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� In this article we consider the best polynomial approximation operator, defined in an
Orlicz space L�(B), and its extension to L�(B) where � is the derivative function of �� A
characterization of these operators and several properties are obtained.

Keywords Best polynomial �-approximation operators; Extended best polynomial
approximation from L� to L�; Orlicz spaces.

Mathematics Subject Classification 41A10; 41A50; 41A45.

1. INTRODUCTION

In this article we set � for the class of all continuous and nondecreasing
functions � defined for all real number t ≥ 0, with �(0+) = 0, �(t) → ∞
as t → ∞ and �(t) > 0 for x > 0. We also assume a �2 condition for the
functions �, which means that there exists a constant � = �� > 0 such that
�(2a) ≤ ��(a) for all a ≥ 0.

Now, given � ∈ �, we consider �(x) = ∫ x
0 �(t) dt � Observe that � :

[0,∞) → [0,∞) is a convex function such that �(a) = 0 iff a = 0� For such
a function �, we have �(x)

x → 0 as x → 0 and �(x)

x → ∞ as x → ∞, and,
according to [9], a function with this property is called an N function.
Observe that the function � satisfies a �2 condition if and only if the
function � satisfies a �2 condition.
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818 S. Acinas et al.

If � ∈ �, then it satisfies a �2 condition. Thus, the next inequality holds

1
2

(�(a) + �(b)) ≤ �(a + b) ≤ ��(�(a) + �(b)) (1.1)

for every a, b ≥ 0�
Also, note that the �2 condition on � implies

x
2��

�(x) ≤ �(x) ≤ x�(x), (1.2)

for every x ≥ 0�
Let B be a bounded measurable set in �n . If � ∈ �, we denote by

L�(B) the class of all Lebesgue measurable functions f defined on �n such
that

∫
B �(t |f |) dx < ∞ for some t > 0 and where dx denotes the Lebesgue

measure on �n . Note that as � ∈ � and it satisfies a �2 condition then
L�(B) is the space of all measurable functions f defined on �n such that∫
B �(|f |) dx < ∞. For the convex function �, L�(B) is the classic Orlicz
space that was very well studied in [9] and [14].

Let �m be the space of algebraic polynomials, defined on �n ,
of a degree at most m� Then a polynomial P ∈ �m is called a best
approximation of f ∈ L�(B) if and only if∫

B
�(|f − P |) dx = inf

Q∈�m

∫
B

�(|f − Q |) dx � (1.3)

Definition 1. For f ∈ L�(B), we set ��(f ) for the set of all polynomials
P that satisfy (1.3).

In the following, we also refer to ��(f ) as the multivalued operator
defined for functions in L�(B) and images on �m �

In this article, we study the nature of this best polynomial
approximation for functions in L�(B) and we extend, in a continuous way,
the definition of best polynomial approximation for functions belonging
to L�(B) where � = �′. These results extend those obtained in [3] for the
Lp case.

We point out that the conditional expectation is the most well-known
example of an extension of the best approximation operator. Originally,
we think of the conditional expectation as the projection of a function f ∈
L2 on a probability space (	,�,P ) onto the subspace of �0 measurable
functions which are in L2, where �0 denotes a sub sigma-algebra of ��
Using the fact that this projection is a monotone operator we can extend
this best approximation operator from L2 to L1 and thus we obtain the
well known conditional expectation operator. For �(t) = t p , 1 < p < ∞, a
similar best approximation operator is considered in Lp and then extended
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Best Approximation Operator 819

to Lp−1, see [11]. In that article, the approximation class is the set of all
the �0 measurable functions in Lp , where now �0 is a sub-sigma lattice
of �� This best approximation operator and other classical operators in
harmonic analysis are also considered in a general Orlicz spaces L�, see
[10], [1] or [8]. For the special case of �0 = 
∅,	�, that is, when the
approximation class is the set of constant functions in 	, the extension
of the best approximation operator was detailed studied in several articles,
see [12], [5] and [6]. Also, the extension of the best approximation
operator in L� for a general sub sigma-lattice �0 was treated in [2]. In
all of these cases, the monotonicity of the best approximation operator
was strongly used in the space where it was originally defined. If the
approximation class is the algebraic polynomials, we lose the monotonicity
of the best approximation operator and the extension has to be treated
in a different way. For the L2 case see [13], and for the Lp case we refer
to [3].

