
ORIGINAL RESEARCH
published: 11 October 2021

doi: 10.3389/fvets.2021.679049

Frontiers in Veterinary Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 679049

Edited by:

Marie-Pierre Ryser-Degiorgis,

University of Bern, Switzerland

Reviewed by:

Gabrielle Stalder,

University of Veterinary Medicine

Vienna, Austria

Nuno Santos,

University of Porto, Portugal

Steve Smith,

University of Veterinary Medicine

Vienna, Austria

*Correspondence:

Cláudio E. F. Cruz

claudio.cruz@ufrgs.br

Specialty section:

This article was submitted to

Zoological Medicine,

a section of the journal

Frontiers in Veterinary Science

Received: 10 March 2021

Accepted: 13 September 2021

Published: 11 October 2021

Citation:

Cruz CEF, Funkler GR, Zani ALS,

Wagner PGC, Andretta I, Segura LN

and Fagundes NJR (2021) A

Preliminary Assessment of the

Potential Health and Genetic Impacts

of Releasing Confiscated Passerines

Into the Wild: A Reduced-Risk

Approach. Front. Vet. Sci. 8:679049.

doi: 10.3389/fvets.2021.679049

A Preliminary Assessment of the
Potential Health and Genetic Impacts
of Releasing Confiscated Passerines
Into the Wild: A Reduced-Risk
Approach
Cláudio E. F. Cruz 1,2*, Gustavo R. Funkler 2,3, André L. S. Zani 4, Paulo G. C. Wagner 5,

Inês Andretta 6, Luciano N. Segura 7 and Nelson J. R. Fagundes 4,8

1Centro de Estudos em Manejo de Aves Silvestres, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul,

Porto Alegre, Brazil, 2 Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Federal

do Rio Grande do Sul, Porto Alegre, Brazil, 3 Laboratório Porto Belo, Porto Alegre, Brazil, 4 Programa de Pós-Graduação em

Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,
5Centro de Triagem de Animais Silvestres, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Porto

Alegre, Brazil, 6 Laboratório de Ensino Zootécnico, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul,

Porto Alegre, Brazil, 7Museo de La Plata, Sección Ornitología, Universidad Nacional de La Plata, La Plata, Argentina,
8 Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul,

Porto Alegre, Brazil

The illegal capture and trade of wild birds have long been threats to biodiversity. The

rehabilitation and release of confiscated animals may be a useful conservation tool in

species management. However, differences between populations regarding health (e.g.,

different pathogens) and adaptation (e.g., local adaptation) must be taken into account,

since both can negatively impact the recipient population. In this pilot study, we used two

of the most illegally trafficked Brazilian wild passerine species, namely the red-crested

cardinal (Paroaria coronata) and green-winged saltator (Saltator similis) as case studies

and assessed some of the health threats that the release of confiscated passerines may

pose to free-living birds. We also investigated the level of difference in mitochondrial

genetic structure among populations living in different ecoregions. Blood, feces, and

oropharyngeal swabs from confiscated (n = 115) and free-living (n = 120) passerines

from the release sites were tested for the Newcastle disease virus, Salmonella spp., and

Mycoplasma gallisepticum. These are considered major avian diseases by the Brazilian

National Avian Health Program. We analyzed mtDNA to study the difference in genetic

structure between populations using samples from 127 free-living passerines. We found

no evidence of the Newcastle disease virus or Salmonella spp. in confiscated or free-living

passerines from either species. However, the levels of infection with M. galissepticum

detected in our study for red-crested cardinals and green-winged saltators calls for a

high degree of caution in captive release programs. The difference in genetic structure

between populations occurring in different regions was low, and was not significant
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between those from the Pampa/Subtropical Grasslands region. These results suggest

that it may be possible to establish a cost-effective and sensitive protocol for releasing

confiscated songbirds, provided that further genome-wide studies indicate that the

functional genetic diversity among (at least some of the) populations is also low.

