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Abstract

Considered one of the founding fathers of integral geometry, Luis Santaló has con-

tributed to various areas of mathematics. His work has applications in number theory,

in the theory of differential equations, in stochastic geometry, in functional analysis,

and also in theoretical physics. Between the 1950’s and the 1970’s, he wrote a series

of papers on general relativity and on the attempts at generalizing Einstein’s theory

to formulate a unified field theory. His main contribution in this subject was to pro-

vide a classification theorem for the plethora of tensors that were populating Einstein’s

generalized theory. This paper revisits his work on theoretical physics.
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1 Introduction

Considered one of the founding fathers of integral geometry, Luis Antoni Santaló (1911-
2001) has contributed to various areas of classical geometry, including geometric probability
and differential geometry. His most famous contribution is arguably the Blaschke-Santaló
inequality [1], an important affine isoperimetric inequality in n dimensions that finds ap-
plications in number theory, in the theory of differential equations, in stochastic geometry,
and in functional analysis. Santaló’s results in integral geometry are used today in many
different areas [2], ranging from pure mathematics to physics [3–5] and technology [6]. In
contrast to this, his work on theoretical physics, more concretely in the theory of relativity,
is less known and is frequently omitted or mentioned very briefly in the summaries of his
scientific contributions [7,8]. The purpose of this presentation is to amend this omission and
adequately highlight the work that Santaló has done in classical field theory.

Between the 1950’s and the 1970’s, Santaló wrote a series of very interesting papers [9–18]
on general relativity and, more specifically, on the attempts at generalizing Einstein’s theory
to incorporate the electromagnetic field in a unified geometrical scheme [19]. His contributions
to this subject were very well appreciated by the community working on that problem at
that time [20], specially because it was him who provided an exhaustive classification of the
plethora of Ricci type tensors that were populating Einstein’s classical unified field theory
[11, 15–18].

It has been suggested that Santaló’s interest in unified field theory has likely awoken
during his stay at the Institute for Advanced Study in Princeton during 1948. That was the
period in which Einstein was actively working [21,22] on a non-symmetric version of general
relativity that, along with Ernst Straus, he started to explore since the mid 1940’s [23,24] and
on which he kept working [25–27] until his death, in 1955. However, while one can not claim
that his days in Princeton have not influenced Santaló subsequent research in physics, it is
true that his publications in those years focused entirely on problems of pure mathematics,
mainly on integral geometry [28–31]. His works on physics came a few years later.

The first article Santaló published on classical unified field theory appeared in 1953 [9].
There, Einstein’s theory [19] of the non-symmetric field is explained with a remarkable lu-
cidity. Between 1953 and 1955, he dedicated a series of articles [9–13] to present in a very
clear way the main ideas behind the unification program that, simultaneously, was being
carried out by Einstein and his assistants Ernst Straus and Bruria Kaufman. The goal was
to formulate a sensible non-symmetric version of general relativity in which the metric tensor,
not longer being symmetric but entailing a skew-symmetric component, could account for
both the gravitational and the electromagnetic field. Such research program implied at least
two challenges: On the one hand, from the mathematical point of view, formulating such an
asymmetric field theory first demanded to investigate a new class of geometrical structure
that goes beyond Riemannian geometry. On the other hand, from the physical point of view,
in an asymmetric theory the number of possible connections and tensors grows notably and,
therefore, deciding what was the most general or more natural set of field equations to be
considered appeared as a difficult problem. It was precisely the latter problem on which San-
taló worked during a few years. His main contribution appeared in [15] (see also his previous
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works [11,14]) and was subsequently extended and further investigated in [16–18]. There, he
provided the most general tensor that, in the asymmetric field theory, comes to play the role
that the Ricci tensor and the Einstein tensor play in general relativity. In this sense, it is
fair to say that Luis Santaló was to Einstein’s classical unified field theory what Élie Cartan
was to general relativity [32].

