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We study the effect of different forcing functions and of the local gradient Richardson number Rig
on the vertical mixing of Lagrangian tracers in stably stratified turbulence under the Boussinesq
approximation, and present a wave and continuous-time random walk model for single- and two-
particle vertical dispersion. The model consists of a random superposition of linear waves with
their amplitude based on the observed Lagrangian spectrum of vertical velocity, and a random walk
process to capture overturning that depends on the statistics of Rig among other Eulerian quantities.
The model is in good agreement with direct numerical simulations of stratified turbulence, where
single- and two-particle dispersion differs from the homogeneous and isotropic case. Moreover, the
model gives insight into the mixture of linear and non-linear physics in the problem, as well as on
the different processes responsible for vertical turbulent dispersion.

I. INTRODUCTION

Stably stratified turbulence (SST) is common in geophysical flows, as the ocean and the atmosphere are usually in a
turbulent state and affected by stratification (and rotation at the largest scales), making it of fundamental importance
in the study of dispersion of pollutants, transport of nutrients, and turbulent mixing in a wide range of scales [1–4].
As stably stratified turbulence is anisotropic, it is also inherently different from homogeneous isotropic turbulence
(HIT) [5–8]. In SST, the stratification suppresses the vertical velocity, confining the flow into a quasi-horizontal
layered motion, and generating vertically sheared horizontal winds (VSHWs) with high vertical variability [9]. The
stratification also results in a restoring force, allowing for the excitation of waves that can coexist with the turbulence.

As a result, vertical and horizontal turbulent transports in SST are fundamentally different. It has been speculated
that horizontal mixing could be more efficient than in HIT due to the presence of VSHWs [9, 10]. Indeed, horizontal
dispersion is dominated by the VSHWs, as shown in direct numerical simulations and by our recent model for
horizontal particle dispersion in [11]. For vertical mixing and dispersion, stratification has some obvious and some
not-so-obvious implications [12–14]. On the one hand, the vertical velocity in SST is intermittent, implying that
arguments based solely on mean values of the vertical velocity or its power spectrum could be misleading due to the
spontaneous occurrence of extreme values [15, 16]. On the other hand, while it is well understood that in stratified
turbulence as the stratification is increased the mean vertical velocity is quenched, vertical gradients also increase
with increasing stratification, possibly balancing the vertical transport [5, 17, 18].

Mixing in stratified turbulence has been largely studied from an Eulerian point of view [19–24], but Lagrangian
measurements with floaters are also common in the present, specially in oceanic measurements of waves and turbulence
[2], where they are relevant to understand the transport of nutrients with applications for the fishing industry.
Vertical dispersion is also important in the atmosphere [25], and particle dispersion has also been studied recently
in atmospheric flows for forecasting purposes using Lagrangian models [26]. In spite of this, there are few studies of
stratified turbulence from the Lagrangian point of view [27–29], where linear theories of SST predict the bounding
of particles in the vertical direction and the saturation for long times of single- and two-particle vertical dispersion
[28]. However, linear models cannot capture the effect of overturning, or of thermal diffusion, that can be relevant at
intermediate times and dominate the dynamics of the vertical mixing at very long times [29]. It is also worth noting
that inertial particles with density different from that of the fluid are also relevant to study mixing, and have received
substantial attention in HIT (see, e.g., [30, 31]), with a special emphasis on the mechanisms leading to its spatial
distribution and clustering. However, mixing and distribution of inertial particles in SST have only been studied
recently [4, 32, 33].

In this paper we present several direct numerical simulations (DNSs) of the Boussinesq equations with Reynolds
buoyancy numbers Rb > 1 in two different domains: one isotropic (cubic), and the other anisotropic (an elongated
domain with the horizontal sides longer than the vertical), and using two different mechanical forcing functions.
We applied a random forcing (RND), and a Taylor-Green forcing (TG) which generates a coherent large-scale flow
at the largest available scales, thus affecting vertical mixing. The Boussinesq Eulerian flow is evolved together with
Lagrangian particles. We study single- and two-particle vertical dispersion, and analyze the role of the Froude number,
the vertical shear, the large-scale flow, and the local gradient Richardson number in the vertical dispersion of particles.
We also present a model for the vertical single- and two-particle vertical dispersion that is in good agreement with
the DNS results. The model consist of a continuous-time random walk (CTRW) based on a previous model for HIT
[34, 35] (to model trapping of tracers by turbulent eddies, and the effect of local overturning instabilities), and a
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random superposition of waves, and can capture the vertical dispersion of particles at all times and in all SST regimes
considered. The superposition of linear and turbulent effects in the model allows us to identify the leading physical
effects resulting in vertical dispersion at early and at late times in the flow (compared with the period of the internal
gravity waves). Moreover, as all parameters in the model can be obtained from large-scale Eulerian data, the model
could be used autonomously to obtain statistical predictions of particle dispersion provided a large-scale flow.