Keywords: seized songbirds, rehabilitation and release, mycoplasma, outbreeding depression, wild bird

management, wildlife policy, animal welfare

INTRODUCTION

Illegal trade, poaching, habitat loss, and pollution are the main
causes of the decline in wild bird populations in Brazil, and other
developing countries with vast species diversity (1–4). The illegal
wildlife trade has increased dramatically over the past decade,
along with enforcement efforts aimed at mitigating this threat
(5, 6). Current guidelines for the management of confiscated wild
birds include the option of humanely killing animals from species
with low conservation value (7). This policy has been justified on
the grounds that confiscated birds a) may harbor pathogens that
will affect the wild population (8–10) and b) usually come from
an unknown parental population, so their release into another
population may lead to outbreeding depression (11, 12). In both
cases, there may be a negative impact on the wild population. The
decision to release confiscated wild birds should be taken on a
case-by-case basis and be performed according to conservation
guidelines. These, in turn, should be based on genetic and
health data as well as other studies (6, 7, 9). However, this
information is scarce and there is limited conservation evidence
on the subject.

The Brazilian poultry industry has considerable
socioeconomic importance and the National Avian Health
Program (Plano Nacional de Sanidade Avícola—PNSA)
establishes official measures for the prevention, control, and
surveillance of diseases mainly associated with poultry, i.e.,
salmonellosis, mycoplasmosis, and Newcastle disease (13).
Among the numerous conditions that can affect wild birds
(14), PNSA-recognized pathogens can impact avian health
in both free-living and commercial flocks (9, 10, 14–16).
Whenever the decision is made to return confiscated individuals
to the wild, it is crucial to avoid endangering the health,
behavioral repertoire, and genetic and conservation status of
wild populations of the species, as well as ensure the welfare of
the released animals (6–10). In this study, we explored these
issues by generating preliminary genetic and health-related
data from wild red-crested cardinals (Paroaria coronata) and
green-winged saltators (Saltator similis), two of the most illegally
trafficked wild bird species in Brazil (17, 18). More specifically,
we aimed at addressing to two fundamental questions: are there
significant differences in the prevalence of PNSA-recognized
pathogens between confiscated and free-living passerines
from the release sites, and is the difference in mitochondrial
genetic structure among free-living populations of these
species significant? Finally, we discuss the potential impacts
of a release program for confiscated conspecific passerines
of both species.

MATERIALS AND METHODS

Sampling Areas
Sampling areas were selected to include ecoregion domains
representative of the species’ typical distribution, mostly in
the state of Rio Grande do Sul (RS), as well as strategic
areas across the species distribution (Figure 1). Green-winged
saltators were sampled in the forest fragments of two different
regions: Pampa/Subtropical Grasslands (PSGrasslands) and
Atlantic Forest (AForest). Red-crested cardinals were sampled
in semiopen areas in three different regions: PSGrasslands,
Chaco/Pantanal (CPantanal), and AForest (anthropic deforested
areas). These ecoregions were used as proxies for the ecological
populations from which the genetic structure was tested.
PSGrasslands include the Uruguayan Savanna, the Humid
Pampa, Espinal, and the Southern Cone Mesopotamian Savanna
formations. The CPantanal area includes the Humid Chaco, the
Dry Chaco, and Pantanal formations, while the AForest includes
Alto Paraná Atlantic Forests, Araucaria Moist Forests, Serra do
Mar Coastal Forests, and Bahia Coastal Forests (19). To distribute
financial resources across multiple collection sites, fieldwork
efforts were based on an average capture rate. Based on similar
studies (20–23), we aimed to achieve a sample size of about 5–
10 individuals. However, in sites where the species abundance
was low, the sample size was lower. For genetic analyses, we
included sequences from GenBank (Bolivia n = 1, Boracéia n
= 1, Corrientes n = 2, Mato Grosso n = 1) and five additional
red-crested cardinal samples from Buenos Aires, Argentina (the
southernmost species distribution limit).

Health-Related Tests
We tested for selected pathogens in groups of free-living and
confiscated conspecific passerines from both species. Samples
from free-living passerines were obtained from the recipient
populations in the release areas located no further than
200 km away from the laboratory facilities, to ensure they
could be delivered to the laboratory on the same day of
collection (Supplementary Table 1). Following the standard
guideline (5, 9) in rehabilitation and release, the disease
screening included both confiscated and free-living conspecific
wildlife from the reception area. These areas were also selected
to accommodate long-term post-release monitoring. Due to
budgetary constraints, we decided to test a 10%-sample out of the
total confiscated flock that was quarantined and rehabilitated in 1
year, and a similar number of free-living birds. The samples were
kept refrigerated during transport to the laboratory. Samples
from confiscated passerines were obtained from birds kept in the
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FIGURE 1 | Geographical representation of sampled areas with the respective number of samples.

