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The division problem under constraints consists of allocating a given amount of an 
homogeneous and perfectly divisible good among a subset of agents with single-peaked 
preferences on an exogenously given interval of feasible allotments. We characterize 
axiomatically the family of extended uniform rules proposed to solve the division problem 
under constraints. Rules in this family extend the uniform rule used to solve the 
classical division problem without constraints. We show that the family of all extended 
uniform rules coincides with the set of rules satisfying efficiency, strategy-proofness, equal 
treatment of equals, bound monotonicity, consistency, and independence of irrelevant 
coalitions.
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1. Introduction

In the division problem an amount of a perfectly divisible good has to be allocated among a set of agents with single-
peaked preferences on the set of all positive amounts of the good. An agent has a single-peaked preference if he considers 
that there is an amount of the good (the peak) strictly preferred to all other amounts and in both sides of the peak the 
preference is monotonic, decreasing at its right and increasing at its left. A profile is a vector of single-peaked preferences, 
one for each agent. It would then be desirable that the chosen vector of allotments of the good depended on the profile. 
But since preferences are idiosyncratic they have to be elicited by a rule selecting, for each profile of single-peaked prefer-
ences, a vector of allotments adding up to the total amount of the good. But in general, the sum of the peaks will be either 
larger or smaller than the total amount to be allocated. Then, a rule has to solve a positive or negative rationing problem, 
depending on whether the sum of the peaks exceeds or falls short the amount of the good. Rules differ from each other 
on how this rationing problem is resolved in terms of its induced properties like the strategic incentives faced by agents, 
efficiency, fairness, monotonicity, consistency, etc.
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The literature on the division problem describes many examples of allocation problems that fit well with this general 
description. For instance, a group of agents participate in an activity that requires a fixed amount of labor (measured in 
units of time). Agents have a maximal number of units of time to contribute, and consider working as being undesirable. 
Suppose that labor is homogeneous and the wage is fixed. Then, strictly monotonic and quasi-concave preferences on the 
set of bundles of money and leisure generate single-peaked preferences on the set of potential allotments where the peak 
is the amount of working time associated to the optimal bundle. Similarly, a group of agents join a partnership to invest 
in a project (an indivisible bond with a face value, for example) that requires a fixed amount of money (neither more nor 
less). Their risk attitudes and wealth induce single-peaked preferences on the amount to be invested. Finally, a group of 
firms with different sizes have to jointly undertake a unique project of a fixed size. Since they may be involved in other 
projects their preferences are single-peaked on their respective allotments of the project. In all these cases, it is required 
that a rule solve the rationing problem arising from a vector of peaks that do not add up the needed amount. The uniform 
rule has emerged as a satisfactory way of solving the division problem. It tries to allocate the good as equally as possible 
keeping the bounds imposed by efficiency. Sprumont (1991) started a long list of axiomatic characterizations of the uniform 
rule by showing first that it is the unique efficient, strategy-proof and anonymous rule, and second that anonymity in this 
characterization can be replaced by envy-freeness. Ching (1994) strengthens the results of Sprumont (1991) by showing that 
the uniform rule is the only one satisfying efficiency, strategy-proofness and equal treatment of equals. Ching (1992), Dagan
(1996), Schummer and Thomson (1997), Sönmez (1994), and Thomson (1994a, 1994b, 1995, and 1997) contain alternative 
characterizations of the uniform rule in the division problem. In the survey on strategy-proofness of Barberà (2010) the 
division problem and the uniform rule play a prominent role.

However, almost all the literature on the division problem has implicitly neglected the fact that in many applications (like 
those described above), agents’ allotments may be constrained by objective and verifiable minimal and maximal capacities 
which impose lower and upper bounds on them. Those constraints may come from physical, legal or economic restrictions. 
Most often, real-life applications of the division problem have the feature that agents’ allotments are constrained. For in-
stance in problems where the good to be divided is time, like in the internal distribution of labor in a division of a firm, 
or in a bureau, or in a law firm, or like in the assignment of teaching duties among a given set of teachers of a particular 
subject in a school or university department. In all those cases, constraints due to physical or legal limitations (like labor 
contracts) impose unavoidable bounds to the agents’ allotments. But constraints also show up in problems where agents 
have to contribute with money to finance a project of a fixed value, if they face budget constraints or if, due to implicit 
participation costs, their contributions have to be larger than a given amount (and hence, agents’ allotments are bounded 
below as well). Big projects that cannot be carried out by a single firm may be split among a set of firms which are not 
able to undertake alone the project precisely due to their capacity constraints and, in addition, each firm participation (in 
order to be valuable to itself) may require receiving an allotment of the project above a given amount. Therefore, in all these 
cases the division problem is restricted further by feasibility constraints that are described by a family of closed intervals 
of non-negative feasible allotments, one for each agent. It is then natural to assume that each agent has a closed interval 
of feasible allotments and his idiosyncratic preferences are single-peaked on this interval. Moreover, we will be interested 
in situations where agents’ participation is voluntary; namely, each agent has to consider all his strictly positive feasible 
allotments as being strictly preferred to receive zero (the allotment associated to the prospect of non-participating in the 
division problem). What is specific to our paper is that we assume that each agent’s allotment has to either belong to a 
given feasible interval of allotments or else be equal to zero. Hence, a division problem under constraints is composed by 
the set of agents, the amount of the good to be allocated among them, the vectors of lower and upper bounds of their 
feasible intervals, and their single-peaked preferences on their respective feasible intervals. We want to emphasize that our 
model contains all particular instances of division problems where agents’ allotments are only constrained by maximal ca-
pacity restrictions because the lower bounds may be equal to zero, as in some of the real-life applications that we have just 
described above.

Given a division problem under constraints, it may be the case that there does not exist a vector of feasible allotments 
adding up to the total amount to be allocated. Hence a rule has two components. First, the choice of an admissible and non-
empty subset of agents among whom it is possible to allocate the amount of the good keeping their feasibility constrains; 
if there is no such subset, then the rule has to choose the zero allotment for all agents. Second, and given this chosen 
admissible non-empty subset of agents (called participants), the rule has to assign to each participant a feasible allotment 
in such a way that their sum adds up to the total amount to be allocated.

Our contribution in this paper is to define extensions of the uniform rule to this class of division problems under con-
straints and to provide an axiomatic characterization of them by using two classes of desirable properties. The first class 
is related to the behavior of the rule at a given division problem under constraints. First, efficiency. A rule is efficient if 
it always selects Pareto optimal allocations. Second, equal treatment of equals. A rule satisfies equal treatment of equals if 
identical participants receive the same allotment. The second class is related to the restrictions that the properties impose 
on a rule when comparing its proposal at different division problems under constraints. First, strategy-proofness. A rule is 
strategy-proof if no agent can profitably alter the rule’s choice by misrepresenting his preferences. Second, bound mono-
tonicity. Assume that the upper bound of an agent decreases. Two situations are possible. Either the allotment of this agent 
in the initial problem is not larger than the new upper bound or it is strictly larger than the new upper bound. In the 
first situation bound monotonicity says that both problems must have the same allotment. In the second situation, bound 
monotonicity says that the agent must receive his new upper bound whereas the rest of the agents cannot receive smaller 
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allotments. Symmetric arguments can be applied when the lower bound of an agent increases. Third, consistency. Assume 
that after applying the rule to a given problem a subset of agents leave with their assigned allotments. Consider the new 
problem with the remaining set of agents and the total amount of the good minus the sum of the allotments received by 
the agents that already left. The rule is consistent if the allotments it proposes to the remaining agents in the reduced 
problem coincides with their allotments in the original problem. Fourth, independence of irrelevant coalitions. Assume the set 
of admissible coalitions in one problem is contained in the set of admissible coalitions in another problem and the coalition 
chosen by the rule in the larger problem is admissible for the smaller one, then this property says that the rule has to select 
the same coalition of participants in the two problems.

The main findings of the paper appear in two theorems. In Theorem 1 we show that in the subclass of division problems 
under constraints with the property that the full set of agents is admissible, the feasible uniform rule is the unique rule 
satisfying efficiency, strategy-proofness, equal treatment of equals, and bound monotonicity. This result is an extension of 
the characterization of Ching (1994) for the uniform rule in the classical division problem. The feasible uniform rule on 
this subclass of division problems under constraints tries to allocate the good among all agents in the most egalitarian way 
respecting not only the bounds imposed by efficiency, but also those imposed by the feasibility constraints. An extended 
uniform rule on the class of all division problems under constraints selects first, using a monotonic and responsive order on 
the family of all non-empty and finite subsets of agents, an admissible coalition of participants (if any, otherwise it chooses 
the zero allotment for all agents) and then it applies the feasible uniform rule to the reduced division problem under 
constraints obtained by restricting the original problem to this admissible subset of participants. We show in Theorem 2
that the class of all extended uniform rules (each one associated to a monotonic and responsive order on the non-empty and 
finite subsets of agents) coincides with the set of rules satisfying efficiency, strategy-proofness, equal treatment of equals, 
bound monotonicity, consistency and independence of irrelevant coalitions.

We now comment the papers of the literature more related with this one. Bergantiños et al. (2012a, 2012b), Kibris
(2003), Kim et al. (2012), and Manjunath (2012) have proposed extensions of the uniform rule to problems generalizing 
the classical division problem. Bergantiños et al. (2012a) studies the same problem that in this paper but assuming that all 
lower bounds are zero and the sum of all upper bounds is larger than the total amount to be divided. Kibris (2003) studies 
the division problem with maximal capacity constraints assuming that we do not need to divide all the good among the 
agents. Bergantiños et al. (2012b) considers the case where each agent has an idiosyncratic interval of acceptable allotments 
(which, in contrast with our setting here, is private information). It is showed that strategy-proofness is too demanding 
in this setting. Then, they study a subclass of efficient and consistent rules. Kim et al. (2012) characterize two families of 
rules using the separability principle and other properties. In Manjunath (2012) agent’s preferences are characterized by 
a lower and an upper bound in such a way that any agent is indifferent into receiving his lower (upper) bound and any 
amount below (above) the lower (upper) bound. The division problem with maximal capacity constraints is also considered 
by Moulin (1999) where the class of all fixed path mechanisms is characterized. Ehlers (2002a, 2002b) also study this class 
of fixed path mechanisms.

The paper is organized as follows. In Section 2 we describe the model. In Section 3 we define several desirable properties 
that a rule may satisfy. In Section 4 we define the feasible uniform rule (for the subclass of division problems under 
constraints where the grand coalition is admissible) and the extended uniform rule induced by a monotonic and responsive 
order on the family of all finite and non-empty subsets of agents and state their axiomatic characterizations. Section 5
contains some final remarks stating other desirable properties that all extended uniform rules also satisfy. The proofs are in 
Section 6.