II. NUMERICAL SIMULATIONS

For this study we solved numerically the incompressible Boussinesq equations for the velocity u and for buoyancy
(or “temperature”) fluctuations θ,

∂tu + u · ∇u = −∇p−Nθẑ + ν∇2u + f , (1)

∂tθ + u · ∇θ = Nu · ẑ + κ∇2θ, (2)

∇ · u = 0, (3)

where p is the correction to the hydrostatic pressure, ν is the kinematic viscosity, f is an external mechanical forcing,
N is the Brunt-Väisälä frequency (which sets the stratification), and κ is the diffusivity. In terms of the density
fluctuations ρ, the Brunt-Väisälä frequency is N2 = −(g/ρ0)(dρ̄/dz), with dρ̄/dz the imposed (linear) background
density stratification, and ρ0 the mean density. We write the buoyancy field θ in units of velocity by defining
θ = gρ/(ρ0N). All quantities are then made dimensionless using a characteristic length L0 and a characteristic
velocity U0. All runs in this paper have a Prandtl number Pr = ν/κ = 1.

The Boussinesq equations were solved in a three-dimensional periodic domain, using a parallelized and fully dealiased
pseudospectral method, and a second-order Runge-Kutta scheme for time integration [36]. In the turbulent steady
state of each simulation we also injected O(106) Lagrangian particles, and integrated their trajectories in time using

vi =
dxi
dt

= u(xi, t), (4)

where the subindex i labels each particle. Here and in the following, the velocity of Lagrangian particles and its Carte-
sian components are represented as v = (vx, vy, vz), while the Eulerian fluid velocity is given by u = (ux, uy, uz). Inte-
gration of particles’ trajectories was done using a second-order Runge-Kutta method in time, and a three-dimensional
cubic spline interpolation to estimate Lagrangian velocities at the particles positions xi from the velocity u in the
regular Eulerian grid [37]. All simulations were done using the GHOST code (Geophysical High-Order Suite for
Turbulence), recently extended to work with non-cubic boxes [38].

Equations (1) and (2) have two controlling dimensionless parameters, the Reynolds and the Froude numbers,
respectively given by

Re =
LU

ν
, Fr =

U

LN
, (5)

where L and U are respectively the characteristic Eulerian integral length and r.m.s. velocity of the flow. From Eq.
(5) we can also define the buoyancy Reynolds number

Rb = Re Fr2, (6)

which gives an estimation of how turbulent the flow is at the buoyancy scale Lb = U/N , and as a result can be
expected to play an important role in turbulent mixing. In the following we will consider simulations with Rb > 1.
The Ozmidov scale, Loz = 2π/koz (with koz =

√
N3/ε), will also play an important role in the following discussions,

as for scales sufficiently small when compared with Loz, the flow is expected to recover isotropy. When Rb > 1 the
Ozmidov scale is larger than the Kolmogorov dissipation scale η, and quasi-isotropic turbulent mixing can thus be
expected to take place at small scales. Another parameter that will be useful to quantify small scale turbulence and
mixing is the local gradient Richardson number

Rig =
N(N − ∂zθ)

(∂zu⊥)2
, (7)

where u⊥ is the horizontal velocity. When Rig < 1/4 the flow can develop shear instabilities [39], while for Rig < 0
local overturning can take place.
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Other relevant parameters for the next sections are the Eulerian turnover time at the Ozmidov scale τoz = Loz/Uz
(with Uz the characteristic Eulerian vertical velocity), and the energy-containing (or integral) isotropic and parallel
length scales

L = 2π

∫
EV (k)k−1dk∫
EV (k)dk

, (8)

L‖ = 2π

∫
EV (k‖)k

−1
‖ dk‖∫

EV (k)dk
, (9)

where EV (k) and EV (k‖) are respectively the isotropic and parallel kinetic energy spectra. From these lengths we can
also define an energy-containing isotropic wavenumber as K = 2π/L, and an energy-containing parallel wavenumber
as K‖ = 2π/L‖.

The numerical simulations were performed in three-dimensional periodic domains with different aspect ratios. A
first set of runs has an isotropic box with domain lengths Lx = Ly = Lz (equal to 2π in dimensionless units) and
isotropic linear resolution nx = ny = nz, and therefore with an aspect ratio of the vertical to horizontal lengths of 1:1.
Another set of simulations was done in elongated boxes with sizes Lx = Ly = αLz and resolution nx = ny = αnz.
Thus, the aspect ratio of the domain is 1 : α, and we will consider in the following α = 4 or 8. Note that in all
cases the spatial resolution is isotropic, i.e., the distance between grid points is the same in the three directions,
∆x = ∆y = ∆z, and thus isotropy can in principle be recovered by the flow at the smallest scales.