triage centers (Centro de Triagem de Animais Silvestres—CETAS,
IBAMA and Fundação Zoobotânica—FZB/RS). These passerines
were of unknown origin since they could have been illegally
captured anywhere across their distribution ranges. Usually, in
these centers, large numbers of confiscated passerines of the
same or different species are kept in dozens of contiguous cages.
Precise information regarding the duration of captivity before
apprehension is not available. We estimated that most of the
cage-conditioned confiscated passerines had been kept several
months in captivity, althoughmost freshly caught (based on their
wild behavior) confiscated passerines had been captive for up to
7 days. After sampling and undergoing clinical and behavioral
history assessments, the passerines were placed with IBAMA
rehabilitation/release projects or maintained in captivity.

Microbiological, serological, and molecular tests were
performed at the Porto Belo Laboratory, accredited by the
Brazilian Ministry of Agriculture, Livestock Farming and Food
Supply (13) to perform official diagnostic tests for the PNSA. The
hemagglutination-inhibition (HI) test for anti-NDV antibodies
was performed in 96-well U-bottom microtitration plates using
fresh red cells from SPF birds collected in Alsever’s solution
and washed in PBS. Four hemagglutination units (UHA) of
NDV LaSota viral suspension were prepared immediately before
running the test. The tested sera were previously diluted in
PBS and added to the plates (50 µL/well) in 1:2 to 1:1024
dilutions and tested in duplicate. Afterward, 50 µL of four
UHA viral suspensions were added to each dilution of the
serum and incubated for 30–45min at RT. Next, 50 µL of the
1% red blood cell suspension was added and the plate was
incubated for another 30–45min at RT. Each test included
positive and negative controls, apart from the control titration

of four UHA and the control of red blood cells. The titer level
was expressed as the reciprocal of the highest dilution that
completely inhibited hemagglutination (24). The methods
described in NI 126 (25) were used to test for Salmonella spp.,
after replacing the BHI broth with 1% buffered peptone water for
non-selective enrichment (a sample-broth proportion of 1:9) and
incubation at 36 ± 1◦C for 18–24 h. The enriched broth (1 and
0.1mL, respectively) was then inoculated in Tetrathionate Broth
(supplemented with 0.1% brilliant green and iodine or iodine
solution) and Rappaport–Vassiliadis broth, and incubated at 42.5
± 0.5◦C for 18–24 h. It was then streaked on Hektoen Enteric
and MacConkey Agar and incubated at 36 ± 1◦C by 18–24 h.
At the Oswaldo Cruz Foundation, World Health Organization
protocols (26) were used to confirm and characterize suspected
colonies with specific antisera. Serum samples were analyzed for
anti-MG antibodies using rapid plate agglutination (RPA). The
test was carried out by mixing 25 µL commercial MG-antigens
(INATA Biologic Products, Uberlândia, MG, Brazil) with 25
µL serum samples for 2min at RT (27). Real-time polymerase
chain reactions were performed, using a Taqman-labeled probe
to detect M. gallisepticum (commercial kit MG—NewGene R©,
Simbios Biotecnologia, Cachoeirinha, RS, Brazil) DNA (28). As
described previously (28, 29), CTA GAG GGT TGG ACA GTT
ATG−3′, GCTGCACTAAATGATACGTCAAA−3, and CAG
TCA TTA ACA ACT TAC CAC CAG AAT CTG–(MGB)−3′

primers and probes were used to target the MG lipoprotein gene.
Positive results were sent to Simbios Biotechnology laboratory
for confirmation via real-time and conventional PCR. Serum
samples from six captive conspecific passerines, vaccinated
against MG and NDV, served as controls for MG-qPCR and
NDV-HI validation. The samples were tested before and after

Frontiers in Veterinary Science | www.frontiersin.org 3 October 2021 | Volume 8 | Article 679049

