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Chapter

Human and Veterinary Vaccines 
against Pathogenic Escherichia coli
Mariano Larzábal, Angel A. Cataldi and Daniel A. Vilte

Abstract

Pathogenic Escherichia coli constitute an important current problem of public 
health and animal production. Efforts have been made to fight the infections caused 
by these bacteria, and in this chapter, we present the progress made up to date in 
the vaccines generated for this purpose. Different vaccines have been tested against 
the pathotypes responsible for human diseases such as diarrhea and urinary infec-
tions. Also, the poultry market has deserved the effort of the researchers to obtain 
a product that fights the E. coli strains that cause diseases in them. Finally, advances 
are also presented for the zoonotic enterohemorrhagic E. coli (EHEC), which are a 
different problem due to their low importance as a disease factor in cattle, but they 
are a very important pathogen in humans. In several of these fields, authorized 
products have been developed and are currently being marketed.
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1. Introduction

This chapter deals with the current developments on human and veterinary 
vaccines against pathogenic Escherichia coli of following pathotypes: enterohemor-
rhagic E. coli (EHEC) and Shiga toxin producing E. coli (STEC), enterotoxigenic 
E. coli (ETEC), extraintestinal pathogenic E. coli (ExPEC), in particular uropatho-
genic E. coli (UPEC), and avian pathogenic E. coli (APEC). Other pathotypes 
were not considered because of a lesser development related to vaccines. In some 
cases, only vaccines tested in the target species (human, cattle, chicken, etc.) were 
considered due to the high abundance of publications where experimental vaccines 
were tested on rodent or on other animal models.

2. Vaccines against EHEC/STEC

2.1 Vaccines against EHEC/STEC for humans

Different factors make the development of a vaccine difficult to prevent EHEC/
STEC infection and hemolytic uremic syndrome (HUS) in humans. The lack of 
knowledge about what type of immune response may confer protection, and the 
multiplicity of infection routes comprising bovine-derived food products, leafy 
green vegetables, pool or drinking water, person-to-person transmission [1], and 
the lack of reliable animal models complicate the advance in this field.
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Szu and Ahmed developed polysaccharide conjugate vaccines composed of 
detoxified lipopolysaccharide (LPS) from E. coli O157, covalently linked to a carrier 
protein and a recombinant exoprotein of Pseudomonas aeruginosa (rEPA) that has 
been used for conjugation of polysaccharides and proteins [2]. Phase I and Phase II 
clinical studies were conducted in adults and in children ranging from 2 to 5 years 
old, respectively [3]. The E. coli O157 conjugate vaccines were safe for all ages, and 
a positive humoral IgG response with bactericidal activity was found in both age 
populations. However, there were certain limitations for using LPS-based vaccines. 
For example, LPS failed to induce a long-lasting humoral immune response espe-
cially in children, and STEC non-O157 serotypes were not covered. In one attempt 
to compensate for this shortcoming, the same group conjugated O-polysaccharide 
with the B subunit of Shiga toxin (Stx1) [2]. However, this formulation did not 
neutralize Shiga toxin (Stx2), the toxin type most frequently found in severe HUS 
cases.

The main virulence factor of STEC/EHEC is the Shiga toxin (Stx); in conse-
quence, it is an optimal target to elicit neutralizing antibodies. Subsequently, vari-
ous Stx-based vaccine approaches have been attempted. A vaccine consisting of a 
poly-N-acetylglucosamine (PNAG, a surface polysaccharide of STEC) conjugated to 
the B subunit of Stx1 was produced. The antibodies raised in rabbit neutralized Stx1 
potently, but modestly Stx2. Passive transfer of antibodies indicates that anti-PNAG 
could confer protection, but the cross-reacting neutralization of Stx2 is limited [4].

To date, no vaccines have been approved for human use, exposing a void in 
both treatment and prevention of EHEC O157:H7 infections. Vaccine research and 
development efforts have oriented to cattle as the main reservoir.