In each domain, simulations were done using two different forcing functions. Some simulations were forced with
Taylor-Green (TG) forcing (see, e.g., [10, 38, 40]), which only excites directly the two horizontal components of the
velocity field, and has vertical shear. The geometry of the large-scale flow generated by this forcing is that of pairs of
counter-rotating horizontal vortices at large scales, and the expression of the forcing is

fTG = f0 (sin(x) cos(y) cos(αz),− cos(x) sin(y) cos(αz), 0) . (10)

The effectively forced wavenumber is then kf = (2 + α2)1/2. Note that changing the aspect ratio of the domain
modifies the factor α = Lx/Lz and thus, the strength of vertical gradients in the flow. For α = 1 (isotropic domain)
kf ≈ 1.7, while for α = 4 or 8 we obtain respectively kf ≈ 4.2 or 8.1. The flow generated by these forces (for α 6= 1)
still has a large-scale circulation at kx = ky = 1, while developing stronger shear in the vertical direction as α is
increased (see [38] for more details).

Other simulations were done using a random isotropic three-dimensional forcing (RND), with a correlation time
τcorr of half an eddy turn-over time. A forcing with random phases in the Fourier shell kf = α is computed at a given
time as

f1 = f0
∑

|k|∈[kf ,kf+1)

<
[
ik× ûke

i(k·r+ϕk)
]
, (11)

where < stands for the real part, ûk is a unit vector, and ϕk are uniformly distributed random phases. The actual
forcing fRND is obtained by slowly interpolating the forcing from a previous random state f0 to the new random state
f1, in such a way that fRND = f1 after τcorr. The process is then repeated to obtain a slowly evolving random forcing.
As the forcing wavenumber depends on the aspect ratio, in the isotropic box kf = 1 while in the elongated domains
kf = 4 or 8, similarly to the Taylor-Green case. However, note that in this case the choice kf = α to maintain the
forcing isotropic for all aspect ratios also implies that, as the aspect ratio 1 : α is decreased and the forcing is applied
(isotropically) at smaller scales, the Reynolds number (based on the energy containing scale) will also decrease.

All flows were evolved from u = θ = 0, and once they reached the turbulent steady state Lagrangian particles were
injected and integrated in time together with the flow. The list of all runs with their respective relevant parameters is
presented in table I. Runs are labeled using the forcing (TG or RND), a subindex for the inverse aspect ratio (α = 1,
4 or 8), and a number indicating the value of the Brunt-Väisälä frequency (N = 4, 8 or 12). As mentioned above,
note that run RND48 has a lower Re than, e.g., run TG48 (although it has the same spatial resolution and kinematic
viscosity), as the isotropic forcing at kf = α = 4 in the RND48 run results in a smaller integral length scale when
compared to the TG48 run, which has a large-scale flow at horizontal scales (with k⊥ ≈ 1) with shear at smaller
vertical scales (with k‖ = 4). However, note run RND48 also has a larger Fr, thus resulting in a larger Rb. To explore
the effect of varying Re and Rb, while keeping the forcing and aspect ratio fixed and Fr approximately the same, runs
RND48 and RND48B to RND48D were done at decreasing spatial resolution and at increasing values of ν = κ.
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Run Aspect ratio nx = ny nz Forcing N Re Fr Rb R 2π/N Loz τoz
TG14 1:1 512 512 TG 4 7000 0.04 11 0.12 1.57 0.28 1.2
TG18 1:1 512 512 TG 8 8000 0.02 3 0.03 0.79 0.1 0.8
TG44 1:4 768 192 TG 4 10000 0.05 25 0.25 1.57 0.36 1.4
TG48 1:4 768 192 TG 8 14000 0.03 13 0.09 0.79 0.14 0.7
TG412 1:4 768 192 TG 12 15000 0.02 4 0.03 0.52 0.07 1.0
TG88 1:8 2048 256 TG 8 35000 0.03 30 0.30 0.79 0.18 0.8
RND14 1:1 512 512 RND 4 6000 0.07 29 0.06 1.57 0.24 0.9
RND18 1:1 512 512 RND 8 8000 0.03 7 0.02 0.79 0.07 0.3
RND48 1:4 768 192 RND 8 3000 0.11 36 0.16 0.79 0.17 0.7
RND48B 1:4 512 128 RND 8 2000 0.10 20 0.07 0.79 0.14 0.6
RND48C 1:4 256 64 RND 8 800 0.17 23 0.02 0.79 0.16 0.8
RND48D 1:4 128 32 RND 8 300 0.20 12 0.25 0.79 0.15 0.2