2. Preliminaries

Let t > 0 be an amount of an homogeneous and perfectly divisible good. A finite set of agents is considering the possibility 
of dividing t among a subset of them, to be determined according to their preferences. We will consider situations where 
the amount of the good t and the finite set of agents may vary. Let N be the set of positive integers and let N be the family 
of all non-empty and finite subsets of N. The set of agents is then N ∈ N with cardinality n. In contrast with Sprumont
(1991), we consider decision problems where the amount of the good received by each agent i ∈ N is constrained either 
to belong to a given closed interval [li, ui] ⊆ [0, +∞), determined by lower and upper exogenous constraints (li and ui , 
respectively), or to be equal to zero. That is, an agent is either excluded from the division (and receives zero) or else his 
allotment has to be feasible. We are interested in settings where the participation of the agents in the division problem 
is voluntary in the sense that all strictly positive feasible allotments are strictly better than receiving zero. Thus, agent i’s 
preferences �i are defined on the set {0} ∪ [li, ui], with 0 ≤ li ≤ ui ≤ +∞ and li < +∞. The set [li, ui] is agent i’s interval of 
feasible allotments. We assume that �i is a complete, reflexive, and transitive binary relation on {0} ∪ [li, ui]. Given �i , let 	i

be the antisymmetric binary relation induced by �i (i.e., for all xi, yi ∈ {0} ∪ [li, ui], xi 	i yi if and only if yi � xi does not 
hold) and let ∼i be the indifference relation induced by �i (i.e., for all xi, yi ∈ {0} ∪[li, ui], xi ∼i yi if and only if xi �i yi and 
yi �i xi ). We will also assume that �i is single-peaked on [li, ui] and we will denote by pi ∈ [li, ui] agent i’s peak. Formally, 
agent i’s preferences �i is a complete preorder on the set {0} ∪ [li, ui] that satisfies the following additional properties:
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(P.1) there exists pi ∈ [li, ui] such that pi 	i xi for all xi ∈ [li, ui]\{pi};
(P.2) xi 	i yi for any pair of allotments xi, yi ∈ [li, ui] such that either yi < xi ≤ pi or pi ≤ xi < yi ; and
(P.3) xi 	i 0 for all xi ∈ [li, ui]\{0}.

Observe that agent i’s preferences are defined on {0} ∪ [li, ui] and are independent of t . Moreover, we are admitting 
the possibilities that li = 0 and li = pi = ui . Conditions (P.1) and (P.2) are the standard single-peaked restrictions on [li, ui]
while condition (P.3) conveys the minimal voluntary participation requirement that all strictly positive allotments in the 
feasible interval are strictly preferred to the zero allotment. A preference �i of agent i is (partly) characterized by the triple 
(li, pi, ui). There are many preferences of agent i with the same (li, pi, ui); however, they differ only on how two allotments 
on different sides of pi are ordered while all of them coincide on the ordering on the allotments on each of the sides of pi . 
This multiplicity will often be irrelevant. We will assume throughout the paper that for any agent i, the bounds li and ui are 
fixed and exogenously given while the preference �i over the interval [li, ui] is idiosyncratic and has to be elicited through 
a direct revelation mechanism. As we have already discussed in the Introduction, we are interested in division problems 
where allotments may be restricted by objective feasibility or capacity constraints while every preference �i satisfying (P.1), 
(P.2), and (P.3) is a legitimate one for agent i.1

We do not assume that preferences are continuous. Actually, our domain admits non-continuous preferences. It is not 
difficult to check that our results still hold if we restrict the domain to be the class of continuous preferences satisfying 
(P.1), (P.2), and (P.3).

Let N ∈N be a set of agents. A profile �N= (�i)i∈N is an n-tuple of preferences satisfying properties (P.1), (P.2) and (P.3) 
above. Given a profile �N and agent i’s preferences �′

i we denote by (�′
i, �N\{i}) the profile where �i has been replaced by 

�′
i and all other agents have the same preferences. When no confusion arises we denote the profile �N by �.

A division problem under constraints (a problem for short) is a 5-tuple P = (N, t, l, u, �) where N ∈ N is the finite set 
of agents, t is the amount of the good to be divided, l = (li)i∈N is the vector of lower constraints, u = (ui)i∈N is the vector 
of upper constraints, and � is a profile. Although the vector of lower and upper constraints are part of the definition of the 
profile �, for convenience we explicitly include them in the description of a problem. Let P be the set of all problems.

Given a problem P = (N, t, l, u, �) we denote by P\l′i the problem obtained from P by replacing li by l′i and such that 
the preferences of agent i on [max{li, l′i}, ui] coincide in both problems. Similar notation is used for P\u′

i , P\l′ , P\ �i and 
so on. Besides given P ∈ P and S ⊆ N , we denote by P S the problem P when considering only agents in S; namely, 
P S = (S, t, (li)i∈S , (ui)i∈S , (�i)i∈S ).

A problem where all agents have single-peaked preferences on [0, +∞) is known as the division problem; i.e., for all 
i ∈ N , li = 0, ui = +∞, and (P.1) and (P.2) hold.

The set of feasible allocations of problem P is

FA(P ) =
{
(xi)i∈N ∈RN+

∣∣∣ ∑
i∈N

xi ∈ {0, t} and, for each i ∈ N, xi ∈ {0} ∪ [li, ui]
}
.

This set is never empty since the allocation (0, ..., 0) ∈ RN+ is always feasible. Besides, there are problems for which (0, ..., 0)

is the unique feasible allocation.
A coalition S ⊆ N is admissible (at problem P ) if either S is empty or it is feasible to divide t among all agents in S; 

namely, coalition S �= ∅ is admissible if there exists x = (xi)i∈S ∈ RS+ such that 
∑

i∈S xi = t and li ≤ xi ≤ ui for all i ∈ S . Hence, 
S �= ∅ is admissible if and only if 

∑
i∈S li ≤ t ≤ ∑

i∈S ui . We denote by A(P ) the set of all admissible coalitions at problem P . 
The set A(P ) is non-empty because it always contains the empty coalition.

A rule f assigns to each problem P ∈ P a feasible allocation; that is, f (P ) ∈ FA(P ) for all P ∈ P . Hence, a rule f can 
be seen as a systematic way of assigning to each problem P ∈ P two different but related aspects of the solution of the 
problem.

First, an admissible coalition c f (P ) ∈ A(P ) where

c f (P ) = {
i ∈ N

∣∣ f i(P ) ∈ [li, ui]
}
.

We refer to the agents in c f (P ) as participants. Often, and when no confusion arises because the problem P will be obvious 
from the context we write c f instead of c f (P ). Obviously, if i /∈ c f (P ), then f i(P ) = 0. Besides, if li = 0, then i ∈ c f (P ).

Second, how the amount t is divided among the participants; i.e., if c f (P ) �= ∅ then,∑
i∈c f (P )

f i(P ) = t.

We will see later that to identify rules satisfying appealing properties we may have some freedom when choosing one 
among all admissible coalitions while the properties will determine a unique way of dividing the amount of the good among 
the participants.

1 See Bergantiños et al. (2012b) for an analysis of efficient and consistent rules in the division problem when the interval [li, ui ] is the set of idiosyncratic
acceptable allotments for agent i and participation is voluntary.
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3. Properties of rules

In this section we define several properties that a rule may satisfy. The first four are basic and standard properties 
already used in many axiomatic analysis of the division problem. The last two are bound monotonicity, which restricts how 
the rule should change when the upper or lower bound of an agent changes, and independence of irrelevant coalitions, 
which restricts how the participants should be chosen.

A rule is efficient if it always selects a Pareto optimal allocation.

Efficiency (ef) For each P ∈ P there is no (yi)i∈N ∈ FA(P ) with the property that yi �i f i(P ) for all i ∈ N and y j 	 j f j(P )

for some j ∈ N .

Rules require each agent to report a single-peaked preference on {0} ∪ [li, ui]. A rule is strategy-proof if it is always in 
the best interest of agents to reveal their preferences truthfully; namely, truth-telling is a weakly dominant strategy in the 
direct revelation game induced by the rule.

Strategy-proofness (sp) For each P ∈P , i ∈ N , and �′
i on {0} ∪ [li, ui],

f i(P ) �i f i
(

P\ �′
i

)
.

Given a problem P we say that agent i ∈ N manipulates f at profile � via �′
i if f i(P\ �′

i) 	i f i(P ).

A rule satisfies strong equal treatment of equals if identical agents receive the same allotment.

Strong equal treatment of equals (sete) For every P ∈ P such that there are i, j ∈ N , i �= j, and �i=� j then, f i(P ) =
f j(P ).

Strong equal treatment of agents is incompatible with efficiency. To see that, consider any problem P where N = {1, 2, 3}, 
t = 10, (li, pi, ui) = (4, 5, 10) for i = 1, 2, 3, and �1=�2=�3. Since the allotment ( 10

3 , 10
3 , 10

3 ) /∈ FA(P ) any f satisfying strong 
equal treatment of equals has the property that c f = ∅ and f i(P ) = 0 for all i = 1, 2, 3. However, (0, 5, 5) Pareto dominates 
(0, 0, 0). Thus efficiency and strong equal treatment of equals are incompatible. For this reason, we restrict our attention 
to the weaker notion of the property requiring that only equal participants must be treated equally. The example above 
suggests that a rule satisfying equal treatment of equal (participants) will have to use some criteria to select among the 
three allotments (0, 5, 5), (5, 0, 5), and (5, 5, 0) (and corresponding set of participants); but we will deal with that later.

A rule satisfies equal treatment of equals if identical participants receive the same allotment.

Equal treatment of equals (ete) For every P ∈ P such that there are i, j ∈ N , i �= j, �i=� j , and i, j ∈ c f (P ) then, f i(P ) =
f j(P ).

We note that (sete) and (ete) coincide with the standard property of equal treatment of equals when they are applied to 
classical division problems.

A rule is consistent if the following requirement holds. Apply the rule to a given problem and assume that a subset 
of agents leave with their corresponding allotments. Consider the new problem formed by the set of agents that remain 
with the same preferences that they had in the original problem and the total amount of the good minus the sum of the 
allotments received by the subset of agents that already left. Then, the rule does not require to reallocate the allotments of 
the remaining agents.

Consistency (cons) For each problem P ∈P , each non-empty subset of agents S ⊆ N , and each i ∈ S ,

f i(P ) = f i

(
S, t −

∑
j∈c f (P )\S

f j(P ), (li)i∈S , (ui)i∈S , (�i)i∈S

)
.

We now introduce the property of bound monotonicity, which imposes restrictions on how the rule changes when the 
upper or lower bounds of the interval of feasible allotments of one agent changes. Take a problem P where the upper 
bound of agent k decreases to u′

k < uk without changing his preferences (i.e., �′
k coincides with �k on [lk, u′

k]). A natural 
notion of bound monotonicity says the following. First, assume that fk(P ) ≤ u′

k; then, f (P ) is also feasible in P\u′
k . Bound 

monotonicity says that f selects the same allocation in both problems (i.e., f (P\u′
k) = f (P )). Second, assume that u′

k <

fk(P ); then, f (P ) is not feasible in P\u′
k . If we can divide t in P\u′

k among the same set of agents as in P (i.e., c f (P ) ∈
A(P\u′

k)) then, bound monotonicity says that agent k receives his new upper bound ( fk(P\u′
k) = u′

k) and the rest of agents 
receive an allotment that is not smaller than the one they received in P (i.e., f i(P\u′

k) ≥ f i(P ) for all i ∈ N\{k}). If u′
k

is so small that we cannot divide t in P\u′
k among the same set of agents as in P (i.e., c f (P ) /∈ A(P\u′

k)) then, bound 
monotonicity says nothing. We apply the same ideas to the lower bound.