In Section 2, we define the best polynomial approximation operator
for each f ∈ L�(B) and we characterize this best approximation in a
similar way as has been done in [7] for functions of L�(B) in the case that
the approximation class is a lattice instead of the space of polynomials.
We also get a strong type inequality for f ∈ L�(B) which generalizes
Theorem 2.1 in [4], where the extended best polynomial approximation
operator is considered for functions in Lp(B). In Section 3, we use this
inequality to extend the best polynomial approximation from L�(B) to
L�(B), where � = �′� This is done in an easier way than the one developed
in [3], where the existence of the extension is proved without using
the inequality in Theorem 2.4. At the end of this section, we prove the
uniqueness and a continuity property for the extended best polynomial
approximation of f ∈ L�(B) for a strictly increasing functions � ∈ ��

2. EXISTENCE AND UNIQUENESS OF THE BEST POLYNOMIAL
APPROXIMATION OPERATOR IN L�(B)

For P ∈ �m , we set ‖P‖∞ = maxx∈B |P (x)| and ‖P‖1 = ∫
B |P | dx �

We begin with the existence of the best polynomial approximation
operator of functions in L�(B)� We start with the next lemma.

Lemma 2.1. Let � ∈ �, �(x) = ∫ x
0 �(t) dt and let Pn be a sequence in �m ,

such that there exists a constant C that satisfies
∫
B �(|Pn |) dx ≤ C � Then, the

sequence Pn is uniformly bounded.

Proof. From Jensen’s inequality, we have

|B|�
(

1
|B|

∫
B
|Pn | dx

)
≤

∫
B

�(|Pn |) dx ≤ C � (2.1)
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820 S. Acinas et al.

Then, since ‖P‖1 is equivalent to ‖P‖∞, for P ∈ �m and using the �2

condition on �, we obtain

�(‖Pn‖∞) ≤ M ,

for some constant M � Then, as �(x) goes to ∞ when x goes to ∞ the
lemma follows. �

The next two theorems follow standard techniques. However, for the
sake of completeness detailed proofs of them are included.

Theorem 2.2. Let � ∈ �, �(x) = ∫ x
0 �(t) dt and let f ∈ L�(B). Then, there

exists P ∈ �m such that∫
B

�(|f − P |) dx = inf
Q∈�m

∫
B

�(|f − Q |) dx �

Proof. Let I = infQ∈�m
∫
B �(|f − Q |) dx , then there exists a sequence


Pn�n∈� ⊂ �m such that∫
B

�(|f − Pn |) dx → I as n → ∞� (2.2)

Due to the monotonicity and convexity of � on [0,∞), we get

�

( |Pn |
2

)
≤ �

(
1
2
|Pn − f | + |f |

2

)
≤ 1

2
�(|Pn − f |) + 1

2
�(|f |)�

Thus, ∫
B

�

( |Pn |
2

)
dx ≤ 1

2

∫
B

�(|Pn − f |) dx + 1
2

∫
B

�(|f |) dx ,

and then

2
∫
B

�

( |Pn |
2

)
dx ≤

∫
B

�(|f |) dx + I + 1� (2.3)

Now, Lema 2.1 implies ‖Pn‖∞ ≤ K � Hence, there exists a subsequence

Pnk � ⊆ 
Pn�
n∈�� such that 
Pnk � converges uniformly on �m .

Let P = limnk→∞ Pnk � Since � satisfies the �2 condition, we have

�(|f − Pnk |) ≤ ��(�(|f |) + �(|Pnk |)) ≤ ��(�(|f |) + �(K ))�

Then, by the Lebesgue Dominated Convergence Theorem, we have I =∫
B �(|f − P |) dx . �
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Best Approximation Operator 821

The next theorem gives a characterization of the best polynomial
approximation of functions in L�(B).

