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1 Introduction

The framework of AdS/CFT in Lorentzian signature made significant progress when Hamil-

ton et al. showed how to reconstruct bulk local operators from CFT primary operators, at

least in the large N limit [1, 2]. This is important because it allows to probe locality of

correlators in the bulk in terms of correlators of the boundary CFT evaluated on points

that are causally connected.1 In those references a ‘smearing function’ K was found such

that it has spacelike support and allows to write a bulk field Φ in terms of its boundary

data φ smeared over the boundary:

Φ(X) =

∫
Ω(X)

ddx
√
−hK(X,x)φ(x) (1.1)

Here h is the boundary metric, Ω(X) is the region in the boundary that is spacelike

separated from X, and

φ(x) = lim
z→0

z−∆Φ(z, x)

for some suitable radial coordinate z that approaches the boundary as tends to zero. The

dimension of φ is ∆+ ≥ d/2. In this work we are interested in reformulating this Lorentzian

bulk reconstruction to allow the dimension to reach the unitarity bound (d − 2)/2, which

amounts to consider mixed boundary conditions in the bulk, and a relevant deformation

1An alternative approach based on group representation theory was performed in [3, 4].
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of the CFT. We are going then to discuss the necessary generalization of K and explicitly

show that it relates correlators on the boundary QFT with correlators on the bulk. The

more interesting scenario with interactions was considered later [5, 6], however in this work

we will stick to the free linear theory.

It is a simple fact, already observed in [1], that K is not unique, since one can always

add to K a kernel K ′ orthogonal to φ in the sense2
∫

ΩK
′φ = 0. Actually the authors used

this freedom to construct a real K. The existence of K, on the other hand, is a rather subtle

issue. Although it is sometimes mentioned that K does not exist in certain situations, for

example when localized on the AdS-Rindler patch [1, 2, 7], one needs to specify what sort

of mathematical object K is considered to be. As a function, it certainly does not exist.

As an integral kernel used to map boundary operators to bulk operators, it is claimed not

to exist in general in [7, 8]. In those references, the non-existence conclusion follows from

first considering the bulk field and boundary operator both decomposed in modes

Φ(X) =

∫
ddk akFk(X), φ(x) =

∫
ddk akfk(x)

where we are using that Fk(z, x) ∼ z−∆fk(x) for small enough z (i.e., close to the bound-

ary). Then, assuming3 that both Fk and fk form orthonormal basis, one can write the

amplitudes as ak =
∫
ddx
√
−h f∗kφ, the bulk field reads Φ(X) =

∫
dk
∫
ddx
√
−hf∗kφFk(X).

Then further assuming the order of integration can be exchanged, the kernel reads

K(x|X) =

∫
dk f∗k (x)Fk(X) (1.2)

The modes Fk will typically diverge for large enough k and such integral does not converge.

The exceptions are global AdS and the Poincaré patch (which has polynomial growth).

However, the analysis of Morrison in [9] shows that one has to be more careful and

define what K is supposed to do. One goal is to use K as a map from correlation functions

of the CFT to correlation functions in the bulk theory, and a more ambitious goal is to

use K to map a local bulk operator algebra to a local boundary operator algebra. Then,

for example one important issue is whether the two-point function 〈Φ(X1)Φ(X2)〉 can be

written as (from now on we omit the boundary metric determinant)

〈Φ(X1)Φ(X2)〉 =

∫
Ω(X1) ∪ Ω(X2)

ddx1 d
dx2K(x1|X1)K(x2|X2)〈φ(x1)φ(x2)〉

To answer such a question one has to notice that distributions are being multiplied. One

powerful tool that can be used to understand if this multplication of distributions makes

sense is the wavefront set of the distributions (see for example [10, 11]). Roughly speaking,

the multiplication between K and 〈φφ〉 can be defined if the problematic directions in

momentum space of these distributions are not equal and of opposite sign (so if k is a

2As explained on footnote 7 of [9], the reason behind the non-uniqueness is that if K is regarded as acting

on CFT correlation functions, then as these correlations do not have spacelike support on momentum space,

K′ can be anything with Fourier trasform with spacelike momenta.
3In [7] every case studied satisfies this assumption.
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‘bad’ direction of K, then it should be that −k is not bad for the boundary correlator).

Morrison showed that even in the case of a causal wedge in AdS, where the modes grow

exponentially, this dangerous behavior only occurs in directions where the correlator can

be regarded as a smooth function,4 and then the multiplication of both distributions is

well defined.

We can be a little bit more explicit on how we see K, following [9]. The bulk field

Φ is a distribution that takes compactly supported smooth test functions F and gives

back operators Φ[F ] on some algebra (typically a unital ∗−algebra). The Klein-Gordon

equation of motion in the bulk is satisfied in the sense that Φ[(�−m2)F ] = 0 for any F .

On the boundary CFT we consider an algebra of operators φ[f ] labeled by test functions

f . However, in order to get the local algebra of the bulk from the CFT algebra, the test

functions of the CFT need to be quite general. More precisely, as mentioned above, we

want to be able to write,

〈Φ[F ]Φ[F ′]〉 =

∫
Ω(supp(F )) ∪ Ω(supp(F ′))

ddx ddx′K[x|F ]K[x′|F ′]〈φ(x)φ[x′]〉, ∀F andF ′

(1.3)

where K[F, ·] =
∫

supp(F )K(·|X)F (X) is a function on the boundary and in virtue of the

above expression should be taken to be a boundary test function:

fF :=

∫
supp(F )

dd+1X
√
−gK(·|X)F (X) = K[·|F ] (1.4)

Notice, however, that this object could fail to be an actual function, since as discussed

earlier K could have expontial growth in Fourier space and this expression would be ill-

defined. But the point made in [9] is that fF makes sense inside an integral, such as in (1.3).

Then, the space of boundary test functions has to be enlarged in order to accomodate those

fF that are actually distributions of the form (1.4). moreover, the product of ditributions

in (1.3) of the form fF (x) · 〈φ(x)φ(x′)〉 needs to be well defined, and in [9] a sufficient

condition for the wavefront set WF(fF ) is given. In this sense, even in AdS causal wedges,

K exists despite its exponential growth in momenta and the ‘test functions’ fF turn out

to be5 sufficiently well behaved as distributions.

As already mentioned, we are interested in extending this analysis beyond the Dirichlet

boundary condition. Put differently, we would like to test the HKLL holographic construc-

tion even when the boundary theory is not conformal. To this end, we start by considering

the fact that AdS is not globally hyperbolic, which implies that boundary conditions at

timelike infinity need to be imposed in order to have a well-defined evolution of initial

conditions. Different boundary conditions have been explored in the literature [13, 14] and

are well understood from a bulk point of view (see [15] for a thorough treatment). One

4The technical assumption in [9] is that the two-point function of the boundary CFT satisfies the

microlocal spcetrum condition of [12]. We will review this assumption in section 5.
5In short, since the two-point function has singularities when x and x′ are null separated and in directions

of locally-positive frequency, the sufficient condition for fF is that its singular directions in momentum space

are spacelike. In this way, fF behaves as a smooth function in null and timelike momentum directions and

can be multiplied with the two-point function.
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main point is that the behavior of the scalar field can have both z∆+ and z∆− decays

in the Breitenlohner-Freedman (BF) window 0 ≤ ν ≤ 1 [16], where ∆± = d/2 ± ν, and

ν =
√
d2/4 +m2. Then, our first step is to develope a holographic reconstruction of the

bulk dynamics with mixed boundary conditions. In other words, we want to reformulate

the work initiated by Hamilton et al. in [1, 2] in order to account for the freedom in choosing

different boundary conditions from the usual Dirichlet boundary condition (Φ ∼ z∆+). In

particular, based on the earlier results of [14] and the recent work of [15], we consider Robin

boundary conditions. Immediately we will see the need to proceed with care, since diver-

gences appear when imposing Neumann boundary conditions (Φ ∼ z∆−), at least when

working in position space. In order to be more precise, let d = 1 so the bulk-to-boundary

smearing function K of HKLL, when evaluated at the origin of AdS2, behaves as

K ∼ cos(t)∆+−1Θ(t− π/2)Θ(t+ π/2)

where ∼ means we are ignoring some normalization constants for the moment. Now, the

BF window is −1/4 ≤ m2 ≤ 3/4 and within this range we can instead take Neumann

boundary conditions. All we have to do at this point is to replace ∆+ with ∆−. This gives

K ∼ cos(t)−∆+ . Since 1/2 < ∆+ < 3/2,

Φ(0) ∼
∫ π

2

−π
2

dt cos(t)−∆+φ(t)

is not in general convergent for 1 < ∆+ < 3/2.

This kind of behavior already appears in the much studied Dirichlet case for d > 1.