G. Bergantiños et al. / Games and Economic Behavior 89 (2015) 56–77 61
We now define the property of bound monotonicity formally.

Bound monotonicity (bm) (bm.1) Let P , P\u′
k ∈P be such that u′

k < uk , and c f (P ) ∈ A(P\u′
k). Then, c f (P\u′

k) = c f (P ) and

f i
(

P\u′
k

) ≥ min
{

f i(P ), u′
i

}
for each i ∈ N, (1)

where u′
i = ui for all i ∈ N\{k}.

(bm.2) Let P , P\l′k ∈P be such that lk < l′k , and c f (P ) ∈ A(P\l′k). Then, c f (P\l′k) = c f (P ) and

f i
(

P\l′k
) ≤ max

{
f i(P ), l′i

}
for each i ∈ N, (2)

where l′i = li for all i ∈ N\{k}.

The property of bound monotonicity can be seen also as a weak property of solidarity. Thomson (1994b) says: “A con-
dition that is natural however is that agents all lose together or all gain together when the amount to divide increases, 
in fact when it increases or decreases. The general requirement that all agents be affected in the same direction “as their 
environment changes” is the essence of solidarity.” We can apply this solidarity principle when the environment changes 
because the upper bound of some agent changes (the case of a change in the lower bound is analogous). Take a problem 
P where the upper bound of agent k decreases to u′

k < uk without changing his preferences. First, assume that fk(P ) ≤ u′
k

then, f (P ) is also feasible in P\u′
k . Then, we select the same allocation in both problems (in this case we do the same as 

with (bm)). Second, assume that u′
k < fk(P ) then, f (P ) is not feasible in P\u′

k . If c f (P ) ∈ A(P\u′
k) then, agent k receives his 

new upper bound ( fk(P\u′
k) = u′

k) and the rest of agents either all are better off or all are worse off. Namely, either

f i
(

P\u′
k

) �i f i(P ) for each i ∈ N\{k} or

f i(P ) �i f i
(

P\u′
k

)
for each i ∈ N\{k}.

Obviously, bound monotonicity does not imply solidarity and solidarity does not imply bound monotonicity. Nevertheless 
if a rule satisfy (ef ), then solidarity implies (bm) but the other implication does not hold.2 Thus, we can see (bm) as a weaker 
version of solidarity.

A rule satisfies independence of irrelevant coalitions if the following requirement holds. Consider two problems where 
the set of admissible coalitions of the first one is contained in the set of admissible coalitions of the second one. Assume 
that the coalition chosen by the rule in the second problem is admissible for the first one. Then, the rule chooses the 
same coalition of participants in the two problems. This property is inspired in the well-known principle of independence 
of irrelevant alternatives. Nash (1950) defined it, in bargaining problems, as follows. Suppose that the set of admissible 
outcomes of the bargaining problem S ′ is a subset of the set of admissible outcomes of the bargaining problem S . Besides, 
the solution of S belongs to S ′ . Then, the solution of S ′ must be the solution of S . Notice that we are just applying the 
same principle to the function c f .

Independence of irrelevant coalitions (iic) For any two problems P , P ′ ∈P such that c f (P ) ∈ A(P ′) ⊆ A(P ) then,

c f (P ′) = c f (P ).

4. The uniform principle: two characterizations

In this section we present the two main results of the paper.
The uniform rule U on problems without constraints (see Sprumont, 1991) tries to allocate the good as equally as 

possible, keeping the efficiency bounds binding (all agents have to be rationed in the same direction). The feasible uniform 
rule, on the subclass of division problems under constraints with the property that the set of all agents is an admissible 
coalition, does the same than U but it takes also into account the feasibility constraints. We show in Theorem 1 that 
the feasible uniform rule is the unique rule satisfying efficiency, strategy-proofness, equal treatment of equals, and bound 
monotonicity on this subclass of problems.

Let P∗ be the set of division problems under constraints with the property that the set of all agents is an admissible 
coalition; namely,

P∗ =
{

P ∈ P
∣∣∣ ∑

i∈N

li ≤ t ≤
∑
i∈N

ui

}
.

2 We omit the non-trivial proof of this statement.
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Feasible uniform rule The feasible uniform rule U on P∗ is defined as follows. For each P ∈P∗ and i ∈ N ,

Ui(P ) =
{

min{pi,max{li,α}} if
∑

j∈N p j ≥ t

max{pi,min{ui,α}} if
∑

j∈N p j < t,

where α is the unique number satisfying 
∑

j∈N U j(P ) = t .

Remark 1. Consider the problem P = (N, t, l, u, �) ∈ P∗ and a division problem without constraints (N, t, �′) (i.e., l′i = 0
and u′

i = +∞ for all i ∈ N) such that for each i ∈ N , �′
i coincides with �i on [li, ui] and U (N, t, �′) ∈ FA(P ). Then, 

U (N, t, �′) = U (P ). Thus, the feasible uniform rule U can be considered as an extension of the uniform rule from division 
problems without constraints to P∗ . Observe that the extension of the uniform rule to problems with voluntary participa-
tion presented in Bergantiños et al. (2012b) does not have this property. Let us clarify this with an example. Suppose that 
N = {1, 2}, t = 10, l = (1, 3), u = (8, 8) and p = (6, 6). Thus, U (P ) = (5, 5) whereas the rule in Bergantiños et al. (2012b)
chooses (4, 6); namely, it increases uniformly the allotments starting from l.

Theorem 1 in Ching (1994) provides a characterization of the uniform rule in the classical division problem with (ef ), 
(ete), and (sp). In Theorem 1 below we prove that if we add (bm) we have a characterization of the feasible uniform rule in 
P∗ . Thus our result can be seen as an extension of Ching’s result.

Theorem 1. The feasible uniform rule U on P∗ is the unique rule satisfying efficiency, strategy-proofness, equal treatment of equals, 
and bound monotonicity. Besides, the four properties are independent.

Proof. See Section 6.1. �
Remark 2. Unfortunately, U does not satisfy solidarity on P∗ . Consider a problem P ∈P∗ where N = {1, 2}, t = 10, l = (0, 0), 
u = (10, 10), and p = (8, 6). Thus, U (P ) = (5, 5). Let l′1 = 6. Now U (P\l′1) = (6, 4), which means that U does not satisfy 
solidarity since 6 	1 5 and 5 	2 4.

Therefore, it is not possible to use solidarity instead of (bm) in our results. Assume that a rule f satisfies solidarity, 
(ef ), (ete), and (sp). Thus, f also satisfies (bm), (ef ), (ete), and (sp). By Theorem 1, f = U , which is a contradiction because 
U does not satisfy solidarity. Hence, the properties of (ef ), (sp), (ete), and solidarity are incompatible in P∗ . This fact is 
not surprising because solidarity is incompatible with some properties in the classical division problem, see for instance 
Thomson (1994b). The example suggests that in our model the incompatibility comes mainly from (sp). As Lemma 2 will 
establish, (ef ) and (sp) imply own peak monotonicity while solidarity requires the use of the whole preferences.

We now consider the general case. We first extend the feasible uniform rule to P . Let P be a problem in P . An extended 
uniform rule selects at P the feasible set of participants by maximizing a given order ρ (a complete, antisymmetric and 
transitive binary relation) on N , restricted to the family of admissible coalitions A(P ) ⊆ N , and then it applies the feasible 
uniform rule to this selected set of participants to choose their allotments.

Extended Uniform Rule Let ρ be an order on N . The extended uniform rule on P induced by the order ρ on N , denoted by 
Uρ , is defined as follows. For each P ∈P and i ∈ N ,

Uρ
i (P ) =

{
Ui(PcUρ

(P )) if i ∈ cUρ
(P )

0 if i /∈ cUρ
(P ),

where cUρ
(P ) ∈ A(P ) and cUρ

(P )ρ S for all S ∈ A(P )\cUρ
(P ).

Obviously, the family of extended uniform rules on P is large. We are interested in the subfamily of rules that satisfy 
efficiency, strategy-proofness, equal treatment of equals, bound monotonicity, consistency and independence of irrelevant 
coalitions. To identify it we restrict the order ρ on N to satisfy the properties of monotonicity and responsiveness.

Definition 1. We say that an order ρ on N is

(i) monotonic if for all S ∈N and i /∈ S , (S ∪ {i})ρ S; and
(ii) responsive if for all S, T ∈N and i /∈ S ∪ T , SρT implies (S ∪ {i})ρ(T ∪ {i}).

If ρ is monotonic, then cUρ
is maximal. Namely, if cUρ

(P ) � S , then S is not admissible.
Theorem 2 below characterizes the set of extended uniform rules that choose the admissible coalition according to a 

monotonic and responsive order ρ on N . The way in which we obtain ρ is similar to the one used in Bergantiños et al.
(2012b).
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Theorem 2. Let f be a rule on P . Then, f satisfies efficiency, strategy-proofness, equal treatment of equals, bound monotonicity, 
consistency, and independence of irrelevant coalitions if and only if f = Uρ for some monotonic and responsive order ρ on N . Besides, 
the six properties are independent.

Proof. See Section 6.2. �
Remark 3. We have formulated Theorem 2 in terms of the uniform rule but the result is more general. The proof of 
Theorem 2 establishes that the following statement holds. Assume that a rule on P∗ can be characterized with a list of 
properties that include (ef ) and (bm). Then, this rule can be extended to the general domain P (as with U ) by adding (cons) 
and (iic) to the list of properties characterizing the rule on P∗ .

5. Final remarks

In this section we present some other properties that the uniform rule satisfies in the classical division problem. While 
some of them are satisfied by any extended uniform rule in our setting some others are not. Nevertheless, if we proceed by 
weakening such properties as we did with the principle of equal treatment of equals, any extended uniform rule satisfies 
the new formulations of the corresponding weaker principles.

A rule is non-bossy if whenever an agent receives the same allotment at two problems that are identical except for the 
preferences of this agent, then the allotments of all the other agents also coincide at the two problems. Formally,

Non-bossy For each problem P , each i ∈ N , and each �′
i such that f i(P ) = f i(P\ �′

i), then f j(P ) = f j(P\ �′
i) for all 

j ∈ N\{i}.

A rule is own-peak monotonic if when the peak of an agent increases and the rest of the problem remains the same, 
this agent does not receive less.

Own-peak monotonicity For all P , (P\ �′
i) ∈P , p′

i ≤ pi implies f i(P\ �′
i) ≤ f i(P ).

A rule is tops-only when it depends only on the peaks of the preferences.

Tops-only For all P , (P\ �′) ∈P , pi = p′
i for all i ∈ N implies f (P ) = f (P\ �′).

A rule satisfies maximality if the set of participants is always maximal according to set-wise inclusion.