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Cruz et al. Impacts in Releasing Confiscated Passerines

vaccination as negative and positive controls, respectively. Live
MG (MYCOVAX R©TS-11, MERIAL, strain TS-11) and NDV
vaccines (MERIAL, strain La Sota 004/16, ND1873) (Boehringer
Ingelheim Saúde Animal, Paulínia, SP, Brazil) were administered
via eye drop, at one drop per bird, 21 days apart. Boosters
consisted of one eye drop per bird, 28 days apart for both live
MG (BIOCAMP, Camp VacMG-F) and NDV vaccines (BIOVET,
New-Vacin, La Sota). An additional oil inactivated NDV vaccine
(BIOVET, New-BRONK-VET, virus B1 La Sota, minimum title
before inactivation 105,3 DIOE50) (BIOVET, Vargem Grande
Paulista, SP, Brazil) was administered intramuscularly 53 days
after the last NDV eye-drop vaccine. This protocol was based on
a previous study of NDV vaccination in wild birds (30). Details
of the disease screening protocol are provided elsewhere (31).

Genetic Analysis
To understand the genetic structure and diversity of the
two species, we compared passerines from the PSGrasslands
region, where both species are relatively abundant, with red-
crested cardinals from CPantanal and green-winged saltators
from the AForest area. There were few samples of red-crested
cardinal and green-winged saltators from the AForest and
CPantanal regions, respectively, because these species do not
commonly occur in these areas. This strategy also allowed
us to compare two regions with similar vegetation patterns
(PSGrasslands vs. CPantanal, in the case of red-crested cardinals)
to two areas with different patterns (PSGrasslands vs. AForest,
for green-winged saltators). DNA was extracted from blood
on FTA cards using a PureLink Genomic DNA Mini Kit
(Invitrogen, Carlsbad, California, USA), and a fragment of
subunit 2 of mitochondrial NADH dehydrogenase (ND2) was
amplified using the same PCR protocol for both species. The
reaction was performed with 20 ng/µl of DNA, 1x PCR Buffer
(Invitrogen, Carlsbad, California, USA), 3.5mMMgCl2, 0.2mM
dNTPs, 0.2 pmol/µl of each primer, and 0.04 U/µl of Taq
Platinum DNA Polymerase (Invitrogen, Carlsbad, California,
USA). The primers used were MetL, as described previously (32),
sequence 5′-AAGCTATCGGGCCCATACCCG-3′) and RND2A
(this study, sequence 5′-CCTGAGTTGCATTYAGGGG-3′). The
PCR protocol was as follows: 94◦C for 2min, 35 cycles of 94◦C for
30 s, 59◦C for 30 s, 72◦C for 60 s, and a final extension of 72◦C for
8min. Amplification was confirmed using electrophoresis in a 1%
agarose gel. The amplified products were enzymatically purified
with exonuclease I (GE Healthcare, Chicago, Illinois, USA) and
Sanger sequenced by ACTGene Inc. (Alvorada, RS, Brazil).

Data Analysis
Pearson’s chi-square test was used to assess the association
between categorical variables. The 95% Confidence intervals
(CI) were obtained using a one-sample proportion test. The
analyses were conducted with Minitab v. 18 software (State
College, Pennsylvania, USA. http://www.minitab.com), at a
0.05 significance level. Responses (health-related) were also
expressed using descriptive statistics. Regarding molecular data,
DNA sequences were assembled and aligned using the default
settings in Geneious v.10.2.3 (https://www.geneious.com) and
visually checked in MEGA X v.10.0.0 (33). The DnaSP v.6.12.03

program (34) was used to define the different haplotypes, whose
evolutionary relationships were represented in a median-joining
network (35), and estimated with PopART software (http://www.
popart.otago.ac.nz). Standard genetic diversity indices, including
Tajima’s D (36) and Fu’s FS (37) neutrality tests were estimated
using Arlequin v.3.5.2.2 software (38). This software was also
used to quantify the level of genetic structure via hierarchical
and non-hierarchical analyses of molecular variance (AMOVA)
(39). Hierarchical AMOVA was performed for each species and
all three collection sites (PSGrasslands, AForest, and CPantanal).
Non-hierarchical AMOVAwas only conducted for PSGrasslands,
to estimate the level of structure within one region, using
a comparable sample strategy for both species. Finally, to
understand the past demography of both species, we used BEAST
v.2.6.1 software to generate Bayesian skyline plots (BSP) (40)
for the total population and the main regions of occurrence of
each species (41). A total of 10,000,000 MCMC steps were used,
with sampling every 1,000 steps. The initial 10% of the run was
discarded as burn-in. A partition scheme was applied, allowing
each codon position to have a different substitutionmodel, which
was estimated using MEGA X v.10 (33). The Tracer v.1.7.1
program was used to check sampling sufficiency to construct the
BSP (42). The molecular substitution rate for the ND2 gene was
calculated as previously described (43), assuming “calibration set
2” for a 45 g bird (44, 45).