Take again the origin of AdSd+1 with odd d, and we have K ∼ cos(t)∆+−d. Then one

needs to require ∆+ > d− 1. However this bound has no physical significance and for any

d > 1 this is too stringent, so it would be desirable to have a smearing K for the range

d/2 < ∆+ < d−1. This is easy to accomplish by means of an analytic continuation similar

to the one used when defining the Γ function in the entire complex plane.6

We are now in a position to state our strategy in order to construct K for Robin

boundary conditions: looking at a bulk field with Dirichlet boundary conditions and weight

∆+ as a function of ∆+, ΦD(∆+), we can relate it to its analogue for Neumann boundary

conditions by just exchanging ∆+ with ∆−

ΦN = ΦD|∆+ 7→∆−

This simple step, as commented above, calls for care when viewing K as an integral kernel.

This is because we are performing the replacement ν → −ν in K and the integrand of
∫
Kφ

becomes more divergent near the limits of integration. However, by analytically continuing

K in ν we will be able to define K for Neumann boundary conditions. Then, the smearing

function K for Robin boundary conditions is just an appropriate linear combination of the

Dirichlet and Neumann K’s. The distribution K will not be an integral kernel, though,

since it will have delta-like contributions.

6The procedure follows the same lines as the extension of the generalized function xλ+ for λ < −1 and

λ 6= −n [17]. We shall come back to this observation later.
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So far we have discussed the continuation of the HKLL smearing function to Neumann

boundary conditions in global AdS and in its coordinate representation. This representation

allows comparision with the original results of [1, 2]. We should say, however, that when

considering AdS causal wedges (in particular the Poincaré patch), there is a very natural

representation of K as a Fourier transform of the boundary coordinates and which allows to

make the analytic continuation in a straightforward way. In other words, the replacement

ν → −ν requires no care if it is performed on the momentum space representation of K.

We will justify this claim and take advantage of the Fourier-transform presentation of K

when we consider the Poincaré and Rindler patches. In particular it will allow us to show

that K is spacelike supported.

Next we would like to discuss the counterpart on the boundary side, which comes from

considering multi-trace deformations of the CFT [18, 19]. In particular, relevant double-

trace deformations by operators with dimension ∆ < d/2 of the CFT generate an RG-flow

from a UV fixed point (Neumann) to an IR fixed point (Dirichlet) (see also [20–22]). These

observations were made in the context of the standard AdS/CFT dictionary [23], namely

relating the Euclidean path integrals of the bulk and boundary theories [24, 25]. Here we

will show that the HKLL point of view can still be applied when an RG flow takes place at

the boundary and conformal invariance is broken. In particular we will show two things.

First, that the (very reasonable) assumption of [9] about the microlocal spectrum condition

of the boundary two point function is correct for any point of the RG flow (in particular the

IR CFT considered in that reference). This allows to claim that the product as distributions

of K and the boundary correlator is well defined (as explained in footnote 5). Second, we

will explicitly map the boundary two-point function (of the deformed CFT) to the bulk

two-point function with mixed boundary conditions, and obtain agreement with the one

previously obtained in [26].

The manuscript is organized as follows. In section 2 we review the analysis of solutions

of the Klein-Gordon equation on AdSd+1 with Robin boundary conditions mainly from a

(singular) Sturm-Liouville theory point of view, but we make an effort to connect with the

usual presentations. In section 3 we make first a revision of the original results of HKLL in

global AdS and then extend them to Robin boundary conditions. In section 4 we revisit the

results of HKLL and Morrison and extend them to Robin boundary conditions as well as

proving the spacelike support property. The reader mainly interested in the mapping be-

tween boundary and bulk correlators can jump straight to section 5 where this is discussed.

We end with a Conclusions section. There is also included an appendix on wavefront sets

of distributions and oscillatory integrals, where we make an extremely brief (but hopefully

useful) exposition of these topics and where we prove that the boundary Wightman 2-point

function of the perturbed CFT satisfies the microlocal spectrum condition.

2 Short review of Klein-Gordon modes in AdS

The bulk solutions to the Klein-Gordon equation come in pairs, as this is a second order

differential equation. After a decomposition in spherical harmonics of the Sd−1 sphere and

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
5

a Fourier transform in time,7 a singular Sturm-Liouville problem appears for the radial

part [15]. The radial solutions regular at the origin ρ = 0 are8

Φ1(ρ) = (sin ρ)l(cos ρ)∆+
2F1(a, b; c; sin2 ρ)

Φ2(ρ) = (sin ρ)2−d−l(cos ρ)∆+
2F1(a− c, b− c; 2− c; sin2 ρ) (2.1)

while the regular solutions at the boundary ρ = π/2 are

Φ3(ρ) = (sin ρ)l(cos ρ)∆+
2F1(a, b; a+ b+ 1− c; cos2 ρ)

Φ4(ρ) = (sin ρ)l(cos ρ)∆−
2F1(a− c, b− c; c− a− b+ 1; cos2 ρ) (2.2)

In these expressions we have used l which is a natural number related to the spherical

harmonics and will not be important, and we have omitted the dependence of the Φ’s on

ω (coming from the Fourier transform in global time). Also

a =
l + ∆+ − ω

2

b =
l + ∆+ + ω

2

c = l +
d

2
(2.3)

These pairs are lineary independent as long as the third argument in the hypergeometric

function is not a natural number. For instance, if c ∈ N then another Φ2 solution appears,

but we will not take this into account since Φ2 is never square-integrable in the Sturm-

Liouville problem at hand. The situation for the pair (Φ3,Φ4) is the most important one

for our study. As is well-known, Φ4 is not square-integrable for ν ≥ 1, while both solutions

are admissible (i.e. they are square-integrable) in the range 0 < ν < 1. This is the case we

are interested in, where both weights, ∆+ and ∆−, appear.

The way to implement boundary conditions at ρ = π/2, according to the singular

Sturm-Liouville theory [27], is to demand that the sought solution Φγ satisfies for given

γ ∈ [0, π)

lim
ρ→π

2

(tan ρ)d−1 (cos γ W [Φγ ,Φ3] + sin γ W [Φγ ,Φ4]) = 0 (2.4)

where W [f, g] = fg′−gf ′ is the Wronskian. We see that we have a one-parameter family of

boundary conditions, called Robin boundary conditions. This expression has the virtue of

putting the decays (cos ρ)∆+ and (cos ρ)∆− on equal footing. Let us motivate the boundary

condition (2.4) from a more physical point of view: generically the solutions near the

boundary are of the form

Φ ∼ (cos ρ)∆+φ+ + (cos ρ)∆−φ−

7In this section we will concentrate in the radial part of the bulk field Φ. However in the remaining

sections we will be interested in the dependence of the field on all the bulk coordinates and we will still call

it Φ, in order not to introduce many different notations.
8Here and in the rest of this work we use the same coordinates as in [2]. In short, the AdS radius is set

to 1 and ρ is a radial coordinate where ρ = 0 is the origin of AdS and ρ = π/2 is the conformal boundary.

The conformal factor of the metric is (cos ρ)−2.
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In the simple massless case in 1 + 1 dimensions we see that φ− is the boundary value of

Φ while φ+ is the normal derivative of Φ at the boundary (since ∆+ = 1 and ∆− = 0).

In general this is not precisely the case, but is still true that since ∆+ > ∆− then φ−
is the leading value of Φ close to the boundary. Even more, with the definition φ =

limρ→π/2(cos ρ)−∆−Φ, then φ = φ−. This is why φ− = 0 is usually called the Dirichlet

boundary condition, and φ+ = 0 the Neumann boundary condition. Now, it is then natural

to write a mixed boundary condition as

φ− + cφ+ = 0

but this is exactly what one gets from (2.4), with c = − tan γ. In other words we have

φ+ = cos γ φ, φ− = sin γ φ

with φ a constant, or if we take into account the other coordinates of the bulk field, φ is the

field at the boundary. The advantage of (2.4) is that it is written in terms of the solutions

of the differential equation, and not of asymptotic values.

The solution to (2.4) is the linear combination,

Φγ(ρ) = cos γ Φ3(ρ) + sin γ Φ4(ρ) (2.5)

In particular, Dirichlet boundary condition means γ = 0 and the solution is Φ3, while

γ = π/2 should be called the Neumann boundary condition and the corresponding solution

is Φ4.

Regularity at the origin implies that Φγ is proportional to Φ1, but at the same time

Φ1 can be written as a specific linear combination of Φ3 and Φ4 (just because they span

the space of solutions), and so a discrete set of frequencies ω are allowed for given γ. Say

that Φ1 = AωΦ4 +BωΦ3, then the condition on the set of allowed frequencies is

tan γ =
Aω
Bω

(2.6)

In [1, 2] it was used that the frequencies corresponding to Dirichlet come equispaced by

2n, with n an integer number [28], and this implied immediately the spacelike support of K.