Maximality For any P ∈P and T ⊆ N such that c f (P ) � T , T is not an admissible coalition for P .

To show that any extended uniform rule on P induced by a monotonic and responsive order ρ on N satisfies the above 
properties is straightforward. We state this without proof as Proposition 1 below.

Proposition 1. For each monotonic and responsive order ρ on N , the extended uniform rule Uρ is non-bossy, own-peak monotonic, 
tops-only, and satisfies maximality.

We now introduce some properties that in the strong version (as in classical division problems) no extended uniform 
rule on P does satisfy. Nevertheless, a weaker version of them (obtained by weakening the properties as we did with equal 
treatment of equals) are satisfied by every extended uniform rule on P . In all cases, when applied to classical division 
problems, the strong and the weak versions coincide.

The basic principle under envy-freeness is that no agent can strictly prefer the allotment received by another agent.

Strong envy freeness For each P ∈P and each i, j ∈ N , f i(P ) �i f j(P ).

We weaken this notion in two ways. First, we only require to compare allotments of participants (as in the case of ete). 
Second, we admit unfeasible envies (when agent i envies the allocation of agent j but agent i’s allocation is not feasible for 
agent j).

Envy freeness For each P ∈ P and each pair of agents i, j ∈ c f such that f j(P ) 	i f i(P ), then the vector of allotments 
x = (xk)k∈c f , where xi = f j(P ), x j = f i(P ), and xk = fk(P ) for all k ∈ c f \{i, j} has the property that x /∈ FA(P ).

A rule is strongly individually rational from equal division if all agents receive an allotment that is at least as good as 
equal division.
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Strongly individual rationality from equal division For each P ∈P and each i ∈ N ,

f i(P ) �i
t

n
.

We now weaken this principle by applying it only when the equal allotment is feasible.

Individual rationality from equal division For each P ∈P for which ( t
n , ..., t

n ) ∈ FA(P ) then, for all i ∈ N ,

f i(P ) �i
t

n
.

One-sided resource monotonicity says that if the good is scarce, an increase of the amount to be allotted should make 
all agents better off. Symmetrically, if the good is too abundant, a decrease of the amount to be allotted should make all 
agents better off.

Strong one-sided resource monotonicity For all P , (P\t′) ∈P with the property that either t ≤ t′ ≤ ∑
i∈N pi or 

∑
i∈N pi ≤

t′ ≤ t then, f i(P\t′) �i f i(P ) for all i ∈ N .

We weaken the principle by applying it only when, after changing the amount to be divided, the set of admissible 
coalitions does not change.

One-sided resource monotonicity For all P , (P\t′) ∈ P with the property that A(P ) = A(P\t′) and either t ≤ t′ ≤ ∑
i∈N pi

or 
∑

i∈N pi ≤ t′ ≤ t then, f i(P\t′) �i f i(P ) for all i ∈ N .

Proposition 2. Let ρ be a monotonic and responsive order on N . Then, the extended uniform rule Uρ does not satisfy strong envy 
freeness, strong individual rationality from equal division, and strong one-sided resource monotonicity. Nevertheless, Uρ satisfies envy 
freeness, individual rationality from equal division, and one-sided resource monotonicity.

Proof. See Section 6.3. �
The proof of Proposition 2 establishes the following corollary.

Corollary 1. There is no rule on P that satisfies strong individual rationality from equal division. Moreover, let f be an efficient rule. 
Then, f neither satisfies strong envy freeness nor strong one-sided resource monotonicity on P .

In the classical division problem, efficient allocations are equivalent to same-sideness allocations; namely, 
∑

i∈N pi ≥ t
implies that xi ≤ pi for all i ∈ N and 

∑
i∈N pi < t implies that xi ≥ pi for all i ∈ N . Nevertheless, this equivalence does not 

hold in the division problem under constraints. But first, we define same-sideness in our model.

Same-sideness Let P ∈P , x = (xi)i∈N ∈ FA(P ) and

cx := {i ∈ N | li ≤ xi ≤ ui}.
The allocation x satisfies same-sideness if 

∑
i∈cx pi ≥ t implies that xi ≤ pi for all i ∈ cx and 

∑
i∈cx pi < t implies 

that xi ≥ pi for all i ∈ cx .

We can adapt the definition of maximality for an allocation x simply by replacing c f by cx in the definition of maximality 
for a rule f . Next result establishes the relationship between efficiency and same-sideness.

Proposition 3.

(a) If x satisfies maximality and same-sideness, then x is efficient.
(b) If x is efficient, then x satisfies same-sideness but it could fail maximality.

The proof of Proposition 3 is straightforward and we omit it. Nevertheless let us clarify why efficiency does not imply 
maximality. Assume that S is admissible for x, j /∈ S , S ∪ { j} is admissible for x, 

∑
i∈S pi ≤ t , and 

∑
i∈S∪{ j} pi > t . Consider 

a profile of preferences where agents in S “prefer much more” to receive an allotment above their peaks than below, then 
x could be efficient even if it is not maximal. However, the reason of why an efficient allocation is not maximal is because 
the inclusion of an additional agent j transforms the problem from 

∑
i∈S pi ≤ t to 

∑
i∈S∪{ j} pi > t .3

3 Namely, if S is admissible for x, j /∈ S , S ∪ { j} is admissible for x, ∑i∈S pi ≤ t , and ∑i∈S∪{ j} pi ≤ t , then x is not efficient.
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6. Proofs

We present the proofs of the main results of the paper.

6.1. Proof of Theorem 1

We first prove that U satisfies efficiency, strategy-proofness, equal treatment of equals, and bound monotonicity on P∗ .

(1) U satisfies (ef ). Fix a problem P ∈ P∗ . Assume that there exists x = (xi)i∈N ∈ FA(P ) with the property that xi �i U i(P )

for all i ∈ N . We prove that x = U (P ). Let i ∈ N be arbitrary. We consider two cases.
1.

∑
j∈N p j < t . Thus, Ui(P ) = max{pi, min{ui, α}}. In this case U coincides with the constrained uniform rule F

studied in Bergantiños et al. (2012a). Using the same arguments used there to prove that F satisfies (ef ) in the 
case 

∑
j∈N p j < t , we can prove that xi = Ui(P ) holds.

2.
∑

j∈N p j ≥ t . Thus, Ui(P ) = min{pi, max{li, α}}. We consider three cases.
2.1. Ui(P ) = pi . Since xi �i U i(P ), it follows that xi = pi .
2.2. Ui(P ) = α < pi . Since xi �i U i(P ), by single-peakedness, xi ≥ α. Suppose that xi > α. As 

∑
j∈N x j =∑

j∈N U j(P ) = t , there exists k ∈ N such that xk < Uk(P ). We consider three cases.
2.2.1. Uk(P ) = pk . Then, xk < pk , which contradicts that xk �k Uk(P ).
2.2.2. Uk(P ) = α and α < pk . Then, xk < α, which contradicts, by single-peakedness, that xk �k Uk(P ).
2.2.3. Uk(P ) = lk . Since x ∈ FA(P ), xk = 0 and hence Uk(P ) = lk 	k 0 = xk , which contradicts xk �k Uk(P ).
Thus, xi = α and hence, xi = Ui(P ).

2.3. Ui(P ) = li > α. Since xi �i U i(P ), xi ≥ li . Suppose that xi > li . As 
∑

j∈N x j = ∑
j∈N U j(P ) = t , there exists k ∈ N

such that xk < Uk(P ). Similarly to Case 2.2, we obtain a contradiction. Thus, xi = li and hence, xi = Ui(P ).
(2) U satisfies (sp). Fix a problem P ∈ P∗ . Let i ∈ N and �′

i on [li, ui] be arbitrary. We prove that Ui(P ) �i U i(P\ �′
i). We 

consider two cases.
1.

∑
j∈N p j < t . Thus, Ui(P ) = max{pi, min{ui, α}}. In this case U coincides with the constrained uniform rule F

studied in Bergantiños et al. (2012a). Using the same arguments used there to prove that F satisfies (sp) in the 
case 

∑
j∈N p j < t , we can prove that Ui(P ) �i U i(P\ �′

i).
2.

∑
j∈N p j ≥ t . Thus, Ui(P ) = min{pi, max{li, α}}. We consider three cases.

The proofs of cases 2.1 Ui(P ) = pi and 2.2 Ui(P ) = α < pi are similar to the proofs that F satisfies (sp) in 
Bergantiños et al. (2012a) when 

∑
j∈N p j ≥ t , and Ui(P ) = pi and Ui(P ) = α < pi , respectively.

We now consider case 2.3 Ui(P ) = li > α. We consider three cases.
2.3.1. p′

i ≥ pi . Then, 
∑

j∈N\{i} p j + p′
i ≥ t . Now Ui(P\ �′

i) = min{p′
i, max{li, α′}}. Since α < li ≤ pi ≤ p′

i , it follows 
that min{p′

i, max{li, α}} = li . Hence, α′ = α and then, Ui(P ) = Ui(P\ �′
i).

2.3.2. p′
i < pi and 

∑
j∈N\{i} p j + p′

i ≥ t . The proof proceeds as in Case 2.3.1.
2.3.3. p′

i < pi and 
∑

j∈N\{i} p j + p′
i < t . Since li ≤ p′

i ,∑
j∈N\{i}

p j + li < t.

Since t = ∑
j∈N\{i} U j(P ) + li and p j ≥ U j(P ) for all j ∈ N ,

t ≤
∑

j∈N\{i}
p j + li,

a contradiction.
(3) By definition, U satisfies (ete).
(4) U satisfies (bm). We first prove (bm.1). Let P and P ′ = P\u′

k be as in the definition of (bm.1). We should prove that

Ui
(

P ′) ≥ min
{

Ui(P ), u′
i

}
for each i ∈ N.

We consider two cases.
1.

∑
j∈N p j < t . Thus, Ui(P ) = max{pi, min{ui, α}} for all i ∈ N . In this case U coincides with the constrained uniform 

rule F studied in Bergantiños et al. (2012a). Using the same arguments used there to prove that F satisfies (sp) in 
the case 

∑
j∈N p j < t , we can prove that (bm.1) holds in this case.

2.
∑

j∈N p j ≥ t . Thus, Ui(P ) = min{pi, max{li, α}} for all i ∈ N . We consider two cases.
2.1.

∑
i∈N p′

i < t . Then, p′
k = u′

k < pk ≤ uk . By definition of U , for each i ∈ N\{k}, Ui(P ) ≤ pi = p′
i ≤ Ui(P ′). Besides, 

p′
k ≤ Uk(P ′). Since Uk(P ′) ∈ [l′k, u′

k] and u′
k = p′

k , Uk(P ′) = u′
k holds.