Theorem 2.3. Let � ∈ �, �(x) = ∫ x
0 �(t) dt and let f ∈ L�(B)� Then P ∈

�m is in ��(f ) if and only if∫
B

�(|f − P |)sgn(f − P )Q dx = 0, (2.4)

for every Q ∈ �m �

Proof. For P in ��(f ) and Q ∈ �m we set

FQ (�) =
∫
B

�(|f − P + �Q |) dx �

Next, we prove that FQ is a convex function defined on [0,∞)� For a, b ≥ 0
such that a + b = 1, we have

FQ (a
1 + b
2) =
∫
B

�(|(a + b)(f − P ) + (a
1 + b
2)Q |) dx

≤
∫
B

�(a|(f − P ) + 
1Q | + b|(f − P ) + 
2Q |) dx

≤
∫
B
a�(|(f − P )| + 
1Q |) dx +

∫
B
b�(|(f − P )| + 
2Q |) dx

= aFQ (
1) + bFQ (
2),

for every 
1, 
2 ≥ 0� Then

FQ (0) = min
[0,∞)

FQ (
), (2.5)

and this identity holds if and only if 0 ≤ F ′
Q (0+).

Now, using the Mean Value Theorem we have

|�(|f − P + 
Q |) − �(|f − P |)|

|Q | ≤ |Q |(�(|f − P |) + �(|Q |)),

for 0 ≤ 
 ≤ 1�
Then, since |Q |(�(|f − P |) + �(|Q |)) is an integrable function, we are

allowed to differentiate inside the integral in the formula of FQ (
), and
therefore

0 ≤ F ′
Q (0+) =

∫
B

�(|f − P |)sgn(f − P )Q dx , (2.6)

for any Q ∈ �m .
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822 S. Acinas et al.

Now for any polynomial Q ∈ �m , we take the polynomial −Q in (2.6)
and this completes the proof. �

The following result, similar to Theorem 2.1 in [4], provides us an
inequality that we will need below.

Theorem 2.4. Let � ∈ �, �(x) = ∫ x
0 �(t) dt and let f ∈ L�(B)� Suppose the

polynomial P ∈ �m satisfies∫
B

�(|f − P |)sgn(f − P )Q dx = 0, (2.7)

for every Q ∈ �m � Then∫
B

�(|P |)|Q | dx ≤ 5��

∫
B

�(|f |)|Q | dx , (2.8)

for every Q ∈ �m satisfying sgn(Q (t)P (t)) = (−1)� at any t ∈ B such that
Q (t)P (t) 
= 0 and where � = 0 or � = 1.

Proof. Suppose first let Q ∈ �m such that Q (x)P (x) > 0.
Let N = 
x ∈ B : f (x) > P (x)� and L = 
x ∈ B : f (x) ≤ P (x)�.
Then

0 =
∫
N∪L

�(|f − P |) sgn(f − P )Q dx

=
∫
N

�(|f − P |) sgn(f − P )Q dx +
∫
L

�(|f − P |) sgn(f − P )Q dx

Thus, ∫
N

�(|f − P |)Q dx =
∫
L

�(|f − P |)Q dx � (2.9)

Let H (x) = �(|P (x) − f (x)|)Q (x) and consider the sets

U1 = N ∩ 
x ∈ B : P (x) ≥ 0�, U2 = N ∩ 
x ∈ B : P (x) < 0�,

U3 = L ∩ 
x ∈ B : P (x) ≥ 0�, U4 = L ∩ 
x ∈ B : P (x) < 0��

Then by (2.9), we get ∫
U1∪U 2

H dx =
∫
U3∪U 4

H dx ,
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Best Approximation Operator 823

and therefore ∫
U1

H dx −
∫
U4

H dx =
∫
U3

H dx −
∫
U2

H dx � (2.10)