2.2 Vaccines against EHEC for cattle

Up to date, different vaccine compositions have been tested to reduce the coloni-
zation of the bovine and the environmental dissemination of EHEC O157:H7. These 
vaccines have different immunogenic, adjuvants, inoculation pathways, number of 
doses, and of course differ in their development and evaluation level in experimen-
tal and natural conditions. In this occasion, we decided to consider the proposals 
whose capacity of protection was evaluated in cattle.

The key factor for achieving a protective immune response in the animal is 
the immunogen. Looking for the available literature, we can observe that there 
are several candidates, mainly colonization factors, which we can classify in: type 
III secretion system (T3SS) components, siderophore receptors and porin pro-
teins, bacterins, whole-cell envelopes, flagellin, Shiga toxins toxoids, attenuated 
Salmonella, and combinations between more than one of these.

2.2.1 Vaccines based on T3SS components

The components of the T3SS were the first to be used as vaccines, because it was 
already known for the essential role that proteins such as intimin, Tir, EspA, and 
EspB play in the adhesion of EHEC O157:H7 to the host cell [5–7]. In 2004, Potter 
et al. [8] tested a vaccine composed by a protein supernatant of EHEC O157:H7 
(containing various Esps and Tir) with the adjuvant VSA3, in animals that were 
later challenged with E. coli O157:H7, as well as in animals in a clinical trial. They 
observed significant increase in serum antibodies against proteins of T3SS and O157 
lipopolysaccharide. There was also a decrease in the number of bacteria in feces, in 
the number of shedder animals, and in the duration of excretion in the vaccinated 
group. The clinical trial showed a reduced prevalence of EHEC O157:H7 in typical 
feedlot conditions when cattle were vaccinated. In 2005, Van Donkersgoed et al. [9] 
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published a field trial in nine feedlots using a vaccine similar to Potter et al. [8], 
and they did not observe a significant association between vaccination and pen 
prevalence of fecal E. coli O157:H7. Probably, the differences in the preparation of 
the secreted proteins, in this case with formalin, a different adjuvant and a different 
vaccination strategy, could cause the failure. Later, this same preparation, without 
formalin treatment and with VSA3 adjuvant, was standardized and analyzed in 
studies in commercial feedlots of beef cattle with a two-dose regimen. The authors 
evaluated the probability to detect the microorganism from terminal rectal mucosa 
as a measure of gut colonization [10] and other large-scale clinical trials on com-
mercially fed cattle to test the efficacy of the regimen to reduce the environmental 
transmission of EHEC O157:H7 [11]. They concluded that the two-dose vaccine 
regimen was effective to reduce the probability for E. coli O157:H7 colonization of 
the terminal rectum of cattle at slaughter and reduces the probability for environ-
mental transmission of the bacteria within commercial cattle feeding systems [12]. 
This evidence was accompanied by the generation of a commercial product known 
as Econiche(TM), which was developed by the Canadian company Bioniche Life 
Sciences. The vaccine was approved in Canada and the United Kingdom [13, 14] and 
had a pending conditional license in the U.S. [15], but in 2014, the Bioniche Animal 
Health business was purchased by Vèntoquinol SA [16], and the production of the 
vaccine was discontinued.

On the other hand, there were other groups that evaluated recombinant factor 
of the T3SS in various combinations. Van Diemen et al. [17] evaluated the carboxy-
terminal 280 amino acids of intimin γ and β alone or combined with the portions 
of Efa-1 (EHEC factor for adherence). Immunized calves induced antigen-specific 
serum IgG and, in some cases, salivary IgA responses, but did not reduce the 
magnitude or duration of excretion of EHEC O26:H- (intimin β) or EHEC O157:H7 
(intimin γ) after an experimental challenge. Similarly, immunization of calves with 
the truncated Efa-1 protein did not protect against intestinal colonization by EHEC 
O157:H7.

The vaccination of calves with recombinant EspA by intramuscular and intra-
nasal routes induced high titers of antigen-specific IgG and salivary IgA, but these 
responses did not protect calves from intestinal colonization after a challenge with 
E. coli O157:H7 [18].