2.2.
∑

i∈N p′
i ≥ t . Then, Ui(P ′) = min{pi, max{li, α′}} for all i ∈ N\{k}. Since p′

k ≤ pk , α′ ≥ α. Therefore, for each 
i ∈ N\{k}, Ui(P ′) ≥ Ui(P ). To show that Uk(P ′) ≥ min{Uk(P ), u′

k} holds we consider two cases.
2.2.1. Uk(P ) ≤ u′ . Thus, Uk(P ) = Uk(P ′).
k
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2.2.2. Uk(P ) > u′
k . Since Uk(P ) ≤ pk and preferences are single-peaked, p′

k = u′
k . If α ≤ pk , then Uk(P ) =

max{lk, α}. If α > pk , then Uk(P ) = pk . Since α′ ≥ α we deduce in both cases (α ≤ pk and α > pk) 
that

Uk
(

P ′) = min
{

p′
k,max

{
lk,α

′}} = p′
k = u′

k.

We now prove (bm.2). Let P and P ′ = P\l′k be as in the definition of (bm.2). We should prove that

Ui
(

P ′) ≤ max
{

Ui(P ), l′i
}

for each i ∈ N.

We consider two cases.

2.
∑

j∈N p j < t . Thus, Ui(P ) = max{pi, min{ui, α}} for all i ∈ N . If Uk(P ) ≥ l′k , then U (P ) = U (P ′), by the definition of U . 
Assume now that Uk(P ) < l′k . Since pk ≤ Uk(P ), pk < l′k . Hence l′k = p′

k . We consider two cases.
1.1.

∑
j∈N p′

j > t . Then, for all i ∈ N\{k},

Ui
(

P ′) = min
{

p′
i,max

{
l′i,α

′}} ≤ p′
i = pi ≤ Ui(P ).

Since l′k = p′
k ,

Uk
(

P ′) = min
{

p′
k,max

{
l′k,α

′}} = l′k.

1.2.
∑

j∈N p′
j ≤ t . Then, Ui(P ′) = max{p′

i, min{ui, α′}} for all i ∈ N . Since pk < p′
k , α′ ≤ α. Thus, for all i ∈ N\{k},

Ui
(

P ′) = max
{

p′
i,min

{
u′

i,α
′}}

= max
{

pi,min
{

ui,α
′}}

≤ max
{

pi,min{ui,α}}
= Ui(P ).

We consider two cases for agent k.
1.2.1. α ≤ pk . Since α′ ≤ α ≤ pk < l′k = p′

k ≤ uk ,

Uk
(

P ′) = max
{

p′
k,min

{
uk,α

′}} = p′
k = l′k.

1.2.2. α > pk . Since Uk(P ) < l′k ≤ u′
k = uk ,

Uk(P ) = max
{

pk,min{uk,α}} = α.

Since α′ ≤ α = Uk(P ) < l′k = p′
k ≤ uk ,

Uk
(

P ′) = max
{

p′
k,min

{
uk,α

′}} = p′
k = l′k.

2.
∑

j∈N p j ≥ t . Thus, Ui(P ) = min{pi, max{li, α}} for all i ∈ N . If Uk(P ) ≥ l′k , then U (P ) = U (P ′), by the definition of U . 
Assume now that Uk(P ) < l′k . Notice that p′

k ≥ pk . Thus, 
∑

j∈N p′
j ≥ t . Hence, Ui(P ′) = min{p′

i, max{l′i, α′}} for all i ∈ N . 
Then, α′ ≤ α. Proceeding as in Case 1.2, we deduce that Ui(P ′) ≤ Ui(P ) for all i ∈ N\{k}. We consider three cases for 
agent k.
2.1. Uk(P ) = lk . Then, lk ≥ α. Since α′ ≤ α ≤ lk = Uk(P ) < l′k ≤ p′

k ,

Uk
(

P ′) = min
{

p′
k,max

{
l′k,α

′}} = l′k.

2.2. Uk(P ) = α > lk . Then pk ≥ α. Since α′ ≤ α = Uk(P ) < l′k ≤ p′
k ,

Uk
(

P ′) = min
{

p′
k,max

{
l′k,α

′}} = l′k.

2.3. Uk(P ) = pk . Then, pk ≤ α. Since pk = Uk(P ) < l′k , pk < p′
k = l′k . Since α′ ≤ α we deduce that in the two possible 

cases (either α′ ≤ l′k or α′ > l′k) that

Uk
(

P ′) = min
{

p′
k,max

{
l′k,α

′}} = l′k.

We now prove that U is the unique rule satisfying the four properties on P∗ . We do it by proving the following five 
lemmata.

Lemma 1. Let f be a rule satisfying (ef) and (bm) on P∗ and let P ∈P∗ . Then, c f (P ) = N.
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Proof. Let P ∈ P∗ . Consider the problem P 0 = (N, t, l0, u0, �0), where for all i ∈ N , l0i = 0 and u0
i = max{ui, t}. Besides, for 

all i ∈ N , �0
i coincides with �i on [li, ui]. Obviously, c f (P 0) = N and by (ef ), 

∑
i∈N fi(P 0) = t . Consider now the problem 

P 0\l1. By (bm),

c f (P 0\l1
) = c f (P 0) = N.

Consider now the problem P 0\{l1, u1} (if u0
1 = u1, then the next statement holds trivially). By (bm),

c f (P 0\{l1, u1}
) = c f (P 0\l1

) = N.

Repeating this argument with agents 2, ..., n, we obtain that c f (P ) = N . �
An immediate consequence of Lemma 1 is that if f satisfies (ef ), (bm), and (ete) on P∗ , then for all P ∈ P∗ such that 

�i=� j we have that f i(P ) = f j(P ).
Next lemma is an extension of Lemma 1 in Ching (1994) for the classical division problem to the division problem under 

constraints.

Lemma 2. Let f be a rule satisfying (ef) and (sp) on P∗. Then, f is own-peak monotonic.4

Proof. Let P , P\ �′
j∈P∗ be such that p′

j ≤ p j . To obtain a contradiction, assume

f j(P ) < f j
(

P\ �′
j

)
. (3)

We consider two cases.

1.
∑

i∈N pi ≤ t . By (ef ) and Proposition 3, pi ≤ f i(P ) for all i ∈ N . Hence,

p′
j ≤ p j ≤ f j(P ) < f j

(
P\ �′

j

)
,

which implies, by single-peakedness, that f j(P ) 	′
j f j(P\ �′

j), a contradiction with (sp).
2.

∑
i∈N pi > t . By (ef ) and Proposition 3,

f i(P ) ≤ pi for all i ∈ N. (4)

We consider two cases.
2.1.

∑
i �= j pi + p′

j ≥ t . By (ef ) and Proposition 3, for all i �= j, f i(P\ �′
j) ≤ pi and f j(P\ �′

j) ≤ p′
j . Hence, by (3),

f j(P ) < f j
(

P\ �′
j

) ≤ p′
j ≤ p j,

which implies, by single-peakedness, that f j(P\ �′
j) 	 j f j(P ), a contradiction with (sp).

2.2.
∑

i �= j pi + p′
j < t . By (ef ) and Proposition 3, for all i �= j, pi ≤ f i(P\ �′

j) and p′
j ≤ f j(P\ �′

j). Thus, p′
j ≤ f j(P ); 

otherwise, by (4),

t =
∑
i∈N

fi(P ) <
∑
i �= j

pi + p′
j

a contradiction. Hence,

p′
j ≤ f j(P ) < f j

(
P\ �′

j

)
,

which implies, by single-peakedness, that f j(P ) 	′
j f j(P\ �′

j), a contradiction with (sp). �
Next lemma is an extension of Lemma 2 in Ching (1994) for the classical division problem to the division problem under 

constraints.

Lemma 3. Let f be a rule satisfying (ef), (sp), and (bm) on P∗. Then, for all P ∈P∗ and j ∈ N:

(a) If p j < f j(P ) and �′
j satisfies 0 ≤ p′

j ≤ f j(P ), then f j(P\ �′
j) = f j(P ).

(b) If f j(P ) < p j and �′
j satisfies f j(P ) ≤ p′

j ≤ t, then f j(P\ �′
j) = f j(P ).

4 See Section 5 for a formal definition of own-peak monotonicity.
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Proof. Let f be an (ef) and (sp) rule, P ∈P∗ and j ∈ N .

(a) Assume p j < f j(P ) and let �′
j be such that 0 ≤ p′

j ≤ f j(P ). By (ef ) and Lemma 1, Proposition 3 implies that

pi ≤ f i(P ) for all i ∈ N. (5)

Since p′
j ≤ f j(P ), (5) implies

∑
i∈c f \{ j}

pi + p′
j ≤

∑
i∈c f

f i(P ) = t.

We now show that f j(P\ �′
j) = f j(P ). To obtain a contradiction, assume otherwise and consider two cases.

1. f j(P ) < f j(P\ �′
j). Then,

p′
j ≤ f j(P ) < f j

(
P\ �′

j

)
,

which implies, by single-peakedness, that

f j(P ) 	′
j f j

(
P\ �′

j

)
,

contradicting (sp).
2. f j(P ) > f j(P\ �′

j). We consider two cases.
2.1. f j(P\ �′

j) ≥ p j . Then,

p j ≤ f j
(

P\ �′
j

)
< f j(P ).

By single-peakedness,

f j
(

P\ �′
j

) 	 j f j(P ),

contradicting (sp).
2.2. f j(P\ �′

j) < p j . Then, p′
j > 0 and

f j
(

P\ �′
j

)
< p j < f j(P ). (6)

By Lemma 1, f j(P\ �′
j) ∈ [l j, u j]. Let �′′

j be such that p′′
j = p j and

f j
(

P\ �′
j

) 	′′
j f j(P ). (7)

By Lemma 2, f is own-peak monotonic. Hence, f j(P\ �′′
j ) = f j(P ). By (7),

f j
(

P\ �′
j

) 	′′
j f i

(
P\ �′′

j

)
,

contradicting (sp).
(b) We omit the proof since it follows a symmetric argument to the one used to prove (a). �
Lemma 4. Let f be a rule satisfying (ef), (ete) and (bm) on P∗. Assume P\ �′

{i, j}∈P∗ is such that uk = t for all k ∈ N and �′
i and �′

j
coincide on [max{li, l j}, t]. Then, it is not possible that simultaneously

fi
(

P\ �′
{i, j}

)
< Ui

(
P\ �′

{i, j}
)

and

f j
(

P\ �′
{i, j}

)
> U j

(
P\ �′

{i, j}
)

hold.

Proof. We consider three cases.

1. li = l j . By Lemma 1, c f (P\ �′
{i, j}) = N . Thus, i and j belong to c f (P\ �′

{i, j}). Since �′
i and �′

j coincide on [max{li, l j}, t]
and f and U satisfy (ete), the statement holds trivially.
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2. li < l j . Let l∗j = li and consider the preference �∗
j of agent j on [l∗j , u j] that coincides with �′

i on [li, ui] = [l∗j , u j]. 
Obviously,

P\{l∗j ,�′
i,�∗

j

} ∈ P∗.

By Lemma 1,

c f (P\{l∗j ,�′
i,�∗

j

}) = N.