Such a simplification does not occur with Robin boundary conditions, since the frequencies

are given by the transcendental equation above and are not equispaced (see [14] as well

as [15]). However by the analytic continuation method we will employ, it will be easy

to construct K for Neumann boundary condition γ = π/2 and then for generic Robin

boundary conditions, and we will see they have spacelike support.

3 HKLL map on global AdS reloaded

In this section we revisit the results of [1, 2] and generalize them to include Robin boundary

conditions. We will try here to clearly indicate where their work may need further analysis,

such as in the case d/2 < ∆+ < d − 1 (which includes the Dirichlet condition). We skip

the derivations and turn to the expressions of the kernel K. From now on Φ denotes the

complete bulk field, not just its radial part.

– 7 –
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3.1 HKLL revisited

In this subsection we are considering kernels that were found in [1, 2] using a method

sketched in the introduction. They act on the boundary value φ of the Dirichlet bulk field

ΦD. Such boundary value is defined as,

Global coordinates: φ := lim
ρ→π/2

ΦD

(cos ρ)∆+
(3.1)

1 + 1 dimensions. Let us begin with AdS2 and the kernel with support on the right

boundary,

KD(t|t′, ρ′) : =
Γ(∆+ + 1

2) 2∆+−1

√
π Γ(∆+)

lim
ρ→π/2

(σ cos ρ)∆+−1 θ(ρ− ρ′ − |t− t′|)

=
Γ(∆+ + 1

2) 2∆+−1

√
π Γ(∆+)

(
cos(t− t′)− sin ρ′

cos ρ′

)∆+−1

θ(π/2− ρ′ − |t− t′|)
(3.2)

where we have used that

σ =
cos(t− t′)− sin ρ′ sin ρ

cos ρ cos ρ′
(3.3)

This kernel behaves like a compactly supported boundary distribution around t′, and for

ρ′ → π/2, i.e. when the bulk point approaches the boundary, the support shrinks. Notice

also that the integral
∫
dtKφ(t) converges for bounded φ since, for d = 1, ∆+ − 1 is

always greater than −1 (it is actually greater or equal than −1/2). As mentioned in

the Introduction, we can see that with the replacement ν → −ν we will have instead

an integrand of the form σ∆−−1 = σ−1/2−ν , which is not guaranteed to converge for any

bounded φ unless ν < 1/2. However the unitary bound is ν = 1. We will see how to make

this work shortly.

An interesting particular case is the massless scalar field, where we have,

ΦM=0
D (t′, ρ′) =

1

2

π/2−ρ′+t′∫
−π/2+ρ′+t′

φ(t) dt , (3.4)

Thus we see that every boundary point, spacelike separated from the bulk point, contributes

equally. We will see that in the case of Neumann boundary conditions this behaviour is

drastically changed.

Even bulk dimensions. In general even bulk dimensions the boundary is connected

and the kernel reads,

KD(x|X ′) = C(∆+) lim
ρ→π/2

(σ(x|X ′) cos ρ)∆+−d Θ(σ − 1) . (3.5)

where,

σ =
cos(t− t′)− sin ρ′ sin ρ cos (Ω− Ω′)

cos ρ cos ρ′
(3.6)

and

C(∆+) =
(−1)(d−1)/22∆+−d−1Γ(∆+ − d/2 + 1)

πd/2Γ(∆+ − d+ 1)
(3.7)

– 8 –
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Figure 1. We show one mode of Φ as a function of ν and the expression
∫
Kφ, for d = 15. It is

evident they coincide only for ν > 13/2.

Here Ω−Ω′ represents the angular separation in the d−1-dimensional sphere. In this case,

as opposed to d = 1, the integral kernel is only defined for ∆+ > d−1, so there is a window

d/2 < ∆+ < d− 1 where the original HKLL does not make sense. In figure 1 this is shown

for d = 15, where the kernel breaks down at ν = 13/2 and below. Again, we will solve this

issue at the same time of changing to mixed boundary conditions in the next section.

Odd bulk dimensions. By similar methods as those for the even case, we have for d+1

odd dimensions,

KD(t,Ω|X ′) := D(∆+) lim
ρ→π/2

(cos ρ σ)∆+−d log(σ cos ρ) Θ(σ − 1)

D(∆+) :=
(−1)(d−2)/22∆+−dΓ

(
∆+ − d

2 + 1
)

π(d+2)/2Γ(∆+ − d+ 1)
.

(3.8)

We see that the main difference with d+1 even dimensions is the appearence of a log(σ cos ρ)

factor. It was shown in [2] that K transforms covariantly anyway. For the same reasons as

in the even case, when integrating Kφ there will be a divergence at the endpoints of the

range of integration for ∆+ < d − 1 regardless of the log(x) factor (that contributes with

a divergence bounded from above by 1/xε for an arbitrarily small ε > 0 when x→ 0, so it

is not relevant). In the particular case of d = 2 this problem is not present with Dirichlet

boundary conditions since ∆+ ≥ 1, unless we consider ∆+ = 1 but this is a more subtle

scenario since the solutions of the Klein-Gordon equation degenerate and requires further

analysis which we will not perform. In d = 2 dimensions, then, the problem of extending

the kernel K will arise for Neumann boundary conditions, where after the replacement

ν → −ν, we will get K ∼ x−1−ν log(x) for small x = σ cos ρ. This behavior is clearly

divergent in the window of interest 0 < ν < 1. In the rest of the section we explain how to

extend K appropriately.

Dirichlet boundary condition extended to ∆+ < d − 1. As we discussed before,

the global AdS kernel with Dirichlet boundary conditions is not suited for the case ∆+ < 2

for d = 3, since a divergence appears in (3.5). Here we will show how to extend the

original kernel K of [2] of global AdSd+1 to the lowest possible values of the dimension,

d/2 < ∆+ < d − 1. This is the same as saying 0 < ν < d/2 − 1. We will later use such

extension to construct the kernel with Neumann boundary conditions easily.
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We first consider the simplest case d = 3. The idea is to make an analytic continuation

in ν of the bulk field. Since the bulk field is a solution of the Klein-Gordon equation and

its dependence in ν is analytic, the expression
∫
Kφ should be analytic in ν.

We start by defining the bulk field at the origin as a function of ν,

Φ̃(ν) := ΦD(~0)

as well as

f(ν) := C(∆+)

∫
dΩ
√
−h
∫ π/2

−π/2
dtφ(t,Ω)(cos t)−∆− .

We know that for ν > 1/2 both expressions coincide, Φ̃ = f . We would like to find an

analytic extension of f , that we call g. We take f and add something that vanishes for

ν > 1/2 to cancel the divergence. It is clear that φ(t,Ω)
(

cos t
π
2
−t

)−∆−
is analytic around

t = π
2 , so let

φ(t,Ω)

(
cos t
π
2 − t

)−∆−

=

∞∑
n=0

b+n (π/2− t)n

be its Taylor series around that point. Analogously, let
∑∞

n=0 b
−
n (t+ π/2)n be the Taylor

series of φ(t,Ω)
(

cos t
t+π

2

)−∆−
around t = −π

2 . Note that b±0 = φ(±π/2,Ω). Then, we can

define

g(ν) := C(∆+)

∫
dΩ
√
−h lim

ε→0

(
(b+0 + b−0 )

ε−∆−+1

−∆− + 1
+

∫ π/2−ε

−π/2+ε
dtφ(t,Ω) (cos t)−∆−

)
.

(3.9)

In order to prove that g extends f , let us start by noticing that g is well defined for

ν > 0, since

g(ν)= C(∆+)

∫
dΩ
√
−h lim

ε→0

(
((b+0 + b−0 )

ε−∆−+1

−∆− + 1
+

∫ π/2−ε

0

(π/2− t)−∆−

∞∑
n=0

b+n (π/2− t)ndt

+

∫ 0

−π/2+ε

(t+ π/2)−∆−

∞∑
n=0

b−n (t+ π/2)ndt

)

= C(∆+)

∫
dΩ
√
−h lim

ε→0

(
((b+0 + b−0 )

ε−∆−+1

−∆− + 1
−
∞∑
n=0

b+n
1

n−∆− + 1
((π/2− t)n−∆−+1)

∣∣∣∣π/2−ε
0

+

∞∑
n=0

b−n
1

n−∆− + 1
((t+ π/2)n−∆−+1)

∣∣∣∣0
−π/2+ε

)

= C(∆+)

∫
dΩ
√
−h lim

ε→0

(
((b+0 + b−0 )

ε−∆−+1

−∆−+1
−
∞∑
n=0

b+n
1

n−∆−+1
((ε)n−∆−+1−(π/2)n−∆−+1)

+

∞∑
n=0

b−n
1

n−∆− + 1
((π/2)n−∆−+1 − (ε)n−∆−+1)

)

= C(∆+)

∫
dΩ
√
−h

( ∞∑
n=0

b+n
1

n−∆−+1
(π/2)n−∆−+1 +

∞∑
n=0

b−n
1

n−∆−+1
(π/2)n−∆−+1

)
<∞ ,

(3.10)
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where in order to obtain the last line we used that if d = 3, then n−∆− + 1 > 0 if n > 0,

which implies that the terms with ε go to zero. Also we need to prove that g(ν) = f(ν)

for ν > d
2 − 1, which is a direct consequence of the fact that in this case −∆− + 1 > 0 and

then the regulating term in (3.9) goes to 0 and the integral is just f(ν) which converges.