TABLE I: Relevant parameters of the simulations. The aspect ratio gives the vertical to horizontal aspect ratio of the spatial
domain 1 : α, nx, ny, and nz are the grid points in each spatial direction, forcing indicates the forcing function, Re is the

Reynolds number, Fr is the Froude number, Rb is the buoyancy Reynolds number, R is the fraction of particles with Rig < 0,
Loz is the Ozmidov length scale, and τoz = Loz/Uz is the Eulerian turnover time at the Ozmidov scale.
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FIG. 1: Mean vertical dispersion δz2 for (left) runs in isotropic domains (boxes with aspect ratio 1:1), and (right) runs in
elongated domains with aspect ratio 1:4, in both figures with TG and RND forcing, and different Brunt-Väisälä frequencies.
The dispersion is normalized by U2

z /N
2, the ratio of the squared mean vertical velocity to the Brunt-Väisälä frequency, and

time is normalized by the Brunt-Väisälä period. Power laws are indicated as references.

III. SINGLE-PARTICLE VERTICAL DISPERSION IN STABLY STRATIFIED TURBULENCE

Particle dispersion in SST is inherently different from HIT as stratification suppresses vertical dispersion. As
mentioned in the Introduction, linear models of SST predict the saturation of the vertical dispersion for t ≈ 2π/N , as
the displacement of particles is in practice vertically bounded by the stratification, resulting in an oscillatory motion
of the particles[28]. This is confirmed by numerical simulations at moderate buoyancy Reynolds number [5, 12].

We computed the single-particle vertical dispersion as δz2 =
〈
[zi(t)− zi(0)]2

〉
i
, where i is the particle label, and

the average is computed over all particles. Figure 1 shows the resulting mean vertical dispersion in our simulations,
for TG and RND forcing, different aspect ratios, and different Brunt-Väisälä frequencies (and thus, different Froude
numbers). Time is normalized by 2π/N (the Brunt-Väisälä period), while δz2 is normalized by (Uz/N)2 (following
the normalization used in [29]). With this normalization all curves collapse from t = 0 until t ≈ 2π/N , in a time range
where they display ballistic behavior δz2 ∼ t2. This indicates that the early-time vertical dispersion is dominated by
the waves, in good agreement with previous studies [11, 29]: particles are first displaced ballistically by the internal
gravity waves, which for Fr < 1 are faster than the large-scale turbulent eddies. This behavior finishes after one
wave period, resulting in a change in the growth of δz2(t). In some cases (see runs RND14 and RND18 in Fig. 1),
δz2(t) grows very slowly or even saturates at late times, displaying a plateau. This saturation was reported before in
simulations of SST at moderate Re and Rb numbers [11, 29], where a very slow growth at late times was attributed
to the effect of molecular diffusion. However, some of our runs (all TG runs even at moderate Rb, and simulations
with RND forcing at higher Rb in elongated domains) display a more efficient mixing (i.e., a faster growth of δz2(t)
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FIG. 3: PDFs of the Eulerial local gradient Richardson number Rig, for all runs in isotropic domains (runs TG14 and TG18
with TG forcing and N = 4 and 8 respectively, and runs RND14 and RND18 with RND forcing and N = 4 and 8

respectively). Vertical solid lines at Rig = 0 and 1/4 are shown as references.

for t > 2π/N) when compared with the runs that display the plateau.

The enhanced mixing after t > 2π/N seems to be controlled, at least for for RND forcing, by Rb, suggesting it may
be the result of turbulence generated by shear instabilities or by overturning events. Figure 2 shows the single-particle
vertical dispersion for several runs with RND forcing, and with the same parameters as RND48 (runs RND48B to
RND48D), but with different spatial resolution and values of Rb (by decreasing Re). Run RND48D, with the lowest
values of Re ≈ 300 and of Rb ≈ 12, displays a saturation in δz2(t) at tN/(2π) ≈ 7×10−1, a plateau until tN/(2π) ≈ 5,
and then a slow growth. As Rb increases the plateau shortens, until it completely disappears for run RND48 (with
Re ≈ 3000 and Rb ≈ 36).