RESULTS

Health-Related Tests
The serological study revealed no antibodies against Newcastle
disease, irrespective of the origin of the bird. Salmonella spp.
isolation resulted in only one positive sample: S. enterica serovar
Cerro from a free-living red-crested cardinal. Two tests were used
to detectM. gallisepticum (MG). The RPA test indicated positive
MG results for 22% of samples from free-living passerines
(15–30% CI), although none were confirmed by PCR. In the
confiscated bird sample, the seroprevalence (51%, 42–61% CI)
was higher than the molecular prevalence (14%, 8–22% CI)
(data on the PNSA-recognized tests and samples from free-living
and confiscated passerines of both species, as well as anti-NDV
antibody titers in control birds and confidence intervals, are
presented in Supplementary Table 2).

Genetic Structure and Diversity
DNA sequence analysis resulted in the alignment of 977
bp and 810 bp for red-crested cardinals and green-winged
saltators, respectively. All new sequences were deposited in
the GenBank (Supplementary Table 3). Genetic diversity indices
for both species in all the sampled regions are shown
in Supplementary Table 4. Only free-living passerines were
included in the genetic analysis. Overall, green-winged saltators
exhibited greater genetic diversity than red-crested cardinals for
both the whole sample and the PSGrasslands region. However,
there were contrasting patterns between species when the two
major regions of occurrence were compared. While green-
winged saltators showed comparable levels of diversity in the
PSGrasslands and AForest, the diversity for red-crested cardinals
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FIGURE 2 | Median-joining network for the haplotypes of red-crested cardinals (A) and green-winged saltators (B). Circle size is proportional to the number of birds in

the sample with that haplotype. Transversal lines represent mutational steps.
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in the former area was only a fraction of that observed in the
latter. This was also evident in the haplotype network (Figure 2).
For both species, the sample size in regions of minor occurrence
(the AForest for red-crested cardinals and the CPantanal for
green-winged saltators) was too small for thorough genetic
diversity characterization.

The haplotype networks for the two species (Figure 2) also
suggest a relatively low degree of genetic structure between
regions for both species. Indeed, when all regions are considered,
26.18% of the total genetic variance (ΦCT = 0.2618; P = 0.040)
for red-crested cardinals occurred among regions, whereas the
respective value for green-winged saltators was only 12.94% (ΦCT

= 0.1294; P < 0.001). On the other hand, most genetic variation
occurred within populations, reaching 65.17% (ΦST = 0.3483;
P < 0.001) and 82.72% (ΦST = 0.1728; P = 0.011) for red-
crested cardinals and green-winged saltators, respectively. The
genetic structure among populations within regions accounts
for the remaining portion of genetic variance, but it was
not significant for either species (ΦSC = 0.1171; P = 0.069
and ΦSC = 0.0499; P = 0.090 for red-crested cardinals and
green-winged saltators, respectively). Similarly, when only the
PSGrasslands region was considered, the genetic structure was
not significant for either species (ΦST = −0.0510; P = 0.923
and ΦST = 0.0711; P = 0.107 for red-crested cardinals and
green-winged saltators, respectively). Tajima’s D and Fu’s FS test
statistics showed evidence of population growth in both species,
though in different environments (Supplementary Table 4). The
Bayesian skyline analyses corroborated these signatures, with
a more recent expansion (∼50,000 years ago) for red-crested
cardinals in PSGrasslands, and an older expansion (∼350,000
years ago) of green-winged saltators exclusive to AForest
(Supplementary Figure 1).