It only remains to see that g(ν) = Φ̃(ν) if ν > 0. To achieve this let us note that g,

as f , is analytic in ν, because this could only fail if ν is such that −∆− + 1 = 0. However,

this zero is cancelled by the pole in the Gamma function coming from C(∆+) (see (3.7)).

Therefore, we have two analytic functions, g(ν) and Φ̃(ν), with the same connected domain

and that agree in an interval (ν > 1/2), thus by the identity theorem we can conclude that

Φ̃(ν) = g(ν) for ν > 0.

Note that what we have here is essencially the same procedure as what is done to

extend the Gamma function integral representation to the whole complex plane. Actually

this is the seed to treat more general cases and extend distributions that depend on some

parameter, as nicely explained in [17]. Basically, we are performing an analytic continuation

in λ of the distribution P (x)xλ+ with P (x) some nice function. More precisely, we are

taking (cos t)−∆− =
(

cos t
π/2−t

)−∆−
(π/2 − t)−∆− and then x = π/2 − t, λ = −∆− and

P =
(

cos t
π/2−t

)−∆−
. The Taylor expansion of P gives a sum of distributions of the form xλ+,

each with different λ. The analytic continuation allows to extend to arbitrary negative

λ (but with λ non negative integer). The factor Γ(∆+ − d + 1) = Γ(−∆− + 1) in the

denominator of C(∆+) actually allows to consider negative integer λ = −∆−, since it

cancels the divergence.

From [17], we learn that for the generic case d ≥ 3 higher order terms in the Taylor

expansion need to be included. Calling n0 the number of regulating terms,

g(ν) := C(∆+)

∫
dΩ
√
−h lim

ε→0

n0−1∑
j=0

(b+j + b−j )
ε−∆−+1+j

−∆− + 1 + j
+

∫ π/2−ε

−π/2+ε
dtφ(t,Ω) (cos t)−∆−

 .

(3.11)

extends the original HKLL expression
∫
Kφ for arbitry values of ν. Note that we can read

off the extended kernel K and each regulating term can be interpreted as a derivative of a

delta function, implying that K is not really an integral kernel. Figure 2 compares g and

Φ̃ for different number of regulating terms.

3.2 HKLL adapted to Robin boundary conditions

Even bulk dimensions. First of all, in light of the previous section, we should now take

the following limit to get the boundary field:

φ := lim
ρ→π/2

ΦN

(cos ρ)∆−
(3.12)
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Figure 2. We show one mode of Φ̃ as a function of ν (violet) and the regularized expression of∫
Kφ given by (3.11) for n0 = 1, 2, 3, 4 and d = 15. The gray vertical lines depict the place where

the domain of each curve ends. It is evident that with each additional regulating term, the kernel K

can be extended one negative unit in ν. The graphs are truncated because we are using a non-zero

regulator ε = 0.01.

We begin with the simplest case, 1 + 1-dimensional AdS and Neumann boundary

condition. Instead of going through all the labor of [1] we can just replace ∆+ with ∆−
in (3.2).9 This is not a convergent expression now, for the exponent is −∆+ which can

get below −1 if ν > 1/2. We can start by regularizing the integral, just to give another

point of view with a more hands-on feeling, before implementing an analytic continuation

argument that anyway is actually equivalent. The integral is divergent at the boundaries

of the integration domain. So we integrate up to these values ∓ε and add a term that takes

into account this regularization, i.e. it should have the values of the integrand for ε → 0

and should vanish for ν < 1/2. The final result is

ΦN (t′, ρ′) = 2C(∆−) lim
ε→0

[ (
φ(π/2− ρ′ + t′) + φ(−π/2 + ρ′ + t′)

) ε∆−

∆−

+

∫ π/2−ρ′+t′−ε

−π/2+ρ′+t′+ε
dtφ(t)

(
lim

ρ→π/2
σ cos ρ

)−∆+
]
.

(3.13)

It is straightforward that the ε∆− term is zero for ν < 1/2. We can check it is finite for

9The reader may wonder if this is an admissible step, since as discussed previously, the fact that the

frequencies were equispaced was crucial in the construction of K using a mode decomposition. However, as

also showed in [2], one can alternatively construct a spacelike-supported Green function and read from it K.

Such Green function can be obtained directly from the Klein-Gordon equation with a Dirac delta source,

written in terms of σ. Since the Neumann boundary condition is AdS invariant, the AdS invariant Green

function we need is the same as that of [2] and everything goes through. Having said this, we will comment

in more detail the relation between Neumann and Dirichlet solutions of the Klein-Gordon equation below,

taking into account their different frequencies.
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ν > 1/2, for example at the origin of AdS2 we have:

ΦN (~0) = 2C(∆−) lim
ε→0

[
(φ(π/2) + φ(−π/2))

ε∆−

∆−
+

∫ π/2−ε

−π/2+ε
dtφ(t) cos−∆+ t

]

= 2C(∆−) lim
ε→0

[∫ π/2−ε

−π/2+ε
dt
d

dt

(
φ(t) sin t

cos∆− t

∆−

)
+

∫ π/2−ε

−π/2+ε
dtφ(t) cos−∆+ t

]

=
2C(∆−)

∆−
lim
ε→0

[∫ π/2−ε

−π/2+ε
dt φ(t) (cos t)1+∆− (∆− + 1) + φ′(t) sin t cos∆− t

]

=
2C(∆−)

∆−

[∫ π/2

−π/2
φ(t) (cos t)2−∆+ (∆− + 1)) + φ′(t) sin t cos∆− t dt

]
<∞ ,

Again, it is interesting to consider the particular case of the massless scalar field:

ΦM=0
N (t′, ρ′) =

φ(π/2− ρ′ + t′) + φ(−π/2 + ρ′ + t′)

2
. (3.14)

In this way we see that, for Neumann boundary conditions, a massless scalar field can be

expressed at any point in AdS2 as a function of its boundary value at the two points where

the null geodesics meet the boundary. This is in clear contrast with the result obtained

for the Dirichlet case (3.4), where every boundary point spacelike separated from the bulk

point contributes equally.

At first sight it may be surprising that the kernel found for Dirichlet boundary condi-

tions in d = 3 (3.9) is almost identical to the one found for Neumann boundary conditions

in d = 1 (3.13), replacing ∆+ by ∆−. In fact, in the following we will see that if ΦN is the

scalar field solution with Neumman boundary condition, we have

Φ̃N (ν) = Φ̃D(−ν) , (3.15)

where 0 < ν < 1 and Φ̃D is the solution with Dirichlet boundary condition as a function

of ν.

Therefore, once this is proved, the kernel of Neumann boundary condition is immedi-

ately constructed from the one with Dirichlet boundary condition. The only work to do is

to extend g(ν), found in the previous subsection, to the range −1 < ν. This can be done

by adding one more term to the regulator. In the case of even AdSd+1 this corresponds to

g(ν) = C(∆+)

∫
dΩ
√
−h lim

ε→0

(
n0∑
j=0

(b+j + b−j )
ε−∆−+1+j

−∆−+1+j

+

∫ t+−ε

t−+ε
dtφ(t,Ω)

(
lim

ρ→π/2
σ cos ρ

)−∆−
)
. (3.16)

In order to prove (3.15), remember that the radial solution to the scalar field with Dirichlet

boundary condition is Φ3 while for Neumann boundary condition is Φ4 (see (2.2)), each

with their corresponding frequencies [28] ω(D,N) = ±(∆(+,−) + l + 2n), with n ∈ N. It is
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straightforward to check that both solutions are related by the change ν 7→ −ν. Then, by

replacing (3.16) in (3.15) we get

ΦN (t′,Ω′, ρ′) = C(∆−)

∫
dΩ
√
−h lim

ε→0

( n0+1∑
j=0

(b+j + b−j )
ε−∆++1+j

−∆+ + 1 + j

+

∫ t+−ε

t−+ε
dtφ(t,Ω)

(
lim

ρ→π/2
σ cos ρ

)−∆+
)
,

(3.17)

We should note that by obtaining the Neumann expression from an analytic continuation of

the Dirichlet kernel, KN inherits all the nice properties of KD. In particular, the spacelike

support. And again, KN contains derivatives of the delta function.