By (ete),

f i
(

P\{l∗j ,�′
i,�∗

j

}) = f j
(

P\{l∗j ,�′
i,�∗

j

})
and

Ui
(

P\{l∗j ,�′
i,�∗

j

}) = U j
(

P\{l∗j ,�′
i,�∗

j

})
. (8)

Notice that the original problem P\ �′
{i, j} can be obtained from P\{l∗j , �′

i, �∗
j } by increasing the lower bound of agent 

j from l∗j to l j . We consider three cases.
2.1. l j ≤ min{ f j(P\{l∗j , �′

i, �∗
j }), U j(P\{l∗j , �′

i, �∗
j })}. Since the two rules satisfy (bm),

f
(

P\ �′
{i, j}

) = f
(

P\{l∗j ,�′
i,�∗

j

})
and

U
(

P\ �′
{i, j}

) = U
(

P\{l∗j ,�′
i,�∗

j

})
.

Thus, the statement holds trivially.
2.2.

min
{

f j
(

P\{l∗j ,�′
i,�∗

j

})
, U j

(
P\{l∗j ,�′

i,�∗
j

})}
< l j ≤ max

{
f j

(
P\{l∗j ,�′

i,�∗
j

})
, U j

(
P\{l∗j ,�′

i,�∗
j

})}
.

Assume that5

f j
(

P\{l∗j ,�′
i,�∗

j

})
< l j ≤ U j

(
P\{l∗j ,�′

i,�∗
j

})
. (9)

By (8)

f i
(

P\{l∗j ,�′
i,�∗

j

})
< Ui

(
P\{l∗j ,�′

i,�∗
j

})
. (10)

Since the two rules satisfy (bm),

f j
(

P\ �′
{i, j}

) = l j, (11)

f i
(

P\ �′
{i, j}

) ≤ f i
(

P\{l∗j ,�′
i,�∗

j

})
, and (12)

U
(

P\ �′
{i, j}

) = U
(

P\{l∗j ,�′
i,�∗

j

})
. (13)

Thus, by (11), (9), and (13),

f j
(

P\ �′
{i, j}

)
< U j

(
P\ �′

{i, j}
)

and, by (12), (10), and (13),

f i
(

P\ �′
{i, j}

)
< Ui

(
P\ �′

{i, j}
)
.

Hence, the statement holds.
2.3. max{ f j(P\{l∗j , �′

i, �∗
j }), U j(P\{l∗j , �′

i, �∗
j })} < l j . Since the two rules satisfy (bm),

f j
(

P\ �′
{i, j}

) = l j and

U j
(

P\ �′
{i, j}

) = l j,

which means that the statement holds trivially.
3. li > l j . The proof proceeds as in Case 2, after changing the roles of i and j. �

Lemma 5. Let f be a rule satisfying (ef), (sp), (ete), and (bm) on P∗. Then, f = U .

5 The proof of the other case is similar because we only use properties that the two rules satisfy.
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Proof. Let P ∈P∗ be arbitrary. We want to show that f (P ) = U (P ). Since f is (bm) we can assume through the proof that 
ui ≤ t for all i ∈ N . Otherwise, if uk > t for some agent k take u′

k = t; by (bm),

f
(

P\u′
k

) = f (P ).

Assume first that 
∑

i∈N pi ≥ t . By (ef ) and Proposition 3, f i(P ) ≤ pi for all i ∈ N .
Let u1

1 = t and consider any �1
1 defined on [l1, t] that coincides with �1 on [l1, u1] and the peak of �1 and �1

1 (we 
call it p1

1) coincide. For each i ∈ N\{1} define �1
i =�i and u1

i = ui . Notice that P can be obtained from P 1 = P\{u1, �1} by 
decreasing the upper bound of 1 from t to u1. By (bm),

f i(P ) ≥ min
{

f i
(

P 1), ui
}

for each i ∈ N. (14)

Since 
∑

i∈N p1
i = ∑

i∈N pi ≥ t and f satisfies (ef), by Proposition 3, f i(P 1) ≤ pi for all i ∈ N . Since pi ≤ ui for all i ∈ N , by 
(14),

f i(P ) ≥ f i
(

P 1) for all i ∈ N.

Hence,

f
(

P 1) = f (P ).

Let u2
2 = t and consider any �2

2 defined on [l2, t] that coincides with �2 on [l2, u2] and the peak of �2 and �2
2 coincide. 

For each i ∈ N\{2} define �2
i =�i and u2

i = u1
i . Let P 2 = (N, t, l, u2, �2). Analogously to the previous case,

f
(

P 2) = f
(

P 1) = f (P ).

Repeating this argument we obtain that f (Pn) = f (P ). Thus, we can assume that ui = t for all i ∈ N .
Without loss of generality assume that p1 ≥ p2 ≥ ... ≥ pn . To obtain a contradiction, assume that U (P ) �= f (P ). Then, 

there exists i1 ∈ N such that

Ui1(P ) < f i1(P ) ≤ pi1 ≤ p1. (15)

Step 1: Take �′
i1 defined on [li1 , t] such that it coincides with �1 on [max{l1, li1}, t] and the peak of �′

i1 (denoted by p′
i1 ) 

is also p1. Let P i1 = P\ �′
i1 . By (15), we can apply Lemma 3(b) with f = U and j = i1. Then,

Ui1

(
P i1) = Ui1(P ). (16)

By Lemma 2, f is own-peak monotonic. Since pi1 ≤ p′
i1 ,

f i1(P ) ≤ f i1

(
P i1)

. (17)

By (16), (15), and (17)

Ui1

(
P i1)

< f i1

(
P i1)

.

Step 2: Then, there exists i2 ∈ N\{i1} such that

f i2

(
P i1)

< Ui2

(
P i1)

. (18)

Take �′
i2 defined on [li2 , t] such that �′

i2 coincides with �′
i1 on [max{li1 , li2 }, t] and the peak of �′

i2 (denoted by p′
i2 ) is also 

p′
i1 (= p1). Let P i1 i2 = P i1\ �′

i2 . Since U satisfies (ef ), by Proposition 3, Ui2 (P i1
) ≤ pi2 = pi1

i2 . By (18), f i2 (P i1
) < pi2 . Besides, 

p′
i1 = p1 ≥ pi2 . By Lemma 3(b) applied to f and j = i2 we deduce that

f i2

(
P i1 i2) = f i2

(
P i1)

. (19)

By Lemma 2, f is own-peak monotonic. Since pi2 ≤ p′
i2 ,

Ui2

(
P i1) ≤ Ui2

(
P i1i2)

. (20)

By (19), (18), and (20)

f i2

(
P i1 i2)

< Ui2

(
P i1 i2)

.

By Lemma 4,

f i1

(
P i1 i2) ≤ Ui1

(
P i1i2)

.
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Step 3: Then, there must exist i3 ∈ N\{i1, i2} such that

Ui3

(
P i1 i2)

< f i3

(
P i1 i2)

. (21)

Take �′
i3 defined on [li3 , t] such that �′

i3 coincides with �′
i2 on [max{li1 , li2 , li3}, t] and the peak of �′

i3 (denoted by p′
i3 ) is 

also p′
i1 (= p1). Let P i1 i2 i3 = P i1 i2\ �′

i3 . By (21), f i3(P i1 i2
) < pi3 . Besides, p′

i1 = p1 ≥ pi3 . By Lemma 3(b) applied to f = U

and j = i3 we deduce that

Ui3

(
P i1 i2i3) = Ui3

(
P i1i2)

. (22)

By Lemma 2, f is own-peak monotonic. Since pi3 ≤ p′
i3 ,

f i3

(
P i1 i2) ≤ f i3

(
P i1i2 i3)

. (23)

By (22), (21), and (23)

Ui3

(
P i1 i2i3)

< f i3

(
P i1i2i3)

.

By applying Lemma 4 to the pairs i3, i1 and i3, i2 we obtain

Ui1

(
P i1 i2i3) ≤ f i1

(
P i1 i2i3)

and

Ui2

(
P i1 i2i3) ≤ f i2

(
P i1 i2i3)

.

Continuing with this procedure, at Step n, we obtain that either

Uin
(

P\ �′
N

)
< f in

(
P\ �′

N

)
and

Ui j

(
P\ �′

N

) ≤ f i j

(
P\ �′

N

)
for all j ∈ N\{in}

or else

f in
(

P\ �′
N

)
< Uin

(
P\ �′

N

)
and

f i j

(
P\ �′

N

) ≤ Ui j

(
P\ �′

N

)
for all j ∈ N\{in}

In both cases we have a contradiction because∑
i∈N

fi
(

P\ �′
N

) =
∑
i∈N

Ui
(

P\ �′
N

) = t.

Assume now that 
∑

i∈N pi < t . By (ef ) and Proposition 3, f i(P ) ≥ pi for all i ∈ N . We define P 0 = P\l0 where l0i = 0 for 
all i ∈ N . Obviously, P 0 ∈ P∗ . Let P0 be the subdomain of P∗ given by problems P with the property that li = 0 for all 
i ∈ N . In Theorem 1 of Bergantiños et al. (2012a) it is proved that there is a unique rule on P0 satisfying (ef ), (sp), (ete), 
and upper bound monotonicity. This rule is called the constrained uniform rule and for all i ∈ N it is defined as follows. For 
all P ∈P0 and i ∈ N ,

Fi(P ) =
{

min{β, pi} if
∑

j∈N p j ≥ t

min{max{β, pi}, ui} if
∑

j∈N p j < t,

where β is such that 
∑

j∈N F j(P ) = t . Since (bm.1) coincides with upper bound monotonicity on P0, f coincides with F

on P0. Thus, for all i ∈ N ,

f i
(

P 0) = min
{

max{β, pi}, ui
}
,

where β satisfies 
∑

j∈N f j(P 0) = t . Besides, for all i ∈ N ,

Ui
(

P 0) = max
{

pi,min{ui,α}},
where α satisfies 

∑
j∈N f j(P 0) = t . It is immediate to see that for each δ,

min
{

max{δ, pi}, ui
} = max

{
pi,min{ui, δ}

}
.

Thus, β = α. Hence, for all i ∈ N , f i(P 0) = Ui(P 0).
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Let P 1 = P 0\l1. Since P 1 and P 0 belong to P∗ , by (bm),

f1
(

P 1) ≤ max
{

f1
(

P 0), l1
}

and

f i
(

P 1) ≤ max
{

f i
(

P 0),0
}

for i �= 1.

Since f1(P 0) = U1(P 0) ≥ p1 ≥ l1 we have that f (P 1) = f (P 0).
Let P 2 = P 1\l2. Since P 1 and P 2 belong to P∗ , by (bm),

f2
(

P 2) ≤ max
{

f2
(

P 1), l2
}

and

f i
(

P 2) ≤ max
{

f i
(

P 1),0
}

for i �= 2.

Since f2(P 1) = f2(P 0) = U2(P 0) ≥ p2 ≥ l2 we have that f (P 2) = f (P 1).
Repeating this argument for all i = 3, ..., n we have that f (Pn) = f (P 0). Since Pn = P , for all i ∈ N ,

f i(P ) = f i
(

P 0) = Ui
(

P 0) = max
{

pi,min{ui,α}} = Ui(P ).

This concludes the proof of Theorem 1’s characterization. �
We now prove that the four properties are independent.