A particularly complete version of Santaló’s tensor classification appeared in a paper he
published in 1966, in a volume in honor of Václav Hlavatý [16] edited by Banesh Hoffmann,
collaborator and biographer of Einstein. Along Santaló, other prominent mathematicians
and physicists of the epoch, including Harold Coxeter, André Lichnerowicz, Roger Penrose,
Wolfand Rindler, Ivor Robinson, Nathan Rosen, Dennis Sciama, Abraham Taub, and John
Wheeler contributed to that volume. In his work, Santaló did not restrict himself to the
classification of the mathematical entities appearing in Einstein’s theory, but he also discussed
the particular properties of the field equations derived from them and the physical meaning
of different ways of defining the theory. Later, Santaló extended his result to n dimensions
and considered other possible generalizations, such as higher-curvature extensions [17, 18].

We will dedicate section 3 to review Santaló’s contribution in the field, his classification of
rank-2 Ricci type tensors. Before that, in order to really appreciate Santaló’s contribution, we
will need some context: in section 2, we will briefly summarize the asymmetric generalization
of Riemannian geometry that is in the foundations of Einstein’s asymmetric field theory [19];
we will describe Einstein’s theory and the particularly interesting generalization of it proposed
by Schrödinger [33], and we will conclude in section 4 with some remarks.

2 Generalized Riemannian geometry

Generalizing the mathematical framework of general relativity, according to which the
spacetime is described as a 4-dimensional torsion-free pseudo-Riemannian manifold with a
specific affine connection, Einstein’s asymmetric field theory treats the spacetime as a 4-
dimensional differentiable affine manifold with torsion and endowed with a non-degenerate
rank-2 tensor that can be regarded as an asymmetric generalization of the metric. This de-
fines a non-Riemannian geometrical structure which, between the 1950’s and the 1960’s, was
being actively investigated by well-known relativists, notably by Einstein [19], Eisenhart [34],
Hlavatý [35], Kaufman [36], Lichnerowicz [37], Schrödinger [33] and Tonnelat [38]. As we al-
ready said, the pious idea behind this research program was that, due to the asymmetry in
the metric and the connection, the theory could likely describe, in addition to the gravita-
tional field, a 2-form field representing electromagnetism coupled to gravity in an intricate
way that comes to generalize the Einstein-Maxwell theory.

To describe this type of asymmetric generalization of Riemannian geometry, first we need
to introduce the basic elements in the construction: Consider a geometry in which the metric
gµν is not necessarily symmetric but it comprises both a symmetric component g{µν} and
a skew-symmetric component g[µν]; that is, gµν = g{µν} + g[µν]. We will adopt the standard
notation A{µν} ≡ 1

2
(Aµν+Aνµ) and A[µν] ≡ 1

2
(Aµν−Aνµ) for any quantity Aµν , not necessarily

tensorial. We will assume g ≡ det(gµν) 6= 0 and define the inverse of the asymmetric tensor,
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gµν, such that gµαgνα = gαµgαν = δµν , with the order of indices being important here; δµν is
the standard Kronecker tensor. The geometry will also have an asymmetric affine connection
Γα

µν . In the symmetric field theory, i.e. general relativity, the affine connection is fully
determined by the compatibility equation

∇ρgµν = ∂ρgµν − gηνΓ
η
µρ − gµηΓ

η
νρ = 0, (1)

together with the requirement that torsion vanishes, i.e. Γα
[µν] = 0. In the asymmetric

theory, in contrast, the definition of the connection is more problematic as there exist many
candidates to be a natural generalization of (1). By construction, in this case the connection
will not be in general symmetric; it will comprises both a symmetric part Sρ

µν ≡ Γρ

{µν}

and a skew-symmetric part T ρ
µν ≡ Γρ

[µν] that defines the torsion tensor. The trace of the
torsion will play a fundamental role in the theory and so we reserve for it a special symbol:
Γµ ≡ T ν

µν .