Finally, in order to obtain the holographic expression of the bulk field with Robin

boundary condition, ΦR, we note that

ΦR(t′,Ω′, ρ′) = cos γ ΦD(t′,Ω′, ρ′) + sin γ ΦN (t′,Ω′, ρ′) , (3.18)

where ΦD and ΦN have the radial solutions Φ3 and Φ4 respectively, but with the frequencies

given by (2.6). Note that by direct inspection the Dirichlet and Neumann kernels do not

depend on these frequencies, contrary to what is perhaps usually claimed based on the

original proposals [1, 2]. Because of this there is no obstacle in using the Robin frequencies

in (3.18) which only enter through the value of the field at the boundary φ and not in the

corresponing K’s. Then,

KR = cos γ KD + sin γ KN (3.19)

Odd bulk dimensions. In this case the procedure can be repeated as in the even di-

mensional case. The only difference is that there are two relevant Taylor series, the one of

φ(t,Ω)
(

cos t
π
2
−t

)−∆−
and that of φ(t,Ω)

(
cos t
π
2
−t

)−∆−
log
(

cos t
π/2−t

)
. We present the expression

of K in the case of Dirichlet boundary conditions with d = 2 for simplicity and because the

extension to higher dimensions and Neumann boundary conditions follows the same lines

as before:

ΦD(~0) = D(∆+)

∫
dΩ
√
−h lim

ε→0

[
(φ(π/2,Ω) + φ(−π/2,Ω))

ε−∆−+1

−∆− + 1
log(ε)

+

∫ π/2−ε

−π/2+ε
dtφ(t,Ω) (cos t)−∆− log(cos t)

]
.

(3.20)

4 Boundary-to-bulk map on AdS causal wedges

4.1 The map K with Dirichlet boundary conditions revisited

Let us begin discussing the physics in the Poincaré patch. In the original references [1, 2]

the smearing function for the Poincaré patch was constructed from the one on global AdS.

We stick to their notation. The final result in 1 + 1 dimensions reads

K(T |T ′, Z ′) =
2∆+−1Γ(∆+ + 1/2)√

πΓ(∆+)
lim
Z→0

(
Zσ(T, Z|T ′, Z ′)

)∆+−1
Θ(σ − 1) , (4.1)
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while for d+ 1 even dimensions (d > 1),

K(T, ~X|P ) =
(−1)(d−1)/22∆+−d+1Γ(∆+ − d/2 + 1)

πd/2Γ(∆+ − d+ 1)
lim
Z→0

(
σ(T, ~X,Z|P )Z

)∆+−d
. (4.2)

The case of odd bulk dimensions is similar but with a logarithmic dependence, just as in

the global case. We should say that these maps are meant to act not in the global AdS

boundary field φ defined in the previous section, but on a rescaled one defined by

Poincaré patch: φ := lim
Z→0

Z−∆+Φ (4.3)

where we are abusing notation and in this section still calling φ this slightly new bound-

ary field.

An extension of these expressions to accomodate a dimension down to the unitary

bound can be performed following the same lines as in the global AdS case. However,

this procedure does not reflect the simple nature of K on AdS causal wedges, where a

Fourier transform can be used and simplifies greatly all the computations. The Poincaré

patch is a special case of a causal wedge, so we study it directly in momentum space.

Moreover, let us concentrate in the 2 + 1 dimensional case, since higher dimensions can be

incorporated easily.

Poincaré patch in 2 + 1 dimensions. We will proceed following [9] and go beyond to

show that the kernel K has spacelike support and is in fact real, different from that of [2]

which contains a logarithm and is non-real in the coordinate representation (below we also

compare to the momentum representation in [2]). Let us first write the metric as

ds2 =
−dT 2 + dZ2 + dX2

Z2
(4.4)

and expand the solutions of the Klein-Gordon equation as Φ ∝
∫
d2ke−iωT+ikXXVk(Z).

Then it follows that for Dirichlet boundary conditions at Z = 0 we have,

Vk(Z) = ZJν(
√
−k2Z), k2 = −ω2 + k2

X . (4.5)

Since the small Z limit is Vk(z) ∼ 2−ν(−k2)ν/2Z∆+/Γ(∆+), the kernel is

K(T,X|T ′, X ′, Z ′) = 2νΓ(∆+)

∫
R2

dω dkX
(2π)2

e−iω(T ′−T )+ikX(X′−X)(ω2 − k2
X)−ν/2Vk(Z

′)

(4.6)

This is slightly different from [2], but the difference is crucial. In that reference the integral

is in the range |ω| > |kX |, however the expression
∫
Kφ using (4.6) correctly reproduces

the bulk field if the Fourier transform of φ has timelike support. In other words, there

is no need to enforce the modes of K to be timelike. The reader may wonder about the

ambiguity in the integrand in the range |ω| ≤ |kX |, however the integrand is analytic in k2

(see below). K is also manifestly real.
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The kernel is actually spacelike supported: assume we have a non-spacelike separation10

σ ≤ 1, and since we have one point at the boundary, we set Z = 0 and then we look at σZ

in this limit:

∆X2 + Z ′2 −∆T 2 ≤ 0⇒ Z ′2 < ∆T 2 for all ∆X2 6= 0 .

Then, when ∆T + Z ′ < 0 taking a contour of integration in the complex ω upper-half

plane allows to perform the integral in ω. It is important that Vk(Z) is analytic in ω in

the whole complex plane, and this accurs thanks to the factor (ω2−k2
X)−ν/2 which cancels

the non-analytic factor of Jν(
√
ω2 − k2

XZ). After noting this, the procedure is standard

and the integral on the curve such that ω = Reiθ, with θ ∈ (0, π) and fixed large R, goes

to zero.11 In the case that ∆T > Z ′ the contour of integration needs to be taken in the

lower-half plane. If one assumed spacelike separation, then the contours for large |ω| would

not go to zero and the previous argument would not work. Note that in [29] the spacelike

support property was shown to hold but through a Wick rotation in the boundary spatial

coordinate. We claim this somewhat strange procedure is not necessary if K is defined using

all momenta and taking into account that the boundary field has only timelike support in

momentum space.

1 + 1 Rindler wedge. We include this case just as a warm up for the 2 + 1 dimensional

one. Here we depart from the original work [1] since there an effort is made towards

constructing K so that it works even when the bulk point is behind the horizon, i.e.

outside the causal wedge. Instead, we are interested in a kernel K defined only inside the

wedge, and we follow [9] but adapted to one less spacelike dimension. First consider the

AdS-Rindler metric

ds2 =
1

z2

[
−(1− z2)dη2 + (1− z2)−1dz2

]
(4.7)

where z ∈ (0, 1]. The boundary field is again different from that of the Poincaré case:

AdS Rindler: φ := lim
z→0

z−∆+Φ (4.8)

The kernel reads

K(η|η′, z′) =

∫
dω

2π
e−iω(η−η′)vω(z′) (4.9)

with vω(z) the Dirichlet mode of the Klein-Gordon equation with frequency ω:

vω(z) = z∆+(1− z2)−iω/22F1

(
∆+ − iω

2
,

1 + ∆+ − iω
2

;
1

2
+ ∆+; z2

)
(4.10)

This kernel is not a priori well-defined, since the modes vω grow like a power of ω. However,

taking into account the discussion in the Introduction, we will see in the more interesting

case of 2 + 1 dimensions that this K is actually a good map between correlators (as shown

in [9]) and even more that is spacelike supported.

10The invariant distance in Poincaré coordinates is σ = ∆X2+∆Z2−∆T2

2ZZ′ .
11We are using the asymptotic expression Jν(z) ∼ z−1/2 cos(z − (ν+1/2)π

2
) for large |z| [30].
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2 + 1 Rinder wedge. As discussed previously, the kernel K for the Rindler wedge was

properly treated by Morrison in [9]. Consider the metric

ds2 =
1

z2

[
−(1− z2)dη2 + (1− z2)−1dz2 + dχ2

]
(4.11)

where again z ∈ (0, 1]. The kernel then reads

K(y|x′, z′) =

∫
d2k

(2π)2
eik·(x

′−y)Vk(z
′) (4.12)

where k ·x = −ωη+ k1χ, and with Vk(z) the Dirichlet mode of the Klein-Gordon equation

with two-dimensional momentum k:

Vk(z) = z∆+(1− z2)−iω/22F1

(
∆+ − iω + ik1

2
,

∆+ − iω − ik1

2
; ∆+; z2

)
(4.13)

The cautionary comment in the 1 + 1 case regarding the power-law growth of the modes

is in this case worth revisiting. For timelike and null momenta the conslusion remains.

For spacelike momentum the growth is exponential. It was an important observation of [9]

that this is not a problem if one uses boundary test functions constructed from compactly

supported bulk test functions as fF =
∫

supp(F )KF , as discussed in the Introduction.