The case of TG forcing is different, as the plateau in δz2(t) at intermediate times is not present even in runs
at moderate Rb. Although turbulence plays an important role in the mixing at high Rb, the TG forcing function
generates a coherent large-scale flow which creates strong fronts and helps instabilities to develop [38], enhancing
vertical dispersion even at values of Rb which are low when compared to the RND case. In the next section we study
the gradient Richardson number Rig, with a special focus on the TG simulations, to characterize the features of this
flow that result in differences in the vertical dispersion.
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FIG. 4: (Color online). Vertically averaged absolute value of the Eulerian vertical velocity, 〈|uz|〉z, for run TG44 (TG forcing,
N = 4, and aspect ratio 1:4). Bright regions correspond to large vertical velocities in absolute value. As the domain is

periodic in both x and y directions, the regions with large 〈|uz|〉z can be enclosed by four circles (cylinders when extended in
the z direction), indicated as a reference by the black solid lines.
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FIG. 5: (Color online). Both panels show, in black thick lines, the Lagrangian PDFs of the gradient Richardson number Rig
for TG runs in boxes with 1:4 aspect ratio. This PDF is compared with (left) the PDFs of Rig restricted to Lagrangian

velocities |vz| > 〈|vz|〉+ 2σvz (where σvz is the dispersion in vz) in thin (blue) lines, and (right) the PDFs of Rig restricted to
particles in the circular regions indicated in Fig. 4. Vertical lines at Rig = 0 and Rig = 1/4 are shown as references.

IV. THE LOCAL GRADIENT RICHARDSON NUMBER

A. General properties of the local gradient Richardson number

The local gradient Richardson number provides a measure of the vertical stability of stratified flows. When Rig(r) <
1/4 pointwise, local shear instabilities can take place [41], while if Rig < 0, then ∂zθ > N , and an overturning
instability can develop generating convection locally in the flow. Figure 3 shows the probability density functions
(PDFs) of the Eulerian Rig for all runs in isotropic domains. The PDFs of runs with N = 4 (TG14 and RND14)
display larger probabilities of low values of Rig (< 1/4 and < 0) than the runs with the same forcing but with N = 8
(TG18 and RND18). As N is increased (for a given forcing), the peak of the PDF moves to larger values of Rig.
This indicates, as expected, that as stratification increases vertical instabilities are inhibited, and as a result we can
also expect a less efficient vertical mixing (in agreement with the single-particle vertical dispersion observed in the
previous section). However, when we compare TG and RND runs with the same value of N , we see that TG still
shows larger probabilities of Rig < 1/4 and of Rig < 0. Indeed, the PDFs of the TG runs are shifted towards the left
relative to the RND set, indicating that this flow is more vertically unstable and, consequently, can be more efficient
at vertically mixing particles.
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(right), for the same runs, are shown in (red) thin lines.

B. The spatial structure of the local gradient Richardson number in the TG flow

We are interested in how the TG forging affects the structure of the local gradient Richardson number. As the
forcing generates a coherent large-scale flow, which in principle can affect vertical mixing, we show first in Fig. 4 the
mean vertical value of the absolute Eulerian vertical velocity 〈|uz|〉z computed for run TG44 (where the subscript z
in the brackets indicates the average was computed along the z-coordinate). As explained in Sec. II, the TG flow
consists of pairs of counter-rotating horizontal vortices, separated vertically by shear layers. Pressure gradients create
a vertical circulation [38], and as a result the forcing generates a coherent structure at the largest scales that organize
the flow into regions of high and low 〈|uz|〉. As a result, some well-defined spatial regions in the flow display a bias
towards larger values of |uz| (also associated with the generation of front- and filament-like structures in the flow, as
discussed in [38]). It can be expected that Lagrangian particles approaching these regions will have a tendency to
suffer larger displacements in the vertical, thus increasing δz2 even at moderate Rb.

To confirm this effect, Fig. 5 shows the PDFs of the Lagrangian Rig (i.e., now computed using the gradients as
seen by the Lagrangian particles) for runs with TG forcing in the box with 1:4 aspect ratio. As observed before for
the Eulerian statistics, as the stratification increases (i.e., for higher N) the mean gradient Richardson number also
increases, and the fraction of fluid elements with Rig < 1/4 or Rig < 0 (i.e., prone to overturning) decreases. But
the computation of Rig using the gradients as seen by the Lagrangian particles also allow us to compute conditional
statistics, e.g., only for instants when the particles suffer large vertical velocities, or when the particles are in a specific
region in space. Using the mean of the absolute Lagrangian vertical velocity 〈|vz|〉 (averaged over all particles and
over time), and the standard deviation of vz (σvz ), we computed the PDF of Rig restricted to particles with absolute
vertical velocity 2σvz larger than 〈|vz|〉 (see Fig. 5). With this restriction, the fraction of fluid elements that can suffer
overturning instabilities increases (note the PDFs have a larger peak at Rig = 0, display larger values for Rig < 0, and
smaller values for Rig > 0 when compared with the PDFs at the same N without any restriction). This indicates that
there is a correlation between fluid elements with Rig ≤ 0 and large values of |vz| (and thus, of particles displacing
larger distances in the vertical, and thus contributing to δz2). We also see that as N is increased, the probability of
finding fluid elements with Rig ≤ 0 decreases even when restricted to parcels with large |vz|. Finally, Fig. 5 also shows
the PDF of Rig restricted to the instants the particles are in the spatial regions of the large-scale circulation for which
the largest absolute values of uz were observed in Fig. 4. A similar (albeit weaker) behavior as for the restriction in
vz is found, with the shift in the peak of the PDFs towards smaller values of Rig, confirming the relevance of the
geometry of the large-scale flow in the TG runs in the vertical dispersion of Lagrangian particles.