Because of the asymmetry of the connection, there are now at least two independent ways
of defining the Ricci tensor, both of them equally natural. These are contraction Rρ

µνρ and
the contraction Rρ

ρµν , with the Riemann tensor being given in terms of the affine connection
in the standard way, namely Rµ

νησ = ∂σΓ
µ
νη − ∂ηΓ

µ
νσ + Γτ

νηΓ
µ
τσ − Γτ

νσΓ
µ
τη. Only one of

these two Ricci tensors exists in the symmetric case as the second one identically vanishes
in that case; however, in the general case both of them carry independent information about
the geometry. Therefore, a natural proposal for the generalized field equations in this setup
would be to demand both tensors to vanish. In fact, this was one of the first proposals
of Einstein, who considered the double Ricci flatness as a possible extension of his general
relativity. Such set of field equations seemed auspicious to him because they do imply a
Maxwell type equation for the dual of the skew-symmetric part of the metric, which then
could be associated with the electromagnetic field. However, the theory defined in this way
has a fundamental problem: The field equations are not necessarily compatible. The number
of algebraic and differential equations relative to the number of variables is such that the
system is in principle overdetermined. This compatibility issue would get solved if the field
equations came from a variational principle. This observation led Einstein to propose a
modified version of his theory [19], which is defined by the set of equations

Rµν +Rνµ = 0 , ∂µRρλ + ∂λRµρ + ∂ρRλµ = 0. (2)

together with the traceless torsion condition Γµ = 0. These equations do follow from a
variational principle, as we discuss below.

A particularly elegant formulation of Einstein’s asymmetric theory was proposed by Schrödinger
[33]. This starts with the action functional

S =
1

4π

∫
dnx

√
ggµνRµν(Γ) (3)

where, again, gµν is taken to be asymmetric, and Rµν = Rρ
µνρ is the usual Ricci tensor, which

is asymmetric too. Notice also that we are defining the theory in n dimensions, as no much
difference exists with the case n = 4.
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Action (3) seems to be the natural generalization of Einstein-Hilbert action. Varying it
with respect to the metric tensor and to the affine connection independently, following a
method à la Palatini, one finds the Einstein type equation Rµν = 0 together with an equa-
tion that resembles the compatibility condition (1) and that reduces to it in the symmetric
case. To express the latter condition in a succinct way, it is convenient to define, following
Schrödinger, the new quantity

Γ̂µ
ρλ = Γµ

ρλ +
2

n− 1
δµρΓλ. (4)

Γλ being a vector, (4) preserves parallelism and so Γ̂µ
ρλ is a connection itself. It is easy to

check that this new connection obeys Γ̂µ = 0 by construction. In terms of (4), the generalized
compatibility equation, which follows from (3), yields

∇̂ρgµν + 2gµηT̂
η
νρ = ∂ρgµν − gηνΓ̂

η
µρ − gµηΓ̂

η
ρν = 0, (5)

where ∇̂ρ stands for the covariant derivative with respect to (4). Notice that (5) is almost
equivalent to replacing in (1) the connection Γα

µν by the new connection Γ̂α
µν . However, we

say “almost equivalent” because there is a difference in the order of the indices in the last
terms of (1) and (5). This is how the torsion enters in the story. Another remarkable fact
about (5) is that, after contracting indices and manipulating the expression a bit, one finds
the Maxwell type equation

∂µ(
√
gg[µν]) = 0 (6)

for the skew-symmetric part of the metric. This was, indeed, the main goal of the generalized
theory and so it can be considered as an auspicious achievement, although from a modern
perspective it comes as a surprise that such an equation for a gauge invariance quantity was
expected to follow from a component of the generalized metric tensor.

