.

Proof.

We need to bound from below the stationary probabilities of the process.
This is easy since the rates are bounded. Let us define a process with the
same arrival rates and the service rates equal to φ̄, the maximum of φi for
all coordinates. It is clear that

πPF ({nx}↑) ≥ K1

(λ

φ̄

)n
,

for some constant K1 > 0.

We have

log
P
0(Xtn ≥ nx)

πPF ({nx}↑)
≤

∣

∣

∣
1−

P
0(Xtn ≥ nx)

πPF ({nx}↑)

∣

∣

∣

=
∣

∣

∣

P
0(Xtn ≥ nx)− πPF ({nx}↑)

πPF ({nx}↑)

∣

∣

∣

≤
K2e

−K3tn

πPF ({nx}↑)

≤
K2e

−K3tn

K1

(

λ
φ̄

)n =
K2

K1
exp{−K3 tn + log

( φ̄

λ

)

n}

where first inequality comes by log(x) ≤ |1−x| for all x > 0, and the second

one by the ergodicity of X. We take C > 0 such that K3 C > log
( φ̄
λ

)

.

Note that the same argument functions for process X̃ taking its respective
transition rates and stationary distribution. ✷

Change of measure and control of the martingale

To relate the distribution of X and X̃, we recall the Proposition B.6 513 of
Schwartz and Weiss [14]:

Proposition 7. Let Y i
t for i = 1, 2 two multidimensional birth-death process

in Z
N
+ with step directions ej , bounded step rates {qij(x)}x∈ZN

+
and law P i.
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Assume that for all x and j, q1j (x) = 0 if and only if q2j (x) = 0. Then we

can relate the distributions of the processes by dP 2 =MtdP
1 where

Mt = exp
(

∫ t

0

N
∑

j=1

log
(q2j (Xs−)

q1j (Xs−)

)

dN j
s −

∫ t

0

N
∑

j=1

(q2j (Xs)− q1j (Xs))ds
)

.

Here {N j} denote a family of counting processes describing the jumps of the
processes in the j-th direction and Mt is a càdlàg martingale.

In our case, φi(x), φ̃i(x) are both positive whenever xi > 0, and 0 oth-
erwise. All the rates of X and X̃ are bounded so we meet the conditions of
the previous Proposition and we can write that dP̃ (ω) =MtdP (ω), with

Mt = exp
(

∫ t

0

N
∑

j=1

1{Xs−>0} log
( φ̃j(Xs−)

φj(Xs−)

)

dN j
s

−

∫ t

0
1{Xs>0}(φ̃j(Xs)− φj(Xs))ds

)

,

=
N
∏

j=1

M j
t ,

and each of the M j is itself a martingale.

Remark 3.1. An important observation for the following is that the count-
ing processes N j can be seen as thinning (according to Xs) of some Poisson
processes N̂ j which are all independent.

We denote by Ms,t the last expression with the integral running from s
to t, so Mt =M0,t.

The change of measure formula is then:

E[1{X̃t=nx}] = E[Mt1{Xt=nx}]. (12)

We can now prove our main result.

Proof of Theorem 1:

We consider first the case where xi > 0 for all i = 1 . . . , N .
Define the sequence of stopping times:

τ1 = 0,

τi = inf{t > τi−1, X̃t ≥ nx}, for i even, i ≥ 2,

τi = inf{t > τi−1, X̃t < nx}, for i odd, i ≥ 3

16



Observe that if X̃t ≥ nx, then necessarily, there exists k even (a.s. finite)
such that τk ≤ t ≤ τk+1. Using the Markov property and the martingale
property, we then have

E0(M0,t1{X̃t≥nx}) = E0
∑

k even

1τk≤t<τk+1
Mt1{X̃t≥nx}

=
∑

k even

E01τk≤t<τk+1
M0,τkMτk ,t1{X̃t≥nx},

=
∑

k even

E0(E(1τk≤t<τk+1
M0,τkMτk ,t1{X̃t≥nx}|F̃τk ))

=
∑

k even

E0(M0,τkE(1τk≤t<τk+1
Mτk ,t1{X̃t≥nx}|X̃τk )),

with {F̃k} being the natural filtration of process X̃ .

We define

gk = sup
y
E(1τk≤t<τk+1

Mτk ,t1{X̃t≥nx}|X̃τk = y),

so
E0(Mt1{X̃t≥nx}) ≤

∑

k even

gk E
0(M0,τk) =

∑

k even

gk.