DISCUSSION

Our planet is facing several challenges for biodiversity
conservation, all associated with the growing human population
(3, 46). Given the limited financial resources for conservation, it
is understandable that non-threatened species are not considered
a high priority (6, 7). However, the economic relevance of birds
is not sufficiently appreciated and the economic pertinence of
their ecological roles in human society is even less understood
(47). The IUCN recognizes that returning confiscated animals
of low conservation value to the wild may be a legitimate
measure, provided there are available resources and that the
process is performed per standard conservation guidelines
(6, 7, 9). Alternatives to the annual, humane killing of large
numbers of confiscated wild passerines (17, 18) can and should
be investigated, especially considering long-term biodiversity
conservation in a changing world (3, 48). Indeed, there is
evidence that common species may also be susceptible to
population decline (49, 50). The species studied here are among
the most common in apprehensions in Brazil (17, 18), and this
poses a legal and conservation challenge despite their “least
concern” rating on the IUCN Red List (51). Limited genetic
(52) and health data (20, 53) are available about these and

other species, which are not global conservation flagships.
Besides disturbing and harming the resident populations, poorly
conceived projects can lead the released animals to death from
starvation, undoubtedly an even worse outcome than humane
killing (6, 7). Therefore, in addition to the conservation issue,
questions raised here may also be relevant for animal welfare.

Health and Disease
Although there is a long list of diseases that affect wild
birds (14), we opted for investigate those addressed by
the PNSA (i.e., salmonellosis, mycoplasmosis, and Newcastle
disease). This choice was based on legal veterinary restrictions
from specific National Regulations (9, 13), the associated
economical relevance, and the scarce research on PNSA-
recognized pathogens in wild passerines. Although certainly
desirable, individual testing may be an unattainable goal if the
numbers of confiscated birds are considered alongside the testing
costs. The project’s financial resources were roughly distributed
in an equal manner to perform testing (genetic and pathogens),
aviary construction, and bird management.

All samples tested for the presence of anti-NDV antibodies
were negative in this study. Comparable results have been
reported in NDV serological surveys in captive (54) and free-
living wild birds (55). As noted in a previous study (30), the
anti-NDV antibody titers observed in vaccinated control wild
birdsmay have been underestimated, probably due to the species-
specific method originally developed for chickens. Small volumes
of blood samples obtained from passerines may limit both the
production of a specific red blood cell solution and the use of
duplicates in the assay. These are some of the challenges for future
research. The prevalence of Salmonella spp. in wild birds has
been attributed to exposure to environments inhabited by people
and domestic animals (56). Previous studies have estimated the
prevalence of Salmonella spp. in samples of wild birds—including
passerines confiscated from illegal traffickers—at 1–7% (14, 57).
Different from our expectations, only one fecal sample (0.4%)
tested positive for Salmonella spp. culture and isolation. The
positive sample contained Salmonella enterica serovar Cerro
(Group K), a highly prevalent serovar in herds of cattle (58).
Although this was also observed in our study, how it impacts the
health of the free-living red-crested cardinal population is yet to
be determined.

As expected, the prevalence of M. gallisepticum was greater
after the RPA test when compared to the qPCR assay, for
both free-living and confiscated birds (29, 59). Even though
the seroprevalence was higher than the molecular prevalence,
RPA results were highly correlated (P <0.001) with those of the
PCR via Pearson’s chi-squared test. The qPCR-based estimate
of a 14% MG prevalence in the confiscated group is similar
to findings reported for other avian hosts (16, 60). The mean
cycle threshold (Ct) values (Supplementary Table 2) observed in
positive samples are consistent with those expected in subclinical
infections (61). The high MG prevalence in confiscated birds
probably reflects the poor hygiene and stressful conditions
these birds are exposed to (14). Transmission of MG is largely
dependent on contact between infected and susceptible hosts and
therefore is facilitated under the usual overcrowding conditions
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that characterize the illegal wild bird trade. Although none of
the positive birds in our sample showed any clinical evidence
of infection, differential MG-susceptibility across bird species
has been associated with both clinical and subclinical signs (14),
including in wild birds (16, 62). It is well-known that most
wild birds will do their best to mask signs of disease as a
basic survival behavior. Furthermore, the presence of pathogens
may be influenced by several factors, such as diet, environment,
general health, and co-infection among others (63). These factors,
alone or together, and to greater or lesser extents, all probably
affect confiscated wild birds. While all avian diseases analyzed in
this study have been demonstrated in the wild (14), there has been
an increasing threat to themaintenance of ecosystem services and
ensured environmental health (46, 48). The information included
here may help counteract some epidemiological uncertainties
related to the interacting effects of disease transmission, the illegal
wild bird trade, the increase in wild-domestic bird interfacing,
and the associated exchange between reservoirs.