To further study the effect of Rig on the vertical velocity of the particles, Fig. 6 shows the PDFs of the Lagrangian
vertical velocity for all particles in TG runs with aspect ratio 1:4 and with varying N . As previously reported in
[15, 16], the vertical velocity does not follow Gaussian statistics, and display strong tails (this feature is not exclusively
associated with the TG forcing, as the same behavior was found in simulations with random forcing, see [15]). In [16]
the extreme values were shown to be associated to intermittent overturning instabilities in the flow. Note that the
behavior reported in [16] is non-monotonous in Fr, although for sufficiently small Fr (or sufficiently large values of N)
the maximum values of vz decrease with increasing stratification (see Fig. 6). When we compute the PDFs restricted
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(left), TG48 (right), and TG412 (left).
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FIG. 8: (Color online). PDFs of θ as seen by the Lagrangian particles (thick black curves), and the same PDFs restricted (in
thin red curves) to (left) particles at times with Rig < 1/4, and (right) particles at times with Rig < 0. Except for the run

TG412, all PDFs are compatible with Gaussian statistics for θ.

to particles in instants for which Rig < 1/4 or Rig < 0, while for the runs with moderate stratification (N = 4 and 8)
there are only small changes in the tails of the PDFs (albeit extreme values of vz become more probable), for stronger
stratification (N = 12) the changes are significantly larger, with stronger tails. This further confirms that points with
Rig < 1/4 or Rig < 0 are associated with larger values of vz, and can thus be expected to be associated with the
enhanced dispersion after t > 2π/N at least in the TG runs.

This can be confirmed in Fig. 7, which shows the joint probability density function as a function of Rig and |vz|,
P (Rig, |vz|), for the TG runs with aspect ratio 1:4 and with varying N . As the stratification increases, the probability
of finding particles with large values of |vz| decreases, while that of finding larger values of Rig increases. For N = 4
and N = 8 note the correlation between larger absolute values of the vertical velocity with Rig ≈ 0 values, which is
significantly weaker in the run with N = 12.

Finally, we also studied how the value of Rig affects θ and ∂zθ with increasing stratification (note that the local
value of ∂zθ is important for overturning instabilities, as the gradient of the buoyancy fluctuations can compete with
the background gradient, resulting in local inversion of the stratification). Figure 8 shows the PDFs of θ as seen by
the Lagrangian particles, and the same PDFs restricted to instants when Rig < 1/4 or Rig < 0, in all cases for the
TG4 runs. For N = 4 the PDFs of θ are close to Gaussian, and the restriction in the values of Rig has a negligible
effect in the statistics. However, for N = 8, while the PDFs are still close to Gaussian, the restricted PDFs show a
lower probability for |θ| < 0.5 and higher probability for |θ| > 0.5, indicating particles with Rig < 0.25 or Rig < 0 are
more likely to be found in points with higher potential energy density ∼ θ2. This behavior is enhanced for N = 12, for
which the PDFs also display non-Gaussian tails. Finally, Fig. 9 shows the PDFs of the Lagrangian vertical gradients
of θ, ∂zθ, which are non-Gaussian and asymmetric. The asymmetry is enhanced when the PDFs are restricted to
instants when Rig < 1/4 or Rig < 0. While the non-restricted PDFs have their maximum at ∂zθ & 0, for the restricted
PDFs the maximum is at ∂zθ ≈ N . From the ideal Boussinesq equation for θ (Eq. 2, with κ = 0), it can be seen
that ∇θ = (0, 0, N) is a fixed point of both the equations for θ and for the Lagrangian evolution of ∂zθ, which could
explain the accumulation of (restricted) particles with ∂zθ ≈ N . Also, at points where Rig < 0, then ∂zθ > N (for
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FIG. 9: (Color online). PDFs of the Lagrangian vertical temperature gradients ∂zθ (thick black curves), and the same PDFs
restricted (in thin red curves) to (left) Rig < 1/4 and (right) Rig < 0.
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FIG. 10: (Color online). Overturning probability normalized by the forcing wave number, R/kf , as a function of the
Reynolds Buoyancy number Rb for all simulation in table I.

which overturning events can occur). This is the reason why the PDFs of particles restricted to Rig < 0 in Fig. 9 only
take values of ∂zθ greater than N .