In 2010, McNeilly et al. [19] assessed whether three purified proteins, intimin 
(C-terminal 531 amino acids), EspA, and Tir, could reduce shedding of EHEC 
O157:H7. Furthermore, they evaluated if the inclusion of purified H7 flagellin to the 
vaccine could modify the vaccination efficacy. They used the intramuscular route 
and the rectal submucosal route and obtained a significant increased response in 
serum anti-EspA, anti-intimin, and anti-Tir IgG. When H7 flagellin was present, 
mucosal IgA and IgG anti-H7 was generated. After experimental infection with 
EHEC O157:H7, cattle showed that immunization with these purified antigens 
could significantly reduce the total levels of bacterial excretion and that the addi-
tion of H7 flagellin can improve this effect. More recently [20], this group opti-
mized the formulation of this vaccine and concluded that the immunization with 
a combination of EspA, intimin, and H7 flagellin causes a significant reduction 
in shedding of EHEC O157:H7, more enough to impact on transmission between 
animals.

Vilte et al. [21] evaluated a vaccine composed by the C-terminal 280 amino acids 
of intimin γ and EspB. The intramuscular immunization elicited significantly high 
levels of serum IgG antibodies. Antigen-specific IgA and IgG were also induced in 
saliva, but only the IgA response was significant. Following experimental challenge 
with E. coli O157:H7, a significant reduction in bacterial shedding, was observed in 
vaccinated calves.
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2.2.2 Vaccines based on siderophor receptors (SRP) and porins proteins

This proposal is based on reducing the ability of the bacterium to obtain iron 
from the environment to decrease the level of infection [22]. Thornton et al. [23] 
assessed the efficacy of an SRP-composed vaccine (Epitopix LLC) to reduce the 
prevalence and fecal excretion of EHEC O157:H7 in calves after an experimental 
infection. A significant response in serum anti-SRP antibody titers was detected, 
and they concluded that the vaccination tended to decrease the fecal prevalence 
and concentration of EHEC O157:H7. In other study [24], this group evaluated the 
vaccine to control the burden of E. coli O157:H7 in feedlot cattle in field conditions. 
Vaccination with SRP was associated with the reduction of fecal concentration of 
EHEC O157:H7 and suggested to reduce the burden of these bacteria on cattle. In 
a third assay, the vaccine was evaluated in feedlot cattle naturally shedding E. coli 
O157. There were two different inoculum volumes of vaccine, 2 and 3 ml. They 
concluded that SRP vaccine at the 3 ml dose reduced prevalence of E. coli O157. 
These results led to the commercial elaboration of a product known as E. coli bacte-
rial extract vaccine with SRP® technology [25] and manufactured by Pfizer Animal 
Health (Now Zoetis Services LLC). It has conditional license of the U.S. Department 
of Agriculture.

2.2.3 Vaccines based on bacterins and bacterial envelopes

To evaluate the protection conferred by a bacterin of EHEC O157:H7, van 
Diemen et al. [17] prepared a formalin-inactivated bacterin from EDL933nalR 
strain that was inoculated in a combined schedule by intramuscular (with Alu-Oil) 
and intranasal (mixed with cholera toxin B subunit) routes. It elicited significant 
IgG responses against intimin and LPS from E. coli O157:H7, but did not confer 
protection against intestinal colonization by EHEC O157:H7 after challenge.

In 2011, Sharma et al. [26] evaluated three heat-inactivated bacterins to reduce 
the fecal shedding of E. coli O157:H7. They used a hha + strain of E. coli O157:H7 
and constructed a hha and hha sepB deletion mutants. These deletions enhance the 
expression and intracellular accumulation of T3SS proteins, respectively. There 
was a significant increase in IgG against LEE-encoded proteins in calves vaccinated 
with hha or hha sepB mutant bacterins compared to wild strain, and a reduction in 
the numbers of animals shedding EHEC O157:H7 and in the duration of the fecal 
shedding of bacteria in feces was also observed.

An alternative to bacterins was assayed by Vilte et al. [27] by means of empty 
envelopes of EHEC O157:H7 known as bacterial ghosts (BGs). These envelopes 
retain all surface components in a nondenatured form. Animals were vaccinated 
with BGs (without adjuvants) by subcutaneous route and elicited significant levels 
of specific IgG in serum. Following oral challenge with E. coli O157:H7, a significant 
reduction in both the duration and total bacterial shedding was observed in vac-
cinated calves.