Due to the monotonicity of �, we have∫
B

�(|P |)|Q | dx ≤
∫
B

�(|P − f | + |f |)|Q | dx ,

and using (1.1) we get∫
B

�(|P − f | + |f |)|Q | dx ≤ ��

∫
B

�(|P − f |)|Q | dx + ��

∫
B

�(|f |)|Q | dx

= ��

∫
⋃4

i=1 Ui

|H | dx + ��

∫
B

�(|f |)|Q | dx

= ��

4∑
i=1

∫
Ui

|H |dx + ��

∫
B

�(|f |)|Q |dx = ��(I1 + I2)�

Now, we will find an upper bound of I1 = ∑4
i=1

∫
Ui

|H | dx .
Note that we have |P − f | ≤ |f | on U1 and U4. Next, since the

monotonicity of �, we obtain∫
U1∪U4

|H | dx =
∫
U1

|H | dx +
∫
U4

|H | dx

≤
∫
U1

�(|f |)|Q | dx +
∫
U4

�(|f |)|Q | dx ≤ 2
∫
B

�(|f |)|Q | dx � (2.11)

Since sgnQ = sgnP , from (2.10) and (2.11), we get∫
U2

|H | dx +
∫
U3

|H | dx =
∫
U2

(−H ) dx +
∫
U3

H dx

=
∫
U1

H dx −
∫
U4

H dx =
∫
U1

|H | dx +
∫
U4

|H | dx

=
∫
U1∪U4

|H | dx ≤ 2
∫
B

�(|f |)|Q | dx � (2.12)

Therefore, I1 ≤ 4
∫
B �(|f |)|Q | dx and∫
B

�(|P |)|Q | dx ≤ 5��

∫
B

�(|f |)|Q | dx � (2.13)
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824 S. Acinas et al.

Now if Q ∈ �m satisfies Q (x)P (x) < 0, we proceed in an analogous way to
obtain (2.12), then∫

U2

|H | dx +
∫
U3

|H | dx =
∫
U2

H dx −
∫
U3

H dx

= −
∫
U1

H dx +
∫
U4

H dx =
∫
U1

|H | dx +
∫
U4

|H | dx

=
∫
U1∪U4

|H | dx ≤ 2
∫
B

�(|f |)|Q | dx ,

and thus ∫
B

�(|P |)|Q | dx ≤ 5��

∫
B

�(|f |)|Q | dx (2.14)

for Q ∈ �m such that Q (x)P (x) < 0�
Finally, (2.8) follows from (2.13) and (2.14). �

The next corollary will be useful in the following.

Corollary 2.5. Let � ∈ �, �(x) = ∫ x
0 �(t) dt and let f ∈ L�(B)�

If P is the best polynomial approximation of f ∈ L�(B), then∫
B

�(|P |)|P | dx ≤ 5��‖P‖∞

∫
B

�(|f |) dx � (2.15)

Proof. It follows for Q = P in (2.8) of Theorem 2.4 and employing |P | ≤
‖P‖∞. �

Remark 2.6. In order to obtain Theorem 2.4, we have used that the
polynomial P is a solution of (2.7) for f in L�(B)� Thus, the inequality
(2.15) holds for any polynomial P that satisfies identity (2.7) and f
belonging to L�(B)�

3. EXTENSION OF THE BEST POLYNOMIAL APPROXIMATION
TO L�(B)

In order to get a continuous extension of ��(f ) for functions in the
bigger space L�(B), we need the following auxiliary results. Throughout
this section, we will consider � ∈ � and �(x) = ∫ x

0 �(t) dt �

Lemma 3.1. Let fn be a sequence in L�(B) such that there exists a constant
C that satisfies

∫
B �(|fn |) dx ≤ C � Then 
‖P‖∞ : P ∈ ��(fn),n = 1, 2, � � � � is

bounded.
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Best Approximation Operator 825