Let us show that this K is actually spacelike supported. First of all, the invariant

distance in these coordinates is given by

σ =
cosh ∆χ−

√
(1− z2)(1− z′2) cosh ∆η

zz′
(4.14)

Spacelike separation between a bulk point and a boundary point means that σz > 0 in

the limit z → 0, while timelike separation means σz < 0. It is convenient to introduce an

alternative radial coordinate:

r := tanh−1 z, r ∈ (0,∞)

then timelike separation means

cosh r cosh ∆χ < cosh ∆η (4.15)

which implies that a necessary condition for timelike support is r < |∆η|. Let us now write

K as

K(y|x′, z′) =

∫
dk1

(2π)
eik

1∆χ

∫
dω

(2π)
e−iω∆ηVk(z

′) (4.16)

and perform a complex integral similar to that in the Poincaré patch. The integrand is

analytic in ω and then we can show the integral is zero by analyzing the behavior for large

|ω|, more precisely |ω| � |k1|,∆+ > 0. In this particular limit case [9],

Vk ∼ |ω|1/2−∆
√

tanh r
(
eirω + e−irω

)
(4.17)

where we omitted unimportant factors. Then, the integrand can be bounded as (with

ω = Reiθ) ∣∣e−iω∆ηVk
∣∣ ≤ R1/2−∆

(
eR sin θ(∆η−r) + eR sin θ(∆η+r)

)
→ 0 (4.18)
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where the limit is obtained in the timelike case r < |∆η| and choosing the sign of Im

ω appropriately. We conclude then that K is actually spacelike and lightlike supported.

Actually, for ∆χ 6= 0 it can only be spacelike supported, by the same arguments. We

should stress once again that we have not made a Wick rotation of the boundary spatial

coordinate as in [2, 29].

4.2 The extension to Robin boundary conditions

Poincaré patch. There are at least two distinct routes to take. First, one can restrict

the global K to the Poincaré patch (asuming the boundary test function has support only

on the boundary of the Poincaré patch), and there is nothing additional to do but to

change coordinates in (3.18). However if one would like to mimic the analysis in [1, 2] to go

beyond the Poincaré horizon, then the antipodal map is needed and the spacelike support

is a required feature, but as remarked in [2] the kernel obtained is not spacelike supported.

The second route is to take advantage of the expression of K for the Dirichlet case as a

Fourier integral operator as in (4.6). We already showed it is real and spacelike supported.

Then, as already discussed, the Neumann K is obtained by just replacing ν → −ν, and

the Robin kernel is the linear combination

KR(T,X|T ′, X ′, Z ′) =

∫
R2

dω dkX
(2π)2

e−iω(T ′−T )+ikX(X′−X)

×
[
cos γ 2νΓ(∆+)(ω2 − k2

X)−ν/2Z ′Jν(
√
−k2Z ′)

+ sin γ 2−νΓ(∆−)(ω2 − k2
X)ν/2Z ′J−ν(

√
−k2Z ′)

]
(4.19)

where k2 = −ω2 + k2
X .

Rindler causal wedge. The way to extend (4.12) from ∆+ to ∆− is identical as the

previous case. The advantage comes from having expressed K as a Fourier transform

of Vk(z). Then, instead of extending K looking at where its singularities are in position

space, we can extend Vk(z) and then take its Fourier transform. Since there is nothing that

prevents from changing ν to −ν in Vk(z) (it is possible to check that the WKB analysis

of Vk(z) in [9] remains the same), the kernel with Neumann boundary condition is just

as in (4.12) but with Vk(z) evaluated on ∆− instead of ∆+. Finally, for Robin boundary

conditions one takes the same linear combination as in the global and Poincaré cases,

K(x|x′, z′) =

∫
d2k

(2π)2
eik·(x

′−x) (4.20)

×
[
cos γ z′∆+(1− z′2)−iω/22F1

(
∆+ − iω + ik1

2
,

∆+ − iω − ik1

2
; ∆+; z′2

)
+ sin γ z′∆−(1− z′2)−iω/22F1

(
∆− − iω + ik1

2
,
∆− − iω − ik1

2
; ∆−; z′2

)]
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5 Boundary-to-bulk map of correlators along the RG flow

Here we will follow the strategy and conclusions of [9] and perform some more explicit com-

putations (in particular we show in the following that the sensible assumption of microlocal

spectrum condition of [9] is satisfied). We are interested in AdS causal wedges, and in those

the kernel K can be cast in a very short form by means of the Fourier transform. Also, the

Fourier transform is crucial to understand the way we can use K to map correlators of the

boundary to bulk correlators, and to map bulk test functions to boundary test functions

(see the Introduction). For these reasons, we will stick to the Poincaré patch and comment

on the generalization to an arbitrary causal wedge and leave the global AdS case aside.

We would like to make explicit how the kernel K found in the previous section takes

a correlator of the perturbed CFT in the boundary and gives back a correlator in the bulk

with mixed boundary conditions. We will work with the 2-point Schwinger and Wightman

functions. In order to proceed, we will first of all make the analytic continuation of the

correlator found in [20] (see also [22]), in order to get the corresponding Wightman 2-

point function in the boundary. When perturbing the CFT by a double trace term of the

form f
2

∫
O2, with a relevant single-trace operator of weight ∆− , the Schwinger 2-point

function reads

s((τ, ~x); 0) =

∫
dd−1k

(2π)d−1
ei
~k.~x

∫ ∞
−∞

dkd
2π

eikdτ
Aν

k2ν + fAν
(5.1)

where k2 denotes the Euclidean squared momentum and

Aν = 22νπd/2
Γ(ν)

Γ(d2 − ν)
(5.2)

As mentioned, we have to obtain the corresponding Wightman function. The spatial

Fourier integral will play no part, so we concentrate on the dkd integral. Take τ = −i(t−iε),∫ ∞
−∞

dkd
2π

eikdτ
Aν

k2ν + fAν
=

∫ ∞
−∞

dkd
2π

ekdt−ikdε
Aν

(~k2 + k2
d)
ν + fAν

(5.3)

We are going to perform the integral going to the complex plane, and we take the branch

cut in the negative imaginay axis. Now, the contour of integration we choose is given in

figure 3. With the definition ω = ikd, with ω > 0 along the contour, it is easy to see that∫ ∞
−∞

dkd
2π

eikdτ
Aν

k2ν + fAν

= i

∫ ∞
0

dω

2π
e−iωt−ωεAν

[
1

(~k2 − (w − i0+)2)ν + fAν
− 1

(~k2 − (w + i0+)2)ν + fAν

]
(5.4)

Now using that

(~k2 − (ω ± i0+)2)ν = (|~k|+ ω ± i0+)ν(|~k| − ω ∓ i0+)ν = (|~k|+ ω)ν(|~k| − ω ∓ i0+)ν
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Re kd

Im kd

0+−0+

Figure 3. Integration contour.

after some straightforward manipulations,∫ ∞
−∞

dkd
2π

eikdτ
Aν

k2ν + fAν
= i

∫ ∞
0

dω

2π
e−iωt−ωεAν(|~k|+ ω)ν (5.5)

×

[
(~k − ω − i0+)ν − (~k − ω + i0+)ν

((~k2 − (ω − i0+)2)ν + fAν)((~k2 − (ω + i0+)2)ν + fAν)

]
The following result of generalized functions comes in handy [17],

(x+ i0+)ν − (x− i0+)ν = 2i sin(πν)θ(−x)|x|ν

so taking x = |~k| − ω we see that we get the condition of support in the future lightcone,

and then we can also take (~k2 − (ω ± i0+)2)ν = (|~k| + ω)ν(ω − |~k|)νe∓iπν = (−p2)νe∓iπν ,

with p2 = −ω2 + ~k2. Finally,∫ ∞
−∞

dkd
2π

eikdτ
Aν

k2ν + fAν
=
Aν
π

∫ ∞
0

dω

2π
e−iω(t−iε)

× sin(πν)(−p2)νθ(−p2)

(−p2)2ν + fAν2 cos(πν)(−p2)ν + (fAν)2
(5.6)

So the Wightman 2-point function corresponding to the double-trace deformation in the

CFT is given by12

ω2(x, 0) =
Aν sin(πν)

π

∫
ddk

(2π)d
ei
~k.~x−iω(t−iε) (−p2)νθ(−p2)θ(ω)

(−p2)2ν + fAν2 cos(πν)(−p2)ν + (fAν)2

(5.7)

Now we are in a position to apply the kernel K twice and show that it correctly gives

the Wightman 2-point function of the bulk scalar field with mixed boundary conditions. It

is actually a straightforward calculation. Take the Poincaré kernel (4.19) and the boundary

two-point function (5.7) and write∫
d2x1d

2x2KR(X1;x1)KR(X2;x2)ω2(x1, x2)

12This result, when expressed as an integral over a positive mass parameter as is done in the appendix,

is consistent with the Kallen-Lehmann representation found in the Euclidean setting in [31].
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These integrals contribute with two delta functions, which can be used to integrate the

momenta corresponding to each K. The result is then

Z1Z2 sin2 γ

∫
d2k

(2π)2
eik·(x

′
1−x′2)θ(−p2)θ(ω)× (5.8)[

cot γ Jν(
√
−p2Z1)+(−p2)νJ−ν(

√
−p2Z1)