2.2.4 Vaccines based on flagellin

In 2008, McNeilly et al. [28] assayed a systemic (intramuscular) and mucosal 
(intrarectal) immunization with purified H7 flagellin to evaluate its effects on the 
colonization of EHEC O157:H7 after a challenge. The vaccination induced high 
titers of anti-H7 IgG and IgA antibodies in both serum and nasal secretions by 
intramuscular injection, but the intrarectal route failed in generating any response 
against H7. With respect to colonization of EHEC O157:H7, they concluded that 
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immunization reduced colonization rates and delayed peak shedding, but did not 
affect total bacterial fecal shedding.

2.2.5 Vaccines based on attenuated Salmonella

In 2010, Khare et al. [29] assessed a live attenuated recombinant Salmonella 
enterica serovar Dublin aroA expressing intimin. The recombinant Salmonella was 
inoculated three times by oral route, but this did not produce a significant increase 
of intimin-specific IgA in serum and feces. Interestingly, they observed a transient 
clearance of E. coli O157:H7 in feces from vaccinated calves that subsequently 
reduced colonization and shedding of bacteria after an experimental challenge.

2.2.6 Vaccines based on Shiga toxins

An attractive target to research in cattle constitutes the Shiga toxins (Stx), the 
more important virulence factor for human health. In fact, Stx modulates cellular 
immune responses in cattle [30–32]. For that, in 2018, Schmidt et al. [33] evaluated 
the response, in a calf cohort, to immunization with recombinant Shiga toxoids 
genetically inactivated (rStx1MUT/rStx2MUT). Calves were passively (colostrum 
from immunized cows) and actively (intramuscularly) vaccinated, and this gener-
ated a significant difference in serum antibody titers compared with a control 
group. There was no EHEC O157:H7 challenge, but the natural presence of fecal 
STEC was monitored, and they observed less fecal positive (by PCR) samples from 
calves vaccinated than those from control animals. It is interesting because this 
investigation was not restricted to a determined serotype of EHEC.

In other study, Martorelli et al. [34] combined recombinant intimin and EspB 
with the B subunit of Stx2 fused to Brucella lumazine synthase (BLS-Stx2B) in 
order to evaluate whether the presence of Stx was able to improve the effect of the 
vaccine on fecal shedding of EHEC O157:H7 following an experimental inocula-
tion. The immunization generates antibodies against Stx2B in serum and intestinal 
mucosa, but a superior level of protection compared with the use of intimin and 
EspB alone was not observed.

As was seen, there were and there are numerous efforts looking for a solution 
to reduce the contamination of cattle and its environment for EHEC O157:H7 and 
other dangerous serotypes too. Even two commercial products have been achieved, 
one of which has unfortunately been removed from the market. However, the fact 
that this pathogen does not constitute a direct problem for farmers, and because 
EHEC are not a cause of severe illness in cattle, makes our work more challenging. 
We have not only to find an adequate immunogen or formulation or doses that have 
a good response, but it must also be attractive enough for farmers to take it as a pos-
sible and desirable alternative to collaborate with one health perspective.