Realize that on {X̃t ≥ nx} ∩ {τk ≤ t < τk+1} (k even) we have {X̃s ≥
nx : s ∈ [τk, t]}. Recall that x is such that xi > 0 for all i. Using the
assumption on φ and φ̃, we get that asymptotically in n:

E0
(

1τk≤t<τk+1
1{X̃t≥nx} exp

(

∫ t

τk

N
∑

j=1

1{X
s−

>0} log(
φ̃j(Xs−)

φj(Xs−)
)dN j

s

−

∫ t

τk

N
∑

j=1

1{X
s−

>0}(φ̃j(Xs)− φj(Xs))ds
))

≤ E0
(

1τk≤t<τk+1
exp{

N
∑

j=1

C1

n
(N j

t + t)}1{X̃t≥nx}

)

,

≤ E0
(

1τk≤t<τk+1
exp{

C1N

n
(N̄t + t)}1{X̃t≥nx}

)

where N̄t is a Poisson process with parameter λ̄ equal as the maximum of
the parameters of the Poisson processes {N j

t }
N
j=1.
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Summing these inequalities and using Hölder’s inequality

E0(Mt1{X̃t≥nx}) ≤ exp{
C1Nt

n
}P0(X̃t ≥ nx)

p−1

p exp{λ̄t[e
C1pN

n − 1]}
1
p .

We now choose tn = C2n such the result of Lemma 3.1 holds, and the
sequence pn = n to obtain

1

n
log P0(Xtn ≥ nx) ≤

C1NC2

n
+
λ̄C2(exp(C1N)− 1)

n

+
n− 1

n2
log P0(X̃tn ≥ nx),

1

n
log(πPF ({nx}↑)) +

C3

n
exp(−C4 n) ≤ O(n−1) +

(n− 1

n

) 1

n
log(πmPF ({nx}↑))

+
C̃3(n − 1)

n2
exp(−C̃4 n).

So we have

1

n
log(πPF ({nx}↑)) ≤

1

n
log(πmPF ({nx}↑)) +O(n−1).

We also have the converse of last inequality using the same arguments in-
terchanging X and X̃.

Assume now that xi > 0 for i ∈ U , while xi = 0 for i ∈ S, where
U ,S ⊆ {1, ..., N}. If classes of U are independent of classes S, the result is
obvious. Hence suppose that there exists a coupling between classes of U
and S. We shall make use of the following fact:

Lemma 3.2. Given the definition of Proportional fairness, if class i ∈ S
and class j ∈ U are coupled, then there exist K > 0 such that if yi ≤ nǫ and
yj ≥ n for all j ∈ U , then:

|φi(y)− φ̃i(y)| ≤ Kǫ,

Proof.

If at least two classes are coupled, there exists a Lagrange multiplier
α > 0 and some positive constants ci > 0 and cj (with at least one j such
that cj > 0) such that

∂U1(y, ηi)

∂ηi
=
xi
ηi

= αci,
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∂U1(y, ηi)

∂ηj
=
xj
ηj

= αcj .

Combined with the fact that there exists c > 0 such that 0 < c ≤
∑N

j=1 ηj ≤
C, we obtain that

c̃
yi

yi +
∑

j∈Ui
yj

≤ φi(y) ≤ C̃
yi

yi +
∑

j∈Ui
yj
,

where Ui ⊂ U . Hence if yi ≤ nǫ and yj ≥ n for all j ∈ U

φi(y) ≤ C̃
ǫ n

1 + n
≤ K̃ǫ.

Using the control on the modified proportional fair allocation for xi ≥ 1:

φ̃i(y) ≤ exp
( 1

yi

)

φi(y) ≤ eφi(y) ≤ eK̃ǫ.

✷

Now we do a finer classification of indexes in S. Let {ǫn} be a sequence
such that ǫn goes to 0 as n grows, and {tn = C2n}. For each n, we define
the sets

S̄n = {i ∈ S : Xi(tn) ≥ nǫn}, Sn = {i ∈ S : Xi(tn) < nǫn}.

We look at the set of events:

A = {Xi(tn) ≥ nxi, i ∈ UR, Xi(tn) ≥ nǫn, i ∈ S̄n, Xi(tn) ≤ nǫn, i ∈ Sn}.

Recall that

| log
(φi(y)

φ̃i(y)

)

| ≤ 1,

and remark that on A ∈ A, using the previous lemma, the process counting
the number of downwards jumps in direction j ∈ S which are not common
for X and X̃ is dominated by a Poisson process N ǫn of intensity C5ǫn inde-
pendent of N j , j ∈ S.
Hence:

E01τk≤t<τk+1
1AMτk ,t

≤ E0
(

exp
(

∑

j∈U

C1

n
(N j

t + t) +
∑

j∈S̄n

C1

nǫn
(N j

t + t) +
∑

j∈Sn

[C5N
ǫn
t + (C6ǫn)t]

)

1τk≤t<τk+1
1A

)

.
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and,

E0(Mt1A) ≤ E0
(

exp
(

∑

j∈U

C1

n
(N j

t + t) +
∑

j∈S̄n

C1

nǫn
(N j

t + t) +
∑

j∈Sn

[C5N
ǫn
t + (C6ǫn)t]