C. Overturning probability and the buoyancy Reynolds number

As already mentioned, the extreme vertical velocities reported in the previous subsection are not exclusive of the
TG flow. In [15, 16], non-Gaussian PDFs of uz, vz, and θ were reported for RND forcing depending on the values
of Fr and Rb. However, it is clear from the results shown so far that the geometry of the TG flow facilitates the
development of overturning instabilities and the occurrence of extreme values of the vertical velocity even at moderate
Rb.

In the next section we will use these results to build a simple model for single-particle vertical dispersion, for all
cases considered and independently of the two specific forcing function used. The results in Sec. III suggest that while
the ballistic behavior of δz2 for t < 2π/N is dominated by the waves, the differences in δz2 for t > 2π/N depend on
the strength of the vertical velocity and of the turbulence. For moderate turbulence (i.e., moderate values of Rb) and
without a large-scale vertical circulation, δz2 is dominated by the waves even at late times, resulting in the observed
saturation of the single-particle vertical dispersion. But for larger values of Rb (as in some of the RND runs), or
in the presence of a large-scale flow (as in all TG runs), strong vertical updrafts or downdrafts can enhance vertical
mixing resulting in the growth of δz2 at late times. We will measure the probability of this happening by introducing
an overturning probability R, defined as the fraction of particles (in the Lagrangian frame) or the fraction of space
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domains. Frequencies have been normalized by the Brunt-Väisälä frequency. The solid vertical lines indicate (from left to

right) ω = N/2 and ω = N .

volume (in the Eulerian frame) with Rig < 0. Figure 10 (see also table I) gives R/kf as a function of Rb for all runs,
where R is measured as the integral of the PDF of Rig for Rig < 0. The data follows (for the range of Rb considered)
a linear relation with Rb, with two different slopes for the TG and RND runs (even when the runs in each set also
have different aspect ratios, forcing wavenumbers, Reynolds, and Froude numbers). As expected, for fixed Rb, the
TG runs display larger values of R than the RND runs.

V. SINGLE-PARTICLE VERTICAL DISPERSION MODEL

To study the vertical dispersion of single-particles observed in the DNSs of SST in section III, we now present a
stochastic model that combines a random wave model (to consider the effect of internal gravity waves) with a CTRW
[35] (to capture the effect of overturning by turbulent or large-scale eddies).

The wave model consists in a sum of linear waves with random phases. A Lagrangian particle moving vertically
following these waves has a trajectory

zwav(t) = <

[∑
ω

Aωe
i(ωt+φω)

]
, (12)

where φω is a random phase, and where the sum is performed over Nω uniformly distributed frequencies in the range
of frequencies ω ∈ [ωmin, ωmax] . The amplitude of the waves satisfies the spectral relation

Aω = A0ω
−1, (13)

for the same range of frequencies, and where A0 is a normalization factor. The dependence of Aω ∼ ω−1 fol-
lows from observations that the power spectrum of the actual Lagrangian vertical velocity has a broad maxi-
mum with approximately constant amplitude near the Brunt-Väisälä frequency. Note that associating vz with
żwav = <[

∑
Aωωe

i(ωt+φω)], a flat power spectrum for vz implies Eq. (13) for the amplitude of the waves. Once

Nω is chosen, the normalization factor A0 can then be fixed as A0 =
(
2U2

z /Nω
)1/2

by imposing that for each particle〈
ż2wav

〉
t

(averaged over time) must be equal to the mean squared Eulerian vertical velocity U2
z (also equal to the mean

squared Lagrangian vertical velocity), using Parseval’s theorem.
Note that a flat Lagrangian spectrum for a range of frequencies is compatible with oceanic observations of the

so-called Garrett-Munk spectrum, and also with numerical simulations of SST [11]. As an example, Fig. 11 shows the
power spectrum of the Lagrangian vertical velocity for all runs in table I. There is a broad peak near ω = N , and in
several of the runs an approximately flat spectrum can be observed in its vicinity (as a reference, the figure indicates
a range of frequencies [N/2, N ]), with a decay compatible with a power law for ω > N , and a slowly decaying, or
almost flat, spectrum for ω � N). Also, for the runs with the smallest values of Rb considered in this study (runs
TG18 with Rb = 3.2, and TG412 with Rb = 4.3), a secondary peak at smaller frequencies can be observed. In these
runs turbulence is moderate, and the waves dominate the dispersion at intermediate times.
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FIG. 12: (Color online). Mean dispersion obtained from a random superposition of waves as in Eq. (14) (in thick black lines),
and from Eq. (15) (in thin red lines), with the parameter A0 to match the Eulerian vertical r.m.s. velocity and N the

Brunt-Väisälä frequency for some of the TG runs (see labels in the inset).