In terms of the connection Γ̂α
µν , the field equation Rµν = 0 takes the form

R̂µν =
4

n− 1
∂[µΓν] , (7)

where R̂µν is the Ricci tensor constructed in the standard way with the Schrödinger connec-
tion (4). The unhatted vector Γµ still appears on the right hand side; however, due to the
particular skew-symmetric combination involving the derivative, it can be easily eliminated
and then one arrives to the equivalent system of equations

R̂µν + R̂νµ = 0 , ∂µR̂ρλ + ∂λR̂µρ + ∂ρR̂λµ = 0, (8)

where, now, no unhatted quantities appear. The first of these equations is an Einstein
type equation for the symmetric part of the Ricci tensor. The second equation resembles
the Bianchi identity. These two equations, together with (5) and (6) can be considered as
the local field equations that define Einstein-Schrödinger unified field theory. Equations (8)
reduce to (2) when Γµ = 0. In fact, Γµ remains unspecified by the variational principle
(3); it rather represents a choice. Different authors considered different choices. Einstein,
for example, felt inclined to consider the case Γµ = 0. Latter, he came up with different
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criteria based on symmetries in order to reduce the degree of arbitrariness when choosing
the equations. One such criterion was to demand the so-called λ-invariance, which is the
requirement of the field equations to remain invariant under the continuous transformation
Γα

µν → Γα
µν + δαµλν , with λβ being an arbitrary vector [19, 25]. Other criterion was to

demand the so-called pseudo-Hermiticity, which is to demand the field equations to change
in a specific way under the discrete transformations gµν ,Γα

µν → gνµ,Γ
α
νµ. In the next section,

we will discuss the arbitrariness in defining the asymmetric field equations and the work of
Santaló on this issue.

3 Santaló and classical unified field theory

Although at first glance the variational principle (3) seems to be the natural generalization
of the Hilbert-Einstein action to the asymmetric case, it still entails some degree of arbitrari-
ness. In the asymmetric theory, there exists more than one possible Ricci tensor. In fact,
there are many rank-2 tensors that one can construct out of the affine connection and its
first derivatives. The problem is lucidly explained in [16]: While in the symmetric case there
exists the theorem of Cartan [32] that states that the Einstein tensor is the unique symmetric
rank-2 covariantly conserved tensor that depends only on the metric tensor and its first and
second derivatives, being linear in the second derivatives, in the case of the asymmetric field
theory no analogous theorem exists. In fact, Einstein’s classical unified field theory, based
on the asymmetric field, needs to be supplemented with additional criteria to select the field
equations unambiguously.

Instead of subscribing to a particular criterion with no actual justification, Santaló pro-
posed in [16] to consider the most general field theory that follows from an action principle
whose Lagrangian turns out to be a function on the metric tensor, the connection, and the
first derivatives of the connection. This requires to first pose the question of what is the most
general extension of the Ricci tensor that one can construct with the mathematical entities
at hand in the non-symmetric affine geometry. In [16], Santaló answered this question by
writing down the most general family of tensors that can be considered a natural general-
ization of the Ricci tensor. His result takes the form of a theorem: In an affine space with
connection Γµ

αβ = S
µ
αβ + T

µ
αβ and torsion T

µ
αβ, the only rank-2 tensors that satisfy: a) to

depend only on the affine connection Γµ
αβ and its first derivatives ∂ρΓ

µ
αβ , b) to be function

up to second degree of Γµ
αβ , are the following:

L(1)
νη = Rνη, L(2)

νη = Σνη, L(3)
νη = ∇µT

µ
νη, L(4)

νη = ∇νΓη

L(5)
νη = ∇ηΓν , L(6)

νη = T ξ
νρT

ρ
ηξ, L(7)

νη = ΓνΓη, L(8)
νη = ΓµT

µ
νη, (9)

where Σνη = ∂ηS
µ
µν − ∂νS

µ
µη. These are eight tensors of mass dimension 2, i.e. all of

them contain either two derivatives of the metric, one derivative of the connection, or are
quadratic in the connection. It is worth emphasizing that the number of such tensors is the
same in higher dimensions [17, 18]. Therefore, following [15, 16], the most general rank-2
tensor suitable for a Lagrangian representation of the generalized field theory would be of
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the form