)

1A

)

≤ E0
(

exp
(#UC1

n
(N̄t + t) +

#S̄nC1

nǫn
(N̄t + t) + #Sn[C5N

ǫn
t + C6ǫnt]

)

1A

)

≤ E0
(

exp{
C1pN

n
(N̄t + t)}

)
#U

pN
E0
(

exp{
C1pN

nǫn
(N̄t + t)}

)
#S̄n
pN

E0
(

exp{pN [C5N
ǫn
t + C6ǫn t]}

)

#Sn
pN

P
0(X̃t ≥ nx)

p−1

p , (13)

where we used Hölder’s inequality for 1 = #U
pN + #S̄n

pN +
#Sn

pN + p−1
p .

We now bound the speed of convergence, in the large deviations scale,
of each of the three first factors on the right-hand side of inequality (13).

Choosing tn = C2n, pn = C7 log n, ǫn = n−
1
2 , we have:

1

n
logE0

(

exp{
C1Npn
n

(N̄tn + tn)}
)

#U

Npn =
1

n
log
(

exp{
#UC1tn

n
} exp{λ̄tn[e

C1Npn
n − 1]}

#U

Npn

)

=
#UC1C2

n
+

#U λ̄tn
Nnpn

[e
C1Npn

n − 1]

=
#UC1C2

n
+

#U λ̄C2

NC7 log n
[e

C1C7N log n

n − 1]

= O(n−1).

We do similarly for the second factor:

1

n
logE0

(

exp{
C1Npn
ǫnn

(N̄tn + tn)}
)

#S̄n
Npn =

1

n
log
(

exp{
#S̄nC1tn
ǫnn

} exp{λ̄tn[e
C1Npn

ǫnn − 1]}
#S̄n
Npn

)

=
#S̄nC1C2

ǫnn
+

#S̄nλ̄tn
Nnpn

[e
C1Npn

ǫnn − 1]

=
#S̄nC1C2

ǫnn
+

#S̄nλ̄C2

NC7 log n
[e

C1C7N log n

ǫnn − 1]

= O((nǫn)
−1) = O(n−

1
2 ).
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Finally, for the third factor we have:

1

n
logE0

(

exp{Npn[C5N
ǫn
tn + C6ǫn tn]}

)

#Sn
Npn =

1

n
log
(

exp{C6#Snǫntn} exp{ǫntn[e
C5Npn − 1]}

#Sn
Npn

)

=
C6ǫn#Sntn

n
+

#Snǫn tn
Npnn

[eC5Npn − 1]

= C6C2#Snǫn +
C2#Snǫn
C7N log n

[eC5C7N logn − 1]

= C6C2#Snǫn +
C2#Snǫn[n

C5C7N − 1]

C7N log n

= O(ǫn) +O(
ǫnn

ǫ

log n
) = O(n−

1
2
+ǫ).

where we chose C7 > 0 small enough such that C7C5N < ǫ, for any given
ǫ > 0.

Then along the same lines as in the case x has all entries positive, it
follows

1

n
log(πPF ({nx}↑)) ≤

1

n
log(πmPF ({nx}↑)) +O(n−

1
2
+ǫ) ∀ǫ > 0.

✷

4 Large deviations for monotone networks with

general service time distributions

In this Section, we consider a processor sharing network (i.e. a set of pro-
cessor sharing nodes) with a proportionally fair bandwidth allocation. This

means that a flow is served at node i with speed
φPF
i (Xt)
Xi(t)

. We need the

notion of strong monotonicity introduced for instance in [5].

Definition 4. φ is strongly decreasing if the function ψi defined by ψi(x) =
φi(x)
xi

, if xi > 0 and 0 otherwise, is decreasing in xj for all j 6= i.

We assume in this Section that the network is monotone, i.e. that φ is
strongly increasing. This is verified on all tree topologies for instance and
for many wireless networks instances. In the proof of the following theorem,
we use the monotony of the network to obtain stochastic comparisons. We
recall the following Proposition:
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Proposition 8. Let Xt and X̃t two processes associated with the allocations

φ and φ̃. Suppose that φ is strongly decreasing, and that φi(x)
xi

≥ φ̃i(x)
xi

for
each x. Then for all t and for all service time distribution:

Xt ≺st X̃t.

Proof.

Remark that the processes Xt and X̃t are not Markov in general. We can
however easily construct a sample-path comparison between the processes.
Starting with ordered initial configuration of flows x ≺ y, the rates at which
each flow is served in the network verify:

φi(x)

xi
≥
φi(y)

yi
≥
φ̃i(y)

yi
.