• (ef ) is independent of the other properties.
We define the rule f 1 as follows. Let P ∈P∗ . For each i ∈ N ,

f 1
i (P ) = median{li,α, ui},

where α is such that 
∑

i∈N fi(P ) = t . Then, f 1 satisfies (sp), (ete), and (bm) but fails (ef ).
• (sp) is independent of the other properties.

We define the rule f 2 as follows. Let P ∈P∗ . For each i ∈ N ,

f 2
i (P ) =

{
pi + min{α, ui − pi} if

∑
i∈N pi < t

Ui(P ) if
∑

i∈N pi ≥ t,

where α is such that 
∑

i∈N f 2
i (P ) = t . Then, f 2 satisfies (ef ), (ete), and (bm) but fails (sp).

• (ete) is independent of the other properties.
We define f 3 as the priority rule given by the order (1, 2, ..., n) applied to the set of efficient allocations. Namely, let 
P ∈P∗ . We define f 3 formally, by considering separately the two following cases.
1.

∑
i∈N pi ≥ t . Take k as the unique agent satisfying that 

∑k
i=1 pi +∑n

i=k+1 li ≤ t <
∑k+1

i=1 pi +∑n
i=k+2 li . For each i ∈ N ,

f 3
i (P ) =

⎧⎨
⎩

pi if i ≤ k

t − ∑k
i=1 pi − ∑n

i=k+2 li if i = k + 1
li if i ≥ k + 2.

2.
∑

i∈N pi < t . Take k as the unique agent satisfying that 
∑k+1

i=1 pi + ∑n
i=k+2 ui ≤ t <

∑k
i=1 pi + ∑n

i=k+1 ui . For each 
i ∈ N ,

f 3
i (P ) =

⎧⎨
⎩

pi if i ≤ k

t − ∑k
i=1 pi − ∑n

i=k+2 ui if i = k + 1
ui if i ≥ k + 2.

Then, f 3 satisfies (ef ), (sp), and (bm) but fails (ete).
• (bm) is independent of the other properties.

We define the rule f 4 inspired by the Constant Equal Losses rule used in bankruptcy problems. Let P ∈ P∗ . For each 
i ∈ N ,

f 4
i (P ) =

{
max{ui − α, pi} if

∑
i∈N pi < t

min{max{li, ui − α}, pi} if
∑

i∈N pi ≥ t,

where α is such that 
∑

i∈N f 4
i (P ) = t . Then, f 4 satisfies (ef ), (sp), and (ete) but fails (bm).

6.2. Proof of Theorem 2

Let ρ be any monotonic and responsive order on N . We prove that Uρ satisfies (ef ), (sp), (ete), (bm), (cons) and (iic) on P .
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(1) Uρ satisfies (cons). Let P ∈P , S ⊆ N , and i ∈ S . We must prove that

Uρ
i (P ) = Uρ

i

(
P Uρ ,S)

where P Uρ ,S = (S, t −∑
j∈cUρ

(P )\S Uρ
j (P ), (li)i∈S , (ui)i∈S , (�i)i∈S). We first prove that cUρ

(P Uρ ,S) = cUρ
(P ) ∩ S . Suppose 

cUρ
(P Uρ ,S) �= cUρ

(P ) ∩ S . Since cUρ
(P ) ∩ S ∈ A(P Uρ ,S), we have cUρ

(P Uρ ,S )ρ(cUρ
(P ) ∩ S). Obviously, cUρ

(P Uρ ,S ) ∪
(cUρ

(P ) ∩ (N\S)) ∈ A(P ). By definition of Uρ ,

[
cUρ

(P )
]
ρ
[
cUρ (

P Uρ,S) ∪ (
cUρ

(P ) ∩ (N\S)
)]

. (24)

Since ρ is responsive and cUρ
(P Uρ ,S)ρ[cUρ

(P ) ∩ S],
[
cUρ (

P Uρ,S) ∪ (
cUρ

(P ) ∩ (N\S)
)]

ρ
[
cUρ

(P ) ∩ S ∪ (
cUρ

(P ) ∩ (N\S)
)] = cUρ

(P )

which contradicts cUρ
(P Uρ ,S) �= cUρ

(P ) ∩ S and (24). Thus, if i /∈ cUρ
(P ) ∩ S , Uρ

i (P ) = 0 = Uρ
i (P Uρ ,S) holds. Let i ∈

cUρ
(P ) ∩ S . We consider two cases.

1.
∑

j∈cUρ
(P ) p j ≥ t . Thus, Uρ

j (P ) = min{p j, max{ll, α}} ≤ p j for all j ∈ cUρ
(P ). Then,

∑
j∈cUρ

(P Uρ ,S )

p j ≥
∑

j∈cUρ
(P Uρ ,S )

Uρ
j (P ) =

∑
j∈cUρ

(P )∩S

Uρ
j (P )

= t −
∑

j∈cUρ
(P )\S

Uρ
j (P ).

Thus, Uρ
j (P Uρ ,S) = min{p j, max{l j, α′}} for all j ∈ cUρ

(P Uρ ,S ). Since

∑
j∈cUρ

(P )∩S

Uρ
j

(
P Uρ ,S) = t −

∑
j∈cUρ

(P )\S

Uρ
j (P ) =

∑
j∈cUρ

(P )∩S

Uρ
j (P ),

it follows that α′ = α. Hence, Uρ
i (P ) = Uρ

i (P Uρ ,S).
2.

∑
j∈cUρ

(P ) p j < t . The proof uses symmetric arguments to those already used in Case 1 and it is omitted.

(2) Uρ satisfies (iic). Let P , P ′ ∈ P be such that cUρ
(P ) ∈ A(P ′) ⊆ A(P ). By definition of cUρ

(P ), cUρ
(P )ρ S for all S ∈

A(P )\cUρ
(P ). Thus, cUρ

(P )ρ S for all S ∈ A(P ′)\cUρ
(P ). Hence, cUρ

(P ′) = cUρ
(P ).

(3) Uρ satisfies (ef ). Fix a problem P ∈ P . Assume that there exists x = (xi)i∈N ∈ FA(P ) with the property that xi �i Uρ
i (P )

for all i ∈ N . We prove that x = Uρ(P ). Since xi �i Uρ
i (P ) for all i ∈ cUρ

(P ), xi ∈ [li, ui] for all i ∈ cUρ
(P ). Since ρ

is monotonic and cUρ
(P ) is maximal in FA(P ), xi = 0 = Uρ

i (P ) for all i /∈ cUρ
(P ). Since Uρ satisfies (cons), for all 

i ∈ cUρ
(P ),

Uρ
i (P ) = Uρ

i (PcUρ
(P )).

Since PcUρ
(P ) ∈P∗ , Uρ coincides with U on PcUρ

(P ) and U satisfies (ef ) on P∗ , xi = Uρ
i (P ) for all i ∈ cUρ

(P ).

(4) Uρ satisfies (sp). Let P ∈ P , i ∈ N and �′
i be as in the definition of (sp). We must prove that Uρ

i (P ) �i Uρ
i (P\ �′

i). Let 
us denote P ′ = P\ �′

i . Obviously, A(P ′) = A(P ). Since Uρ satisfies (iic), cUρ
(P ′) = cUρ

(P ). Then, Uρ
j (P ) = Uρ

j (P ′) for all 
j /∈ cUρ

(P ). Thus, if i /∈ cUρ
(P ), Uρ

i (P ) �i Uρ
i (P ′). Since Uρ satisfies (cons), for all j ∈ cUρ

(P ), Uρ
j (P ) = Uρ

j (PcUρ
(P )) and 

Uρ
j (P ′) = Uρ

j (P ′
cUρ

(P )
). Since PcUρ

(P ) ∈ P∗ , P ′
cUρ

(P )
∈ P∗ , Uρ coincides with U on PcUρ

(P ) and P ′
cUρ

(P )
, and U satisfies 

(sp) on P∗ , we deduce that Uρ
i (PcUρ

(P )) �i Uρ
i (P ′

cUρ
(P )

).

(5) Uρ satisfies (ete). It is obvious from the definition.
(6) Uρ satisfies (bm). We first prove that Uρ satisfies (bm.1). Let P , (P\u′

k) ∈P be such that u′
k < uk , and cUρ

(P ) ∈ A(P\u′
k). 

We denote P ′ = P\u′
k . Since u′

k < uk , A(P ′) ⊆ A(P ). Since Uρ satisfies (iic), cUρ
(P ′) = cUρ

(P ). Then, Uρ
i (P ) = 0 = Uρ

i (P ′)
for all i /∈ cUρ

(P ). Thus, for all i /∈ cUρ
(P ),

Uρ
i

(
P ′) ≥ min

{
Uρ

i (P ), u′
i

}
.

Since Uρ satisfies (cons), for all i ∈ cUρ
(P ), Uρ

i (P ) = Uρ
i (PcUρ

(P )) and Uρ
i (P ′) = Uρ

i (P ′
cUρ

(P )
). Since PcUρ

(P ) ∈ P∗ , 
P ′

cUρ
(P )

∈ P∗ , Uρ coincides with U on PcUρ
(P ) and P ′

cUρ
(P )

, and U satisfies (bm.1) on P∗ , we deduce that for all 

i ∈ cUρ
(P )
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Uρ
i

(
P ′) = Uρ

i

(
P ′

cUρ
(P )

) = Ui
(

P ′
cUρ

(P )

) ≥ min
{

Ui(PcUρ
(P )), u′

i

}
= min

{
Uρ

i (PcUρ
(P )), u′

i

}
= min

{
Uρ

i (P ), u′
i

}
.

The proof that Uρ satisfies (bm.2) is similar to the proof that Uρ satisfies (bm.1) and it is omitted.

Let f be a rule satisfying (ef ), (sp), (ete), (bm), (cons) and (iic). We prove that there exists a monotonic and responsive 
order ρ on N for which f = Uρ .

We first define a binary relation ρ on N as in Bergantiños et al. (2012b). Let S, S ′ ∈N . Three cases are possible.

1. S ⊃ S ′ . Then, set Sρ S ′ .
2. S ′ ⊃ S . Then, set S ′ρ S .
3. There exist agents j ∈ S\S ′ and j′ ∈ S ′\S . Consider any problem P ∈P where S, S ′ ⊆ N and for each i ∈ N , li = pi = ui , 

and

pi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε if i ∈ S ∩ S ′
ε2 if i ∈ S\(S ′ ∪ { j})
t − ε|S ∩ S ′| − ε2|S\(S ′ ∪ { j})| if i = j
ε3 if i ∈ S ′\(S ∪ { j′})
t − ε|S ∩ S ′| − ε3|S ′\(S ∪ { j′})| if i = j′
ε4 if i ∈ N\(S ∪ S ′).

We choose ε > 0 small enough to make sure that 0 < pi < t for all i ∈ N and A(P ) = {S, S ′}. By (ef ), c f (P ) ∈ {S, S ′}. 
Then, if c f (P ) = S set Sρ S ′ and if c f (P ) = S ′ set S ′ρ S .

Since f satisfies (iic), ρ is well defined because it does not depend on the particular chosen problem, namely given 
P ′ ∈P such that A(P ′) = {S, S ′} we have that c f (P ′) = c f (P ). Thus, ρ is well defined.