Genetic Diversity, Structure, and
Implications for Outbreeding Depression
Both species in our study showed different levels of genetic
diversity and different evolutionary demographic histories.
Green-winged saltators exhibited greater genetic diversity
overall, with older population expansion restricted to AForest
populations (while the PSGrasslands population remained
constant). There were similar levels of diversity between the
PSGrasslands and AForest, the main regions of occurrence. On
the other hand, red-crested cardinals displayed lower diversity
and weaker and more recent population expansion restricted
to the PSGrasslands (the CPantanal population remained
constant). There was lower diversity in the PSGrasslands
area when compared to the CPantanal region (Figure 2;
Supplementary Figure 1; Supplementary Table 4). Among
other passerines, particularly those from open areas and/or dry
forests in southern South America, red-crested cardinals from
the CPantanal showed high diversity at both the haplotype and
nucleotide level (21, 64). Although some populations of yellow
cardinal (Gubernatrix cristata), a highly endangered Thraupidae,
exhibited high nucleotide diversity values (21), the authors used
the mtDNA control region (mtDNA-CR) as a genetic marker,
which evolves more rapidly than ND2 (65).

On the contrary, red-crested cardinals from the PSGrasslands
area displayed low diversity for both indices. This may
indicate that the population inhabiting the PSGrasslands is
a recent offshoot from the CPantanal area, which may
have acted as a large source population for this species.
This is consistent with the exclusive signature of population
expansion in the PSGrasslands region around 50,000 years ago
(Supplementary Figure 1) since population growth is expected
in refuge areas (66). Concerning species occurrence in the
Brazilian Atlantic Forest, and other associated humid forests,
green-winged saltators showed high diversity in both the
PSGrasslands and AForest. Based on mtDNA coding genes,
green-winged saltators from the AForest displayed the highest
nucleotide diversity among forest-associated species and the

fifth-highest in the PSGrasslands population. Both populations
also exhibited high haplotype diversity (67–71). The exclusive
signature of an ancient population expansion for green-winged
saltators in the AForest region, but not in the PSGrasslands
area, is curious. Most studies that detected expansion in
specific populations or phylogroups suggest much more recent
time scales (similar to the red-crested cardinals) (67, 68, 70,
71). Two exceptions are the greenish Schiffornis (Schiffornis
virescens) (69) and the white-rimmed warbler (Basileuterus
leucoblepharus) (68), which demonstrated population expansions
around 150,000–300,000 years ago. The high genetic diversity
and lack of a population expansion signature in the PSGrasslands
region are intriguing. It is unlikely that this region served
as a refuge area for green-winged saltators, which are more
strongly associated with humid forests to the north, where
the species shows greater genetic diversity. The lack of strong
difference in genetic structure between these populations
may indicate that the PSGrasslands were occupied following
population expansion in the AForest area, but subsequently
lost genetic diversity, which eroded the signature of an
ancient expansion.

Genetic structure was weak, but significant, for both species
(Figure 2). In the PSGrasslands region and associated dry
forests, both the yellow cardinal (21) and the white-tipped
plantcutter (Phytotoma rutila) (64) showed stronger structure
between habitats (ΦST∼0.45). For forest species, most studies
reported the presence of strongly differentiated phylogroups,
either between different habitats or across the AForest (67, 70,
71). Once again, the greenish Schiffornis (69) and the white-
rimmed warbler were exceptions (70), with no phylogeographic
breaks across their distribution in the AForest. The lack of
genetic structure in green-winged saltators is corroborated by
a study that used microsatellite (SSR) loci to demonstrate that
only 0.1% of total genetic variation occurred between populations
distributed in different Brazilian biomes (AForest, Cerrado,
Caatinga, and ecotones between them) (52). Similarly, only 3%
of total genetic variation occurred among red-cowled cardinal
(Paroaria dominicana) populations, a species closely related
to the red-crested cardinal found in the Brazilian Northeast
(52), and that may share a similar pattern of gene-flow. While
these studies seem to point to the same direction than ours,
it is important to highlight that our results must be seen as
a preliminary assessment of the difference in genetic structure
among populations of these species in these ecoregions. Further
studies based on genome-wide (SSR or ddRADseq) markers
are needed to reveal the genetic structure of these species
along the whole genome and at a finer geographic scale, which
could identify preferential routes for gene flow or if there are
loci subjected to local adaptation, for example. Thus, in spite
of the relative shallow genetic structure found in this study,
especially for poulations coming from the same ecoregion, it is
difficult to predict the risk of outbreeding depression by crossing
individuals from populations with different genetic structure.
Although genetic distance is not a good predictor of outbreeding
depression (72), the latter requires different genetic adaptations
to local environments that will be eroded by crossing animals
from exogenous, ecologically divergent, populations (11, 12, 73).
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Evaluating the feasibility of releasing confiscated birds in the
wild awaits for a better understanding of population connectivity
among and within ecoregions.