R∗
µν =

8∑
i=1

ciL
(i)
µν (10)

with ci being eight real coefficients that act as coupling constants. Santaló then proposes
that the most general field theory has to be the one defined by the action functional

S =
1

4π

∫
dnx

√
ggµνR∗

µν(Γ), (11)

where, as before, the variational principle is defined by varying this action with respect
to gµν and to Γα

µν independently. The variation with respect to the metric yields R∗
µν = 0,

while the variation with respect to the connection leads to a quite involved rank-3 differential
equation that comes to generalize the compatibility condition (5) and involves the torsion and
derivatives of the metric. The explicit form of the latter equation is not very enlightening,
so we will schematically denote it Kα

µν = 0.

These equations generalize the Einstein-Shrödinger theory (3) and reduce to it in the case
ci = δ1i . Besides, there are many other cases that are interesting: For example, Einstein had
already considered in n = 4 dimensions the special case ci = 2δ1i + δ2i + 2δ3i . Tonnelat, on
the other hand, had considered in [38] other cases such as ci = 3δ1i + 2δ5i + δ6i − 2δ7i − δ8i .
Winogradzski had considered the case ci = δ1i − 2δ3i + 2δ5i + 4δ7i , among a few others [39].
That is, for some choices of ci Santaló’s general tensor R∗

µν reduces to other tensors previously
considered in the literature, which now appear as particular cases. The theories defined by
all these different choices of ci have particular properties. Santaló discusses in [16] several
examples and the symmetries they exhibit. In this regard, it is worth noticing that not all
the choices of ci yield field equations that satisfy the λ-invariance or the pseudo-Hermitian
criteria. Only some of them do so.

Then, with the most general tensor in the pocket, Santaló came back to the question of
the arbitrariness in the definition of the field equations: He posed the question of whether
sufficient and necessary conditions exist for the Euler-Lagrange equations derived from (11)
to hold for any choice of the coefficients ci. As a matter of fact, he did find such set of
conditions, and then he proved that they are in general incompatible. More precisely, while
the conditions

Rνη = 0 , Σνη = 0 , Γµ = 0 , T ξ
νρT

ρ
ηξ = 0 (12)

result necessary and sufficient for the vanishing of R∗
µν , the rank-3 equation Kα

µν = 0 that
comes to generalize the compatibility condition (5) imposes additional constraints that render
the system incompatible. From this, one concludes that there is always certain degree or
arbitrariness in the definition of the asymmetric field equations. Santaló proved that.

4 Concluding remarks

In their efforts to formulate a combined theory of gravitation and gauge fields within a
classical framework, Einstein and his contemporaries, Santaló among them, explored different
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geometrical structures, one of them being the asymmetric generalization of general relativity.
In this theory, the spacetime is treated as a 4-dimensional affine geometry with torsion, en-
dowed with a non-degenerate rank-2 asymmetric tensor that represents all the fields, the field.
From a modern perspective, such a heterodox field theory has nothing but historical signif-
icance. The incompatibility with quantum mechanics and the difficulties encountered when
trying to include additional non-Abelian gauge fields, among other problems, make these
theories unviable from the physical point of view. However, these theories had importance
for mathematics as they served as motivation to explore new geometrical structures [34–40].
Santaló used to point out the great source of inspiration for mathematics, and for geometry
in particular, that the physical theories, speculative to a greater or lesser extent, were able
to provide. Modern examples of this are the generalized complex geometry [41] and the
double field theory [42–44], mathematical structures that have been actively investigated in
the recent years and whose original motivation can be traced back to physics, more precisely
to the study of duality symmetries in string theory. These are the new attempts at finding
an adequate geometrical framework for a unified field theory.
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