3. Vaccines against ETEC

ETEC is one of the leading bacteria that causes 200 million diarrheal cases and 
between 170,000 and 380,000 deaths annually in the world [35, 36]. Children 
under 5 years of age in developing countries are the most affected by ETEC infec-
tions and 42,000 deaths have been reported only in 2013 [37]. As well, ETEC 
infections are the main cause of diarrhea reported in persons who travel to Latin 
America, Africa, and Asia [38], where approximately 10 million traveler’s diarrhea 
cases have been reported worldwide per year [39, 40].
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There have been several attempts to obtain a vaccine against ETEC. The greatest 
efforts have been focused on virulence factors such as fimbriae called colonization 
factor antigens (CFA) and colonization surface antigens (CS) and two enterotoxins, 
heat-labile (LT) and heat-stable (ST). These virulence factors are extremely impor-
tant during the pathogenesis of ETEC. CFA promote the attachment to enterocytes 
in the small intestine and are critical for colonization. After the attachment, ETEC 
releases LT and/or ST enterotoxins that disrupt fluid and cause electrolyte homeo-
stasis in small intestinal epithelial cells [41]. Therefore, a vaccine directed against 
CFA could prevent the adherence and intestinal colonization, avoiding the subse-
quent release of enterotoxins by ETEC. Although 23 immunologically distinct CFA 
adhesins have been identified, its high variation present in the different circulating 
strains worldwide has prevented the development of a protective vaccine [42–44]. 
Studies of killed whole-cell vaccines demonstrate the development of colonization 
factor antigen I (CFA/I) and LT IgA antibodies but only were protective against 
homologous strains [45, 46]. To date, isolated ETEC can be divided into 42 different 
clonal groups with a singular combination of colonization factors (CFs) and toxins 
[47]. Alternative approaches of CS targets have been evaluated. CFA/I fimbria, CS3, 
CS5, and CS6 are immunologically related to the more prevalent CFs covering a 
50–80% of the clinical ETEC isolates. ACE527 and rCTB-CF are two whole-cell vac-
cines that include a wide repertory of CFs. Five CFA adhesins (CFA/I, CS2, CS3, CS5, 
and CS6), one CFA subunit (CS1), and the LT-B subunit compose the ACE527 vac-
cine, represented by three live attenuated ETEC strains [48, 49]. The orally inocu-
lated ACE527 protects challenged adults with homologous strains [49, 50]; however, 
it had adverse effects on volunteers [51]. The rCTB-CF vaccine is composed by five 
formalin-killed ETEC strains, which presents CFA/I, CS1, CS2, CS3, CS4, and CS5 
adhesins supplemented with recombinant B subunit of the cholera toxin (rCTB) [52, 
53]. The immune response induced by rCTB-CF vaccine showed to reduce the risk of 
developing diarrhea in adult travelers [54], but presented little protection and some 
adverse effects in young children [55, 56]. Despite the improvements made to rCTB-
CF and ACE527 [50, 51, 57], these vaccines fail to protect against some ETEC strains 
since they do not contain the heat-stable class a(STa) or LT-A antigens.

Neutralizing the effects of these enterotoxins is considered a highly effective 
approach for preventing ETEC diarrhea. However, the development of vac-
cines from toxoids has not presented satisfactory results either. Both LT and ST 
are potent toxins; therefore, no toxin can be used directly as a vaccine antigen. 
However, detoxified derivatives of LT including the B subunit (not toxic LT-B) 
have demonstrated immunological properties even as an adjuvant in many animal 
models [58–60]. The A subunit is also included in studies of ETEC LT (LT-A) 
vaccine. The purpose of this incorporation is to induce a mostly protective immune 
response [61, 62]. On the other hand, STa unlike LT is poorly immunogenic due to 
its small size.

Recent progress in toxoids antigens enhances the potential for developing an 
effective and safe subunit vaccine against ETEC diarrhea. A skin path vaccine 
containing LT toxin was applied to humans. Immunized adults developed strong 
IgG and IgA antibody responses to LT [63, 64], which reduced the incidence 
of moderate-to-severe diarrhea caused by ETEC in healthy adults traveling to 
Mexico or Guatemala [65]. A secondary study demonstrated that the LT patch 
provided protection against LT + ETEC diarrhea but provided no protection against 
STa + ETEC [66]. Therefore, the use of the LT patch alone cannot be considered a 
suitable approach for vaccinating against ETEC [67].

Subunit vaccine from a mutant LT toxin (mLT) has been proposed. Although 
it is safer than LT, up to now, mLT has not demonstrated a wide efficacy in the 
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protection against diarrhea caused by ETEC [66]. However, it has been explored 
mainly as a vaccine adjuvant. mLT demonstrated a higher protective efficacy of vac-
cine candidates for whole cell ETEC and a CFA + candidate adhesin subunit vaccine 
[68]. Therefore, its function as adjuvant favors a greater response of the candidate 
as well as allows the generation of anti-LT response.