Concluding Remarks
Managing birds confiscated from the illegal trade is a complex
and difficult issue. Although the recommendation to humanely
kill wild birds belonging to species with low conservation
value is justifiable (7), it is important to consider whether
new information for local species could reduce the perceived
risk of translocating these and other passerine species. The
present study demonstrated that it may be feasible to screen
confiscated passerines for several pathogens and that, although
only one out of three pathogens was detected, the risk of
disease transmission during handling or after release into
natural environments implies a need for a systemic disease
screening program. For our cases, we followed specific local
veterinary regulations (8–10, 13). Confiscated passerines may
be potential sources of Mycoplasma gallisepticum transmission
to wild bird communities and commercial flocks. The MG
strain variability and pathogenicity, and the difficulty in
verifying that treated birds are no longer carrying MG, indicate
that efforts to segregate infected birds from the uninfected
ones should be made before moving birds to the site of
rehabilitation (14). Besides this, systematic pathological analyses
of confiscated birds that die during quarantine/rehabilitation
may help identify other important conditions to be included
in future testing protocols to effectively mitigate the health
risk for free-living populations. Up to the present time,
there have been findings linking MG to the most prevalent
conditions identified in these confiscated passerines. These
results were obtained through serological and molecular
testing, as well as clinical and pathological (data not shown)
procedures. Our study reveals an urgent need for strategic
serial testing in association with a rigorous quarantine period to
safeguard wild populations. Although there are clear limitations
especially associated with the sample size, these preliminary
data may provide the basis for future considerations and the
development of a more comprehensive management approach
for returning confiscated individuals of the investigated species
to the wild.

The lack of strong genetic structure among ecoregions at the
mtDNA level must be seen as a first setp in deciphering the
evolutionary connectivity in both species, but more research will
be clearly needed to allow a thorough estimation of the potential
risks and benefits of releasing confiscated birds. Further research
using genome-wide markers, such as SSR or ddRADseq, will
be required to access genetic structure in a finer geographic
scale. MtDNA is a useful genetic marker for species identification
or, when difference in genetic structure among populations is
strong, as a proxy for population assignment. It is cheap and
convenient to type even in a few individuals. On the other hand,
typing genome-wide markers is more laborious and expensive.
SSR markers require that informative loci in the focal species
have been identified previously, even though once such loci are
characterized, typing individuals specimens can be performed
relatively easily. On the other hand, ddRADseq do not require

any a priori knowledge about informative loci, but is impratical
to be performed in only a few specimens at a time (74, 75). In
addition, other criteria could be applied to select an area for
releases, such as using different regional vocal “dialects” as a
proxy for the original parental population (76) of a songbird, even
though the vocal plasticity exhibited by several species may be
challenging (76).

The assessment of the potential impacts presented here may
be a promising starting point for the reintegration of these
commonly confiscated passerine species. However, these are just
some of the many aspects to consider in the complex process of
reintegrating confiscated wild birds into natural environments.
In this sense, evaluating the carrying capacity of the release areas
is an additional pre-release concern. Additionally, long-term
post-releasemonitoring is essential for thorough characterization
of the interplay between release areas, social disturbances to local
wild populations, and the behavioral ecology of the released birds.
Establishing a comprehensive and definitive disease screening
protocol for application in these circumstances is far beyond
the scope of this paper. While the results presented in this
pilot study may point to future tendencies and methods,
this is perhaps lifelong research. Conservation alternatives for
recycling the potential ecosystem services from thousands of
confiscated wild passerines may have a strategic impact on
the current global scenario of changing environment and
wildlife crime.
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