Hence, a coupling can be constructed such that Xt ≺ X̃t almost surely.
✷

Recall that we define PPF as PPF (x) = maxη∈log(C)〈η, x〉, and that

log(φi(x)) = ∇PPF (x).

Now define the discrete potential functions Ψ and Ψ by the recursive
formula:

Ψ(x) = max
i=1...N

(Ψ(x− ei)− log(φi(x))),

Ψ(x) = min
i=1...N

{Ψ(x− ei)− log(φi(x))}.

We call supPF and infPF the reversible allocations associated with the dis-
crete potentials Ψ and Ψ and define the rate function R(x) = 〈log(λ), x〉 −
P (x). We can now state the main result of this Section:

Theorem 4. Suppose the network monotone, i.e. φ is strongly monotone.
If λ is in the interior of the capacity set C, then the allocations Proportional
fairness, supPF and infPF as well as Balanced fairness are stable and admit
the same large deviation characteristics with rate function R.
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Proof.

Given the definitions of the discrete potentials Ψ and Ψ, observe that
there exists two paths P(x) and P(x) from 0 to x such that:

Ψ(x) = −
∑

k:(ik,zk)∈P(x)

log(φik(zk)),

Ψ(x) = −
∑

k:(ik,zk)∈P(x)

log(φik(zk)),

where with a slight abuse of notations the indexes i(z) correspond to the
indexes defined by the specific paths P(x) and P(x).

Let X and X the process associated with the balance function Ψ and
Ψ. Recall now that P is the potential associated with the proportional fair
allocation, and since we can define this potential up to an additive constant,
let us choose it such that P (0) = 0. So, we can write that for any path
P(x) going from 0 to x, P (x) = P (x) − P (0) =

∑

k:(ik,zk)∈P(x) DikP (zk).

Choosing P(x) = P̄(x):

|Ψ(nx)− P (nx)| = |
∑

k:(ik,zk)∈P̄(nx)

DikP (zk)− log(φik(zk)|,

≤
∑

k:(ik,zk)∈P̄(nx)

|DikP (zk)− log(φik(zk)|. (14)

Recalling that for xi ≥ 1:

|P (x)− P (x− ei)− log(φi(x))| ≤
1

xi
,

we can bound (14) by:

|Ψ(nx)− P (nx)| ≤
∑

(ik ,zk)∈P̄(nx)

1

zik
,

≤ C

n
∑

i=1

1

i
≤ C ′ log(n). (15)

Define the invariant measures (not necessarily stationary) π and π of the
processes X ≺ X ≺ X. Since we have constructed these processes from a
discrete potential, we have that (see Proposition 2):

π(x) = λx exp(−Ψ(x)),
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π(x) = λx exp(−Ψ(x)).

Now observe that:

1

n
log(π(nx)) = 〈log(λ), x〉 −

1

n
Ψ(nx),

1

n
log(π(nx)) = 〈log(λ), x〉 −

1

n
Ψ(nx).

Using (15) we obtain that

1

n
log(π(nx)) =

1

n
〈log(λ), nx〉 −

1

n
P (nx) +O(n−1),

1

n
log(π(nx)) =

1

n
〈log(λ), nx〉 −

1

n
P (nx) +O(n−1),

and hence, by the 1-homogeneity of R,

lim
n→∞

1

n
log(π(nx)) = lim

n→∞

1

n
log(π(nx)) = R(x).

Assume λ is in the interior of the capacity set C. Using the definition of
P , this implies that there exists a > 0 such that

R(x) = 〈log(λ), x〉 − P (x) = 〈log(λ)− log(φ(x)), x〉 ≤ −a|x|,

which implies that the invariant measure π and π are summable. This
hence proves that the stationary distributions of both processes X and X
are well defined for Markovian dynamics while the reversibility condition
(i.e. the balance property of the service rates) implies the insensitivity of
the stationary distribution to the service time distribution [3, 16]. Hence,
for any service time distribution, the networks with allocation infPF and
supPF admit the stationary distribution C1π and C2π where C1 and C2 are
normalizing constants. Now using the assumption of monotonicity of the
network, we obtain that:

P (|X | ≥ n) ≥ P (|X| ≥ n) ≥ P (|X | ≥ n), (16)

and by Cramér’s theorem we conclude:

lim
n→∞

1

n
log P (|X| ≥ n) = lim

n→∞

1

n
log P (|X| = n).

It has further been proven in [10] that mPF and BF have R(x) as rate
functions.

✷
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5 Conclusion

We proved that the stationary measure of the number of flows in progress
in a bandwidth sharing network functioning under the proportional fair al-
location shares the same large deviations characteristics with the stationary
meausure of the number of flows in progress of the same network under the
balanced fair allocation. This formalizes the idea that in long excursions
proportional fair allocation behaves similarly to the most efficient insensi-
tive allocation.
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