Most of the ETEC strains isolated from patients with diarrhea are STa+ alone or 
LT+. The low immunogenicity and the high need to generate an immune response 
against STa led the researcher to develop mLT-STa fusions. Results of mouse 
immunization studies showed that LT-STaN12S toxoid fusion induces neutralizing 
anti-STa antibodies [69]. The high titer in mice presented against both toxoids 
makes it a promising antitoxin subunit vaccine.

Alternative adhesion tip of the CfaE and multiepitope fusion antigen (MEFA) 
were used as a conservative antigen for the development of a broadly protective 
ETEC antiadhesin vaccine [70]. Nonhuman primate immunized with CfaE showed 
protection against a CFA/I ETEC challenge [71]. However, the coadministration 
of CfaE and mLT did not protect against ETEC strains expressing Sta. MEFA is 
represented by epitopes from the seven most important CFA adhesins expressed by 
ETEC strains which was strongly immunogenic inducing high titers of antibodies 
specific to all adhesins [72]. This combination is an efficient means of developing a 
vaccine for antigenically heterogeneous pathogens like ETEC.

Novel antigens, such as the glycoprotein EtpA and the outer membrane adhesin 
EaeH, have been identified by genome sequencing [73]. Antibodies against EtpA 
demonstrated a significant reduction in the colonization of mice by the challenge 
ETEC strain (H10407) [74]. The identification of new antigens could be the way to 
incorporate epitopes that allow a greater range of protection against the different 
ETEC strains. These new epitopes, incorporated into the candidate vaccines that 
contain the most conserved and representative virulence factors of ETEC, could 
enhance the protection against diarrhea caused by ETEC.

ETEC is the most common cause of E. coli diarrhea in farm animals, and in 
the first four days of calves, life can be responsible for severe diarrhea with high 
mortality [75]. The strains are characterized by the surface adhesins fimbriae being 
F5, F7, and F17, more frequently involved in diarrhea in calves [76–79]. In addition, 
CS31 adhesin is prevalent on isolates from calves with E. coli septicemia [80, 81]. 
In regards to toxins, STa is the only toxin associated with disease in neonatal calves 
infected with ETEC [82], rarely LT are identified [76, 83]. Killed ETEC possessing 
F5-fimbriae or purified F5 fimbriae are contained in the commercial vaccines for 
calves. These vaccines do not contain F17, CS31, or STa; however, the impact of 
their absence is unknown. The maternal vaccination with these vaccines protects 
the neonatal ETEC infections by passive colostral and lactogenic immunity [84, 85]. 
Once the lactation stage is over, the cattle being more resistant [86]. In this way, 
vaccination dams are an effective strategy to prevent ETEC diarrhea in neonates 
calves [87, 88].

4. Vaccines against ExPEC

ExPEC causes a vast majority of urinary tract infections (UTIs), mostly in 
women with highly common recurrent episodes. ExPEC pathotypes causing UTI are 
called uropathogenic E. coli (UPEC). A recent review of Nesta and Pizza describes 
progresses in UPEC vaccines [89]. Most of the vaccines are aimed to stimulate the 
mucosal immune system. Initial attempts to the development of vaccines against 
ExPEC infections have been unsuccessful [90, 91]. The immunogen in these vaccine 
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was single-purified virulence factors such as hemolysin [92], pilin, or the O-specific 
polysaccharide LPS, conjugated to either Pseudomonas aeruginosa endotoxin A (TA) 
or cholera toxin (CT) as carrier proteins [93, 94]. Because of high heterogeneity of 
O-specific polysaccharide, the design of a polysaccharide vaccine able to prevent 
ExPEC infections has been extremely challenging [95]. The O18-polysaccharide 
conjugated to either cholera toxin or to P. aeruginosa exoprotein A (EPA) was safe 
and able to induce antibodies with opsonophagocytic killing activity (OPK) in 
human volunteers. IgG purified from immunized individuals were protective in 
mice in an E. coli O18 challenge sepsis model [93]. However, a further test with a 
12-valent O-antigen showed difficulties of cross protection.