][
cot γ Jν(

√
−p2Z2)+(−p2)νJ−ν(

√
−p2Z2)

]
(−p2)2ν + fAν2 cos(πν)(−p2)ν + (fAν)2

This is (modulo a normalization constant) the bulk two-point function with Robin bound-

ary conditions found in [26], with the identification

cot γ = −fAν (5.9)

We now comment on the microlocal analysis of (5.7) and in particular we would like

to show that it does satisfy the criteria of the microlocal spectrum condition (see (5.10)

below). It is evident from the expression (5.7) that the Fourier transform has support on

the (closure of the) future lightcone. Then, it remains to see where the singular support

of ω2 is. Of course, by Lorentz invariance we expect it to have singularities whenever the

geodesic distance from x1 to x2 is zero (since at the origin ω2 is singular). However, we

would like to be sure there are not singular points other than those. In order to study

this, we will use results from [10] and [32] (see also the very nice notes [11] for a smooth

introduction to wavefront sets). We leave the details to the appendix, and just state the

final result

WF (ω2) ⊆
{

(x1, k1;x2, k2) ∈ (T ∗R1,1)2 \ {0} | |x1 − x2|2 = 0, k2
1 ≤ 0, k1 ∼ −k2

}
(5.10)

namely the boundary two-point function of the deformed theory satisfies the microlocal

spectrum condition and this allows to map bulk test functions (smooth of compact support)

to admissible boundary test functions by using K, as discussed in the Introduction. The

result (5.10) can be interpreted as a confirmation of the assumption of [9], as well as a

generalization to the entire RG flow.

6 Conclusions

We have shown how to adapt the HKLL map to the case where the bulk field satisfies mixed

boundary conditions. This, in particular, allows to consider the case where the dimension

reaches the unitary bound ∆ = (d−2)/2. Along the way we learnt that actually the original

and standard construction of the HKLL map for Dirichlet boundary conditions only works

for ∆+ > d − 1 and so we extended the map to account for ∆+ > d/2. This procedure

turned out to be of great utility to learn how to analytically continue K to lower values

of ν and with the identification of Neumann boundary conditions as an extension of the

range of ν, we were able to construct the maps of HKLL adapted to Neumann boundary

conditions. The case of mixed (Robin) boundary conditions was then straightforward to

resolve, once we made a few comments on how the Robin frequencies only appear through

the boundary field and not through KD or KN .
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So far we discussed the global AdS spacetime. We then focused on causal wedges, in

particular the Poincaré patch and the Rindler wedge. In both cases we showed that the

map K is spacelike and real. Even more, there is such map for Robin boundary conditions,

suggesting there is a possible bulk reconstruction even from localised regions on a non

conformally-invariant boundary theory.

From the boundary QFT perspective, the mixed boundary conditions on the bulk are

known to be captured by the addition of a double-trace perturbation to the CFT. Then,

the fact that there is still a way to define K for any Robin boundary condition means that

there is a bulk reconstruction along the RG flow. The question is then if the very interest-

ing insights from [9], discussed at length in the Introduction, still hold when we break the

conformal invariance at the boundary. Namely, in order to be consistent, we asked whether

the kernel K can still be used to map correlators of the perturbed CFT to correlators of

the bulk theory with mixed boundary conditions, in the Poincaré patch. To this end we

showed that the boundary QFT 2-point function satisfies the microlocal spectrum condi-

tion (A.5) of [12]. With this result at hand we can follow the logic of [9] and claim that K

is a good object to act on boundary correlators, despite being exponentially divergent in

(spacelike directions of) momentum space. Even more, we explicitly mapped the boundary

2-point function to the bulk, reproducing the already known two-point function with Robin

boundary conditions in the Poincaré patch.

To conclude, we would like to point out first that the present work could be a starting

point for the exploration of the so called subregion duality with broken conformal invari-

ance at the boundary. For instance, it would be very interesting to adress the problem of

mapping higher point functions from the boundary to the bulk for non-Gaussian states.

Also, it remains to study the interacting bulk theory considering subleading terms in the

1/N expansion. This is a difficult task, since it is believed that a tower of fields of higher

dimensions is needed in order to reconstruct the interacting bulk field. Finally, the pres-

ence of true event horizons in the bulk seems worth considering, without resorting to the

unconventional analytic continuation of the boundary spacelike coordinate in [2].

A Wavefront sets, oscillatory integrals and microlocal spectrum condi-

tion

Let us start this appendix with a short overview on wave of front sets of distributions. This

will allow to state in a clear way the microlocal spectrum condition of [12] for a Wightman

2-point function.13 Finally we prove that this is satisfied for the perturbed CFT Wightman

2-point function. Most of the time we follow [10] and work with Rn, although the theory

of wavefront sets is well-suited for smooth manifolds.

Let f ∈ C∞(Rn) be a function and consider Φf : C∞c (Rn)→ R defined by

Φf (h) =

∫
Rn
h(x)f(x)dx. (A.1)

13We will only refer to the microlocal behavior of the 2-point functions, however the microlocal spectrum

condition of [12] is in fact a condition on all the correlators of the theory and permits, roughly speaking,

to assure that they can be combined without loosing control on the singular structure of these correlators.
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Here C∞c (Rn) denotes the set of compactly supported smooth functions. Note that Φf

is a linear map and so it is in the dual space of C∞c (Rn). The space of such continuous

linear functionals will be denoted by C ′∞c (Rn) (continuity is taken under certain topology,

see [10, 33]). Actually for (A.1) to make sense it suffices to require f ∈ L1
Loc(Rn), i.e. that

it is a locally integrable function.

From the above comments, one can regard C ′∞c (Rn) as a space that generalizes func-

tions, called the space of distributions with test functions C∞c (Rn). But distributions do

not always come from functions. As an example, a Lebesgue measure µ is not generally a

function but (A.1) still works if we change f(x)dx by dµ. The typical example is the Dirac

delta measure δ whose associated Φδ is defined by Φδ(h) = h(0) but there is no smooth

function f such that Φf = Φδ.

Different spaces of test functions C∞c (Rn) ⊆ S(Rn) ⊆ C∞(Rn) give place to differ-

ent distributional spaces by the same construction as above (S(Rn) denotes the space of

Schwarz functions), but the inclusions are reversed, C ′∞(Rn) ⊆ S ′(Rn) ⊆ C ′∞c (Rn) , these

spaces are called compact support distributions, tempered distributions and just distribu-

tions respectively.

A few examples are in order: if f(x) = ex, Φf ∈ C ′∞c (R), but Φf doesn’t belong to

C ′∞(R) or S ′(R). If g(x) = e−x
2

then Φg ∈ S ′(R)\C ′∞(R), because (A.1) converges for all

h ∈ S(R), but diverges for h(x) = ex
2
. In order to guarantee convergence of (A.1) for all

h ∈ C∞(R), one needs that the support of the distribution be compact (see [33] for details).

Roughly speaking, the support of a distribution is the complement of the set where the

distribution is zero. The δ distribution has support at the origin and the θ distribution has

support in [0,+∞].

An important object for us is the singular support of a distribution, which is formed

by those points in which it fails to be smooth. Namely, the complement of those points

where there is an open neighborhood where the distribution is of the form Φf for some

smooth function f . For instance the origin is the singular support of the δ distribution and

of the θ distribution, and more generally the boundary of a set is the singular support of

the corresponding characteristic function.

Given two distributions u, v ∈ C ′∞c (Rn), if both are smooth, that is u = Φf and v = Φg

with f and g smooth functions, the product uv is the distribution Φfg. Moreover, if only

v = Φg, the product is defined by uv(h) = u(gh), using gh as a test function for u. But

even in the case when neither of the two distributions are smooth, the product might be

defined. To do this we need to introduce the concept of wavefront set of a distribution.

For tempered distributions the Fourier transform is defined by û(h) = u(ĥ). From

this definition, if u is a smooth compactly supported distribution then û = Φf where

f(ξ) = u(gξ) and gξ : x 7→ e−iξ·x (see [10] or chapter 2 [34], for a nice review of this and

many of the following statements). Let us consider the following inequality

|û(ξ)| ≤ Cn(1 + |ξ|)−n, n ∈ N (A.2)

If u is a compactly support distribution which satisfies (A.2) for all n, then u must be

smooth. Even more, since u has compact support then u comes from a compactly supported
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smooth function. Then for u ∈ C ′∞c (Rn) the directions ξ for which u does not satisfy (A.2)

for some n are responsible for u not being smooth.