By Lemmas 11 and 13 in Bergantiños et al. (2012b), ρ is complete, antisymmetric, monotonic, responsive and transitive. 
By Lemma 12 in Bergantiños et al. (2012b) we have that c f (P )ρ S for all S ∈ A(P )\c f (P ). We should note that in the proofs 
of such lemmata the only properties of f used are (ef ), (cons), and (iic).

Lemma 6. Let f be a rule satisfying (ef), (sp), (ete), (bm), (cons), and (iic) and let ρ be its corresponding order defined as in Cases 1, 2, 
and 3 above. Then, f = Uρ .

Proof. Let P ∈ P be arbitrary and suppose that f and ρ satisfy the hypothesis of Lemma 6. If A(P ) = ∅, then c f (P ) =
cUρ

(P ) and f (P ) = Uρ(P ) = (0, ..., 0). Assume A(P ) �= ∅. By (ef ), c f (P ) and cUρ
(P ) are non-empty. Since S ∈ A(P S) implies 

S ∈ A(P ), we have that A(P S) ⊆ A(P ). In particular, c f (P ) ∈ A(Pc f (P )) ⊆ A(P ). Hence, by (iic), c f (Pc f (P )) = c f (P ). Since f
satisfies (cons),

f i(P ) =
{

f i(Pc f (P )) if i ∈ c f (P )

0 if i /∈ c f (P ).
(25)

Because Pc f (P ) ∈P∗ and f satisfies (ef ), (sp), (ete), and (bm), by Theorem 1, for all i ∈ c f (P ),

f i(Pc f (P )) = Uρ
i (Pc f (P )). (26)

By (25) and (26), f coincides with Uρ . �
This concludes the proof of Theorem 2’s characterization.
We now prove that the six properties are independent.

• (ef ) is independent of the other properties.
Let f 1 be defined as in the independence of the properties of Theorem 1. We extend f 1 to problems where N is not 
admissible as we did with the uniform rule. Namely, let ρ be a monotonic and responsive order on N . We define f 1,ρ

as follows. For any P ∈P and i ∈ N ,

f 1,ρ
i (P ) =

{
f 1

i (P
c f 1,ρ ) if i ∈ c f 1,ρ

0 if i /∈ c f 1,ρ
,

where c f 1,ρ ∈ A(P ) and c f 1,ρ
ρ S for all S ∈ A(P )\c f 1,ρ

.
It is not difficult to prove that f 1,ρ satisfies all properties but (ef ).
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• (sp) is independent of the other properties.
Let f 2 be defined as in the independence of the properties of Theorem 1. Let ρ be a monotonic and responsive order 
on N . We define f 2,ρ from f 2 as we did with f 1,ρ .
It is not difficult to prove that f 2,ρ satisfies all properties but (sp).

• (ete) is independent of the other properties.
Let f 3 be defined as in the independence of the properties of Theorem 1. Let ρ be a monotonic and responsive order 
on N . We define f 3,ρ from f 3 as we did with f 1,ρ .
It is not difficult to prove that f 3,ρ satisfies all properties but (ete).

• (bm) is independent of the other properties.
Let f 4 be defined as in the independence of the properties of Theorem 1. Let ρ be a monotonic and responsive order 
on N . We define f 4,ρ from f 4 as we did with f 1,ρ .
It is not difficult to prove that f 4,ρ satisfies all properties but (bm).

• (iic) is independent of the other properties.
Let N = {1, 2} and ρ be such that

{1,2}ρ{1}ρ{2}ρ∅.

We define f 5 as follows. For all P ∈P ,

f 5(P ) =
{

(0, t) if {2} ∈ A(P ), N /∈ A(P ), and t ≥ 1
Uρ otherwise.

It is not difficult to prove that f 5 satisfies all properties but (iic).
• (cons) is independent of the other properties.

Let ρ be a monotonic order on N but not responsive. We define f 6 = Uρ .
It is not difficult to prove that f 6 satisfies all properties but (cons).

6.3. Proof of Proposition 2

Let ρ be any monotonic and responsive order on N .

(1) Uρ satisfies envy freeness. Let P ∈ P and i, j ∈ cUρ
be such that Uρ

i (P ) 	 j Uρ
j (P ). Since Uρ satisfies consistency, 

Uρ
k (P ) = Uρ

k (PcUρ ) for all k ∈ cUρ
. Thus, we can assume that cUρ = N; namely, P ∈ P∗ and Uρ = U . We consider two 

cases.
1.

∑
k∈N pk < t . Then, Uk(P ) = max{pk, min{uk, α}} ≥ pk for all k ∈ N . Since Ui(P ) 	 j U j(P ), U j(P ) = min{u j, α} > p j . 

We consider two cases.
1.1. α < pi . Since pi ≤ ui , Ui(P ) = pi . Since Ui(P ) 	 j U j(P ) > p j , by single-peakedness, Ui(P ) < U j(P ). Then,

α < pi = Ui(P ) < U j(P ) = min{u j,α},
which is a contradiction.

1.2. α ≥ pi . Since pi ≤ ui , Ui(P ) = min{ui, α}. Since Ui(P ) 	 j U j(P ), by single-peakedness,

min{ui,α} = Ui(P ) < U j(P ) = min{u j,α}.
Since Ui(P ) = α and Ui(P ) < U j(P ) are incompatible, we have that Ui(P ) = ui < U j(P ). Thus, U j(P ) /∈ [li, ui]
which means that the allotment of j is not feasible for i.

2.
∑

k∈N pk ≥ t . Then, Uk(P ) = min{pk, max{lk, α}} ≤ pk for all k ∈ N . Since Ui(P ) 	 j U j(P ), U j(P ) = max{l j, α} < p j . 
We consider two cases.

2.1. α ≤ pi . Since li ≤ pi , Ui(P ) = max{li, α}. Since Ui(P ) 	 j U j(P ), by single-peakedness,

max{li,α} = Ui(P ) > U j(P ) = max{l j,α}.
Since Ui(P ) = α and Ui(P ) > U j(P ) are incompatible, we have that Ui(P ) = li > U j(P ). Thus, U j(P ) /∈ [li, ui]
which means that the allotment of j is not feasible for i.

2.2. α > pi . Since li ≤ pi , Ui(P ) = pi . Since Ui(P ) 	 j U j(P ), by single-peakedness,

pi = Ui(P ) > U j(P ) = max{l j,α},
a contradiction with α > pi .

(2) Uρ satisfies individual rationality from equal division. Let P ∈P be such that ( t
n , ..., t

n ) ∈ FA(P ). Thus, li ≤ t
n ≤ ui for all 

i ∈ N and hence, P ∈P∗ and Uρ = U . We consider two cases.
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1.
∑

i∈N pi < t . Then, Ui(P ) = max{pi, min{ui, α}} ≥ pi for all i ∈ N . Assume that 
∑

i∈N ui > t (otherwise ui = t
n for 

all i ∈ N and the result holds trivially). Since for all i ∈ N , t
n ≤ ui it follows that for all i ∈ N ,

max

{
pi,min

{
ui,

t

n

}}
= max

{
pi,

t

n

}
≥ t

n
.

Hence, α ≤ t
n . We consider two cases.

1.1. pi ≥ α. Then, Ui(P ) = pi �i
t
n .

1.2. pi < α. Then, pi < Ui(P ) = α ≤ t
n . By single-peakedness, Ui(P ) �i

t
n .

2.
∑

i∈N pi ≥ t . Then, min{pi, max{li, α}} ≤ pi for all i ∈ N . Assume that 
∑

i∈N li < t (otherwise li = t
n for all i ∈ N and 

the result holds trivially). Since for all i ∈ N , li ≤ t
n it follows that for all i ∈ N ,

min

{
pi,max

{
li,

t

n

}}
= min

{
pi,

t

n

}
≤ t

n
for all i ∈ N.

Hence, α ≥ t
n . We consider two cases.

2.1. pi > α. Then, t
n ≤ α = Ui(P ) < pi . By single-peakedness, Ui(P ) �i

t
n .

2.2. pi ≤ α. Then, Ui(P ) = pi �i
t
n .

(3) Uρ satisfies one-sided resource monotonicity. Let P , (P\t′) ∈ P be as in the definition of the property. Since A(P ) =
A(P\t′) and Uρ satisfies (iic), cUρ

(P ) = cUρ
(P\t′). Since Uρ satisfies (cons), and using similar arguments to those 

already used to prove that Uρ is envy free, we can assume that P ∈P∗ and Uρ = U . We consider two cases.
1.

∑
i∈N pi ≤ t′ ≤ t . Then, for all i ∈ N

Ui(P ) = max
{

pi,min{ui,α}} and

Ui
(

P\t′) = max
{

pi,min
{

ui,α
′}}.

Since t′ ≤ t , α′ ≤ α. Then, for all i ∈ N ,

pi ≤ Ui
(

P\t′) ≤ Ui(P ).

By single-peakedness, Ui(P\t′) �i U i(P ).
2. t ≤ t′ ≤ ∑

i∈N pi . The proof is symmetric to the prove of Case 1 and it is omitted.
(1′) Uρ does not satisfy strong envy freeness. Let P ∈ P be such that N = {1, 2}, t = 10, l = (7, 0), u = (9, 9) and for each 

x ∈ [1, 3] and y ∈ [7, 9] we have that y �2 x. The set of feasible allocations is

FA(P ) = {
(x1,10 − x1)

∣∣ x1 ∈ [7,9]} ∪ {
(0,0)

}
.

Since Uρ is efficient, Uρ(P ) �= (0, 0), which means that Uρ does not satisfy strong envy freeness.
(2′) Uρ does not satisfy strong individual rationality from equal division. Let P ∈P be such that N = {1, 2}, t = 10, l = (1, 2), 

u = (3, 8) and p2 = 5. The set of feasible allocations is

FA(P ) = {
(x1,10 − x1)

∣∣ x1 ∈ [2,3]} ∪ {
(0,0)

}
,

which means that Uρ does not satisfy strong individual rationality from equal division.
(3′) Uρ does not satisfy strong one-sided resource monotonicity. Let P ∈ P be such that N = {1, 2, 3}, t = 10, t′ = 14, l =

(1, 1, 12), u = (6, 6, 20), p = (5, 5, 15), and for each i ∈ {1, 2} and each x, y ∈ [1, 6], x �i y if and only if |x −5| ≤ |y −5|. 
Now,

FA(P ) = {
(x1,10 − x1,0)

∣∣ x1 ∈ [4,6]} ∪ {
(0,0,0)

}
and

FA
(

P\t′) = {
(x1,0,14 − x1)

∣∣ x1 ∈ [1,2]} ∪ {
(0, x2,14 − x2)

∣∣ x2 ∈ [1,2]}
∪ {

(1,1,12)
} ∪ {

(0,0,14)
} ∪ {

(0,0,0)
}
.

Since Uρ is efficient, for each i ∈ {1, 2}, f i(P ) ∈ [4, 6] and f i(P\t′) ≤ 2. Thus, Uρ does not satisfy strong one-sided 
resource monotonicity.
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