Three vaccines against UTI reached market status in different countries. 
Vaccines based on whole or lysed fractions of inactivated E. coli have been evalu-
ated in human clinical trials and have been so far the most effective in inducing 
some degree of protection in patients with recurrent urinary tract infections. The 
sublingual vaccine Uromune, an inactivated whole preparation of E. coli, Klebsiella 
pneumoniae, Proteus vulgaris, and Enterococcus faecalis, evaluated as prophylactic 
treatment in a multicenter retrospective observational study, demonstrated a 
certain degree of clinical benefit in terms of reduced recurrence rate in women 
suffering recurrent UTI [96].

The Solco Urovac vaccine, a vaginal suppository polymicrobial vaccine consist-
ing of 10 inactivated uropathogenic bacteria, including six E. coli serotypes, Proteus 
mirabilis, Morganella morganii, K. pneumoniae, and E. faecalis strains, showed a 
minimal efficacy in Phase I and two Phase II trials in women suffering of recurrent 
UTIs [97–99]. However, in two additional clinical studies, the vaginal mucosal vac-
cine given for a 14-week period increased the time to reinfection in UTI susceptible 
women, representing a valuable alternative to the antibiotic-based prophylactic 
regimens [98, 100].

One of the first vaccine tested was based on E. coli extract was presented by Frey 
et al. [101]. This development lead to Uro-Vaxom, a commercial vaccine that was 
assessed in larger clinical trials a few years later [102] leading to the recommenda-
tion of Uro-Vaxom for prophylactic treatment of patients with recurrent urinary 
tract infections. OM-89/Uro-Vaxom vaccine demonstrated modest protection in 
women [103]. However, in a more recent trial on 451 female subjects, the lyophi-
lized lysate of 18 E. coli strains, OM-89/Uro-Vaxom, manufactured using a modified 
lytic process, based on alkaline chemical lysis and autolysis, failed to show a preven-
tive effect on recurrent uncomplicated UTIs [104].

Other vaccines reached clinical trial status. The development of ExPEC4V, a 
novel tetravalent bioconjugate vaccine developed by Glaxo Smith Kline against 
extraintestinal pathogenic E. coli, started by an epidemiological screening of the 
prevalent E. coli serotypes causing infection in women in Switzerland, Germany, 
and the USA. The authors selected the O antigens from LPS from the prevalent 
serotypes. It was evaluated for safety, immunogenicity, and clinical efficacy in 
placebo-controlled phase Ib trial [105]. By glycoengineering, the O antigens were 
conjugated in E. coli. The vaccine was well tolerated and elicited a robust antibody 
response in patients suffering from recurrent UTIs. Data indicated a reduced 
incidence of UTIs after vaccination, especially for higher bacterial loads. Clinical 
trial was performed in a population of healthy women with a history of recurrent 
UTI allowed for an additional, preliminary assessment of the candidate’s clinical 
efficacy. In a multicenter Phase Ib clinical trial, 92 healthy adult women with a his-
tory of recurrent UTI received a single injection of either intramuscular ExPEC4V 
or placebo. The authors concluded that the tetravalent E. coli bioconjugate vaccine 
candidate was well tolerated and elicited functional antibody responses against all 
vaccine serotypes [106].
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Mobley et al. investigated four defined antigens (IreA, Hma, IutA, and FyuA) 
associated with iron uptake, as an immunogen to prevent UTI [107]. The adjuvant 
used was cholera toxin. They tested the formulation in mice and observed antigen-
specific IgG response. High antibody titers correlate with low colony forming units 
(CFUs) of UPEC following transurethral challenge of vaccinated mice. In addition, 
sera from women with and without histories of UTI have been tested for antibody 
levels to vaccine antigens. They indicated that iron uptake components are a suitable 
target for vaccination against UTI. Later, it was observed that the iron receptor 
FyuA is present in 77% and it is highly conserved among UPEC isolates [108]. FyuA 
immunization of mice reduced the colonization of UPEC in bladder and kidney. 
Adhesins and bacterial appendages as flagella have a long history as immunogenic 
single antigens component of experimental vaccines against UTI. FliC (or pilin) 
and FimH (from type 1 fimbriae) were administered to mice as a fusion or mixed 
and elicited higher levels of serum and mucosal. Different combinations and 
adjuvants elicited good protection against UPEC [109].