Proof. Using Corollary 2.5, we have∫
B

�(|P |)|P | dx ≤ 5��‖P‖∞

∫
B

�(|fn |) dx ≤ 5C��‖P‖∞, (3.1)

for each P ∈ ��(fn) and for every all n� Thus, using (1.2) we get∫
B

�(|P |) dx ≤ 5��C‖P‖∞�

Then, from Jensen’s inequality, we obtain

|B|�
(

1
|B|

∫
B
|P | dx

)
≤

∫
B

�(|P |) dx �

Now, since ‖P‖1 is a norm which is equivalent to ‖P‖∞, for P ∈ �m , we
obtain for a suitable constant K ,

�

(
K
|B|‖P‖∞

)
≤ 5�2

�

C
|B|‖P‖∞�

Thus, taking into account that �(x)

x goes to ∞ as x tends to ∞ the lemma
is proved. �

Lemma 3.2. Let fn , f be functions in L�(B) such that∫
B

�(|fn − f |) dx → 0 (3.2)

as n → ∞�
Also let gn , g be measurable functions such that |gn | ≤ C for all n and gn → g

a.e. for x ∈ 
f 
= 0�, as n → ∞� Then there exists a subsequence nk such that∫
B

�(|fnk |)gnk dx →
∫
B

�(|f |)g dx (3.3)

as k → ∞�

Proof. Since � is a non-decreasing function and �(x) > 0 for x > 0,
there exists a subsequence fnk which converges to f a.e. We will now use
the sequence �(|fn |) that has equiabsolutely continuous integrals. That
means, for every � > 0 there exists � > 0 such that

∫
E �(|fn |) dx ≤ �, for any

E ⊂ B, |E | ≤ �, and for every n� This fact follows at once from
∫
B �(|f −

fn |) dx → 0, and∫
E

�(|fn |) ≤ ��

∫
B

�(|f − fn |) dx + ��

∫
E

�(|f |) dx �
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826 S. Acinas et al.

Now, by Egorov’s theorem, given � > 0 there exists F ⊂ B, |B − F | < �
such that the subsequence �(|fnk |)gnk uniformly converges to �(|f |)g on F �
Then ∫

B
�(|fnk |)gnk dx −

∫
B

�(|f |)g dx

=
∫
B−F

(�(|fnk |)gnk − �(|f |)g ) dx +
∫
F
(�(|fnk |)gnk − �(|f |)g ) dx

= Ik + Jk �

Now, using the uniform convergence of the sequence on F we have that
Jk goes to 0 as k goes to ∞� On the other hand, since we are dealing with
equiabsolutely continuous integrals we get |Ik | < � for every k� �

Theorem 3.3. If f ∈ L�(B), then there exists P ∈ �m such that∫
B

�(|f − P |)sgn(f − P )Q dx = 0, (3.4)

for every Q ∈ �m �
And ∫

B
�(|P |) dx ≤ K ‖P‖∞

∫
B

�(|f |) dx , (3.5)

for a suitable constant K �

Proof. Set the sequence of functions fn = min(max(f ,−n),n) which are
in L�(B)� Then, by Theorem 2.3, there exists Pn ∈ ��(fn) such that∫

B
�(|fn − Pn |)sgn(fn − Pn)Q dx = 0, (3.6)

for every Q ∈ �m �
Observe that

∫
B �(|fn − f |) dx → 0, as n → ∞� Now, by Lemma 3.1, the

sequence ‖Pn‖∞ is bounded. Then there exists a subsequence Pnk which
uniformly converges on B to a polynomial P ∈ �m � Thus, by Lemma 3.2,
we get

0 = lim
k→∞

∫
B

�(|fnk − Pnk |)sgn(fnk − Pnk )Q dx

=
∫
B

�(|f − P |)sgn(f − P )Q dx ,

for every Q ∈ �m �
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Best Approximation Operator 827

Now, by Remark 2.6 and (1.2), we also get∫
B

�(|P |) dx ≤
∫
B

�(|P |) |P | dx ≤ 5��‖P‖∞

∫
B

�(|f |) dx ,

and the proof is completed. �

Now Theorem 3.3 allows us to extend the definition of the best
approximation operator for functions in L�(B)�

Definition 2. For f ∈ L�(B), we set ��(f ) for the set of polynomials
P ∈ �m that satisfies (3.4) and we refer to this set as the extended best
approximation operator.