Given a distribution u ∈ C ′∞c (Rn) its wavefront set is a subset of Rn × Rn \ {0}
containing14 those points (p, ξ) such that p is in the singular support of u and ξ is a direction

such that φu doesn’t satisfies (A.2) for all φ ∈ C∞c (Rn) with φ(p) 6= 0 (observe that φu is a

compactly supported distribution). Geometrically the wavefront set of a distribution can

be thought as the points and directions in which the distribution fails to be smooth. An

enlightening example is the 2-dimensional step function h : R2 → R, h(x, y) = 1 if x ≥ 0 and

zero in another case, whose wavefront set is given by WF (h) = {(0, y, t, 0)|y ∈ R, t 6= 0},
that is the problematic directions are those perpendicular to the step.

The most important result about wavefront set pertains the possibility of multiplying

two distributions:

Theorem A.1 ([10], Theorem 8.2.10) If u and v are distributions and there is no el-

ement (p, ξ) ∈ WF (u) such that (p,−ξ) ∈ WF (v). Then the previous definition of the

product uv can be generalised.

For example if we consider the δ distribution, since it is a smooth compactly supported

distribution, δ̂ = Φf with f(ξ) = δ(e−iξ·x) = 1, and then δ̂ = 1 so it does not satisfies (A.2)

for any direction. By the previous theorem we cannot define δ2 as proposed in [10]. On the

contrary, a step distribution in the n̂ direction and a step distribution in another direction

can be multiplied.

We are specially interested in a specific kind of distributions commonly called oscilla-

tory integrals, which are obiquitous in QFT. An oscillatory integral is a formal expression

Iϕ[a](x) =

∫
Rs
eiϕ(x,θ)a(x, θ)dθ (A.3)

for a function on Rn. Here ϕ is a phase function, a is an asymptotic symbol of some

order and θ ∈ Rs (so it may not necessarily be related to the x coordinates by a Fourier

transform). A phase function is a function which is continuous and homogeneous for

positive scalars in the θ variable, which is smooth in Rn × (Rs \ {0}) and whose gradient

(∇xϕ,∇θϕ) is never zero for θ 6= 0. a is an asymptotic symbol of order m if for each

compact K ⊆ Rn, there are constants such that

|(Dα
xD

β
θ a)(x, θ)| ≤ dα,β,K(1 + |θ|)m−|β|, for x ∈ K and θ ∈ Rs (A.4)

Oscillatory integrals can be considered as well-defined distributions.

An immediate task that follows is to characterize their wavefront sets, namely their

singularity structure. To this end let us introduce two manifolds,

M(ϕ) = {(x, θ)Rn × (Rs \ {0})|(∇θϕ)(x, θ) = 0} ⊆ Rn × Rs

SP (ϕ) = {(x, (∇xϕ)(x, θ))|(x, θ) ∈M(ϕ)} ⊆ Rn × Rn

14To be precise the wavefront set is exactly the set of point (p, ξ) ∈ Rn × Rn \ {0} such that p is in the

singular support of u and ξ does not have a conic neighbourhood V such that φu satisfies (A.2) in V , for

all φ ∈ C∞c (Rn) with φ(p) 6= 0.
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the latter is called the manifold of stationary phase for ϕ. The following theorem provides

a very useful constraint on the wavefront set of the oscillatory integral,

Theorem A.2 ([32], Theorem IX.47 or [10], Theorem 8.1.9) For any phase func-

tion ϕ(x, θ) and asymptotic symbol a(x, θ), WF (Iϕ(a)) ⊆ SP (ϕ).

The microlocal spectrum condition, often denoted µSC, is a statement about the wave-

front sets of the Wightman functions of a QFT [12]. We are just going to express it for the

2-point function ω2,

WF (ω2) ⊆
{

(x1, k1;x2, k2) ∈ (T ∗R1,1)2 \ {0} | |x1 − x2|2 = 0, k2
1 ≤ 0, k1 ∼ −k2

}
(A.5)

where k1 ∼ −k2 means the parallel transport of k1 ∈ T ∗x1
(R1,1) from x1 to x2 through a

null geodesic coincides with −k2. Roughly speaking, this condition guarantees that the

singularity structure of the 2-point function is at most as bad as lying in the lightcones of

fixed x1 and with future pointing causal momenta k1.

Now we are ready to turn to the task of proving that the 2-point function of the

perturbed CFT (5.7) satisfies µSC (A.5). We can start rewriting the appropriate integration

limits in order to eliminate the factor θ(−p2)θ(ω) and then apply the change of variables

m2 = ω2 − |~k|2 = −p2,

ω2(x, 0) =
Aν sin(πν)

π

∫
dd−1k

(2π)d
ei
~k.~x

∫ ∞
0
dm

e−i
√
m2+~k2t√

m2 + ~k2

m2ν+1

m4ν + fAν2 cos(πν)m2ν + (fAν)2

=
Aν sin(πν)

π

∫ ∞
0

dm2 m2ν

m4ν + fAν2 cos(πν)m2ν + (fAν)2
∆+(x,m2)

where ∆+(x,m2) is proportional to the free massive Klein-Gordon 2-point function in

Minkowski space. Leaving aside multiplicative factors, it is an oscillatory integral with

phase function

ϕ(x,~k) = −t|~k|+ ~x · ~k ∈ R4 × R3 (A.6)

and

a(x,~k,m2) =
e−it[
√
m2+~k2−|~k|]√

m2 + |~k|2
(A.7)

is an asymptotic symbol of order −1 (see below and also [32] chapter IX, example 7 and

problem 68). Then because of Theorem A.2,

WF (∆+(x,m2)) ⊆ SP (ϕ) = {(0,~0,−|~k|, ~k)} ∪ {(±|~x|, ~x,−λ|~x|,∓λ~x)|λ > 0},

so the wavefront set of ω2(x, 0) must satisfy the same inclusion because it is just a con-

tinuous sum over distributions ∆+(x,m2) whose wavefront sets satisfy it (moreover the

wave front sets do not depend on m). A sign convention comment is in order: we followed

throughout the paper the definition of Fourier transform with − sign, which is the one that

is used to prove Theorem A.2 in the cited references. However, the µSC is stated assum-

ing the opposite sign convention in the Fourier transform. This explains why the result
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above seems to be in contradicition with (A.5). Note also that the singular directions in

momentum space are tangent to the light-cone, so the WF set is properly contained in the

set used to define the µSC.15

In order to arrive to the above conclusion we claimed that φ is a phase function and

a an asymptotic symbol. The former is easy to justify, so we turn now to sketch the

proof of the latter, which is not proven in [32] (it is left as an exercise). In order to see

that a(x,~k,m) is an asymptotic symbol we present a possible approach, reducing to a

1-dimensional problem when we take derivatives: ~k → k ∈ R. This is roughly justified

because derivatives of |~k| are of the form ki/|~k| and then behave like |~k|0 at large |~k|. First

let us write a(x,~k,m) = f(~k)h(t,~k), where f(~k) = (m2+|~k|2)−
1
2 and h(t,~k) = exp{−itg(~k)}

with g(~k) = (m2 + |~k|2)
1
2 − |~k|. After some calculations one can probe that f and g are

actually asymptotic symbols of order −1, and for large |~k|, |∂δ
ki
h(t,~k)| ≤ |~k|−1−(δ) for all

δ > 0. Applying Leibniz’s rule we see that,

|∂βk ∂
α
t (f(k)h(t, k))| ≤

∑
0≤µ≤β

(
β

µ

)
|∂µk f(k)||∂β−µk ∂αt h(t, k)|

=
∑

0≤µ≤β

(
β

µ

)
|∂µk f(k)||∂β−µk (gα(k)h(t, k))|

=
∑

0≤µ≤β

∑
0≤ν≤β−µ

(
β

µ

)(
β − µ
ν

)
|∂µk f(k)||∂νk (gα(k)||∂β−µ−νk h(t, k))|,

Then if we separate the terms with ν = β − µ from the others, we can bound them as

≤ C|k|−1−α−β for large k. The remaining therms, that is when β−µ−ν is positive, can be

bounded by ≤ C ′|k|−2−α−β , using the comments above and the fact that, if g is a symbol

of order −1, then gα is a symbol of order −α (see [34], Lemma 3.6). Thus, we can drop

them for large k. Finally,

|∂βk ∂
α
t (f(k)h(t, k))| ≤ C|k|−1−α−β ≤ C|k|−1−β for large k.

That is a(t, k) is an asymptotic symbol of order −1.
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15An additional technical point should be clarified: we proved the microlocal spectrum condition prop-

erty of ω2(x, 0), however in order to claim the same result for ω2(x1, x2) we should consider the pullback

of the wavefront set of ω2(x, 0) under r : (x1, x2) 7→ (x1 − x2, 0), with x = x1 − x2 (see [10], The-

orem 8.2.3 for the behavior of the wavefront set under pullback). The pull-back under r may enlarge

the wavefront so that (A.5) does not hold, however since r is a submersion we have WF (ω2(x1, x2)) =

{(x1, k;x2,−k) | (x1 − x2, k) ∈WF (ω2(x, 0))}, see [35].
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