5. Vaccines against APEC

APEC that belongs to the ExPEC pathotype is a major causative agent of coli-
bacillosis, aerosacculitis, polyserositis, septicaemia, and other diseases in chickens, 
turkeys, and other avian species. It is responsible for significant loss for the poultry 
industry. Main APEC serogroups associated with disease are O1, O2, and O78.

An ideal vaccine for poultry has to be able to induce cross protection against various 
APEC serogroups capable of causing disease. To be deliverable via a massive immuniza-
tion method such as administering the antigens in drinking water or feed, in ovo and 
spray, in order to immunize thousands of broiler chickens, must be used. And, the vac-
cine has to be administered at a young age so that the birds develop a protective immune 
response by the age of 21 days when they are most vulnerable to APEC infection [110].

Inactivated bacterin vaccines or autovaccines of APEC are frequently used in 
the field, but their protective efficacy was not demonstrated. Landman and van Eck 
studied the protection conferred in laying hens against E. coli peritonitis syndrome 
(EPS) disease. Vaccines were formulated either as aqueous suspension or as water-
in-oil induced protection against homologous challenge, while protection against 
heterologous challenge was inconclusive. However, other study [111] indicated no 
protection against a challenge with homologous or heterologous strain, in spite of a 
raise of IgY titer in vaccinated animals.

A recombinant Salmonella enterica serovar Typhimurium strains expressing the 
heterologous O polysaccharide of E. coli O1 and O2 was used to immunize chickens 
and elicited production of serum IgG and mucosal sIgA antibodies against the LPS 
of APEC O1 and O2. The immune response induced resulted protective against a 
lethal dose of both APEC serogroup strains [112]. An attenuated Salmonella (Δlon, 
ΔcpxR, and ΔasdA16) delivery system containing the genes encoding P-fimbriae 
(papA and papG), aerobactin receptor (iutA), and CS31A surface antigen (clpG) 
of APEC was constructed, and its potential as a vaccine candidate against APEC 
infection in chickens was evaluated. It induced an immune response and an effec-
tive protection against colibacillosis caused by APEC [113].

Mixed recombinant APEC surface proteins EtsC (a type I secretion system 
protein), the porins OmpA and OmpT, and TraT of APEC were used as antigens 
to immunize chickens seeking for a broad protection against several serotypes of 
APEC. The experimental vaccine elicited specific IgY and the induction of diverse 
cytokines in spleen and resulted in a reduction of lesion scores in different organs 
and a reduction of bacterial loads in blood and organs [114].
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A commercial vaccine (Gall N tect CBL) against avian colibacillosis for layer 
hens is produced and marketed in Japan since 2012. It consists of a live attenuated 
O78 APEC with a Δcrp deletion. A big trial in layer hens [115, 116] demonstrated 
that it prevents avian colibacillosis infection and improves productivity. Live attenu-
ated APEC strains were used as experimental vaccines for various research groups 
in colibacillosis fields. Strains deleted in aroA [117], carAB [118], and galE [119] 
were tested. Another commercial vaccine, based in subunit components, is Nobilis 
(MSD) composed by F11-and FT-antigens of APEC in a water-in-oil emulsion. No 
trials have reported by the company, but Gregersen et al. in 2010 [120] observed that 
in a controlled trial the vaccine application did not affect the overall mortality rate 
between the vaccinated and control flocks, but mortality due to E. coli infections 
made up only 8.2% in vaccinated birds compared with 24.6% in unvaccinated birds. 
Also, differences in average first week mortality, average weight at 38 days, and food 
conversion rate among vaccinated and control birds, respectively, were not found.

6. Conclusion

A high interest in the development of vaccines against pathogenic E. coli occurred 
in recent years. This interest is related both to pathotypes affecting human and ani-
mal health. Few vaccines have been licensed and reached market and public health 
status. There is an intrinsic difficulty in directing the immune response to a bacterial 
species that is commonly part of the animal microbiota. The state of the art consists 
in identifying antigenic components that are exclusive of pathogenic subtypes.

In spite of these difficulties, science has gained a relevant knowledge of viru-
lence, pathogenicity, genomics, and epidemiology of pathogenic E. coli, and with no 
doubt this will benefit vaccinology concerning pathogenic E. coli.
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