Next, we list some properties of this best approximation operator.

Theorem 3.4. If � is a strictly convex function, then there exists a unique
extended best polynomial approximation for every f ∈ L�(B).

Proof. For f ∈ L�(B) we consider P1,P2 ∈ ��(f ), P1 
= P2, then∫
B

�(|f − P1|)sgn(f − P1)Q dx

=
∫
B

�(|f − P2|)sgn(f − P2)Q dx = 0, (3.7)

for every Q ∈ �m .
Set the polynomial R = P1 − P2 ∈ �m and the pairwise disjoint sets

Ã = 
x ∈ B : P2(x) > P1(x)�

B̃ = 
x ∈ B : P1(x) > P2(x)�

C̃ = 
x ∈ B : P1(x) = P2(x)�

then Ã ∪ B̃ ∪ C̃ = B and |C̃ | = 0.
Since � is a strictly convex function, we have that �(|x |)sgn(x) is a

strictly increasing function. Consider R < 0 and f − P2 < f − P1 on the set
Ã, then

�(|f − P2|)sgn(f − P2) < �(|f − P1|)sgn(f − P1),

and thus

�(|f − P1|)sgn(f − P1)R < �(|f − P2|)sgn(f − P2)R �
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828 S. Acinas et al.

Hence,∫
Ã

�(|f − P1|)sgn(f − P1)R dx ≤
∫
Ã

�(|f − P2|)sgn(f − P2)R dx � (3.8)

Analogously, if R > 0 and f − P1 < f − P2 on the set B̃, then

�(|f − P1|)sgn(f − P1)R < �(|f − P2|)sgn(f − P2)R �

Therefore,∫
B̃

�(|f − P1|)sgn(f − P1)R dx ≤
∫
B̃

�(|f − P2|)sgn(f − P2)R dx � (3.9)

Now, since P1 and P2 are continuous functions and P1 
= P2 on B, then
|Ã| > 0 or |B̃| > 0� Thus, at least one of the inequalities (3.8) or (3.9) must
be strict.

From (3.7), (3.8) and (3.9) we get

0 =
∫
B

�(|f − P1|)sgn(f − P1)R dx

=
∫
Ã

�(|f − P1|)sgn(f − P1)R dx +
∫
B̃

�(|f − P1|)sgn(f − P1)R dx

<

∫
Ã

�(|f − P2|)sgn(f − P2)R dx +
∫
B̃

�(|f − P2|)sgn(f − P2)R dx

=
∫
B

�(|f − P2|)sgn(f − P2)R dx = 0,

which is a contradiction, and the proof is completed. �

Proposition 3.5. For any f ∈ L�(B) it satisfies ��(f + P ) = ��(f ) + P for all
P ∈ �m.

Proof. It follows directly from the definition of the extended best
approximation operator ��(f )� �

Theorem 3.6. Let � be a strictly convex function and hn , h ∈ L�(B) such that∫
B

�(|hn − h|) dx → 0 as n → ∞� (3.10)

Then ��(hn) → ��(h) as n → ∞�

Proof. Set Pn = ��(hn). By inequality (3.5), the sequence Pn is
uniformly bounded. We consider a subsequence Pnk which converges to
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Best Approximation Operator 829

a polynomial P . Now, we select a subsequence of hnk , which will be also
called by hnk , that converges to h a.e; we also have, for any Q ∈ �m ,∫

B
�(|hnk − Pnk |)sgn(hnk − Pnk )Q dx = 0� (3.11)

Now, by Lemma 3.2, we get∫
B

�(|h − P |)sgn(h − P )Q dx = 0, (3.12)

and taking into account Theorem 3.4, P = ��(f ) and the whole sequence
Pn converges to P � Thus the proof is completed. �
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