As the dispersion relation of internal gravity waves is ω = Nk⊥/k ≤ N , we set ωmax = N , and for simplicity, from
the results in Fig. 11 we set ωmin = N/2 in all cases. It then follows from Eq. (12) that the vertical displacement of
any particle following the waves is given by

δzwav(t) = zwav(t)− zwav(0) =
∑
ω

Aw [cos(ωt+ φω)− cos(φω)] . (14)

The square of this expression, when averaged over an ensemble of particles and waves, can be approximated by (see
Appendix A)

〈
δz2wav

〉
(t) =



U2
z t

2 if t ≤ N−1,

P (t) if N−1 < t < 4N−1,

4U2
z

N2
if t ≥ 4N−1,

(15)

where P (t) is a third order polynomial function obtained by imposing
〈
δz2wav

〉
and its time derivative to be continuous

in time (see Appendix A). Figure 12 shows the mean dispersion for many particles calculated from a stochastic
superposition of waves as in Eq. (14), and from the function in Eq. (15), in both cases using values of A0 and N that
adjust the vertical r.m.s. velocity and the Brunt-Väisälä frequency of several TG runs. The function in Eq. (15) is in
good agreement with the sum of random waves, specially for short and long times. Note also that this simple model
based on a superposition of waves captures the early-time ballistic behavior of δz2 ∼ t2 seen for all DNSs in Fig. 1,
as well as the saturation at late times seen in Fig. 1 for some of the simulations.

The behavior shown in Fig. 12 is similar to the vertical dispersion predicted for SST by other models based on a
linear superposition of waves [28], and is reminiscent of the vertical dispersion observed in previous DNSs of SST at
moderate values of Rb [11, 29]. However, this wave model fails to reproduce the dispersion observed at long times
in some of our runs. To introduce an enhanced vertical dispersion by turbulent overturning, we add a CTRW model
that mimics the trapping of particles by eddies, resulting in vertical displacements when the flow becomes unstable
such that the total vertical dispersion will be δz(t) = δzwav(t) + δzCTRW (t).

To compute δzCTRW (t), in each step t of the random walk process we assume a particle has a probability R of being
trapped for a time tt inside an eddy of radius rt with velocity Ut. As in the previous section, R is the probability of
finding particles with Rig < 0. The probability of finding an eddy of radius rt is given by a Kolmogorov distribution

P (rt) ∼ r
4/3
t for r < Loz, compatible with an isotropic energy spectrum ∼ k−5/3 for wavenumbers k > koz; in other

words, we assume that the eddies responsible for the vertical dispersion at late times are associated with overturning
instabilities in the turbulent inertial range for scales equal to or smaller than the Ozmidov scale. The distribution
of trapping times P (tt) is continuous and uniform between tt = 0 and the Eulerian turnover time at the Ozmidov
scale τoz. Finally, the distribution of velocities of the eddies P (Ut) is the observed PDF of the absolute value of the
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FIG. 13: (Color online). Mean vertical dispersion δz2 for (left) runs in elongated domains with amplitudes rescaled for better
visualization (see the inset), and (right) runs in isotropic domains, for RND and TG forcing, and with different values of N .
Normalizations of δz2 and of time are the same as in Fig. 1. In both figures the thick (black) lines show the results from the
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FIG. 14: (Color online). Sketch of the two contributions to vertical dispersion in the model. The random superposition of
waves dominates at early times (red dashed curve), while the effect of turbulent eddies and overturning events become

relevant at late times (blue dotted curve). The total vertical dispersion (black solid curve) results from the superposition of
both effects.

Eulerian vertical velocity (which, in practice, can be very well approximated by assuming that it follows a Rayleigh
distribution, so knowledge of the r.m.s. value of uz, Uz, is sufficient to estimate P (Ut)).

In each step of the CTRW, if a particle is not trapped by an eddy, δzCTRW (t) will remain constant (i.e., the particle
will not move as a result of eddy trapping). If it gets trapped, it will be displaced along a circle as the result of the
trapping, with a vertical displacement of rt sin(θt) which is just the projection of the circular trajectory of radius rt
in the z direction, and where θt = Uttr/rt is the angle of the arc traveled during the time tr. Thus, the random
walk process just mimics in a simplified way the eventual presence of vertical eddies that can result in upward or
downward transport of the Lagrangian particles. As described above the model has no free parameters; all parameters
are obtained from Eulerian characteristic lengths and time scales of the flow.

Figure 13 shows the mean squared vertical dispersion obtained from several DNSs, and δz2(t) = [δzwav(t) +
δzCTRW (t)]2 as obtained from the wave and CTRW model. For the runs in elongated domains (with TG forcing, or
larger values of Rb), as the dispersion is very similar for all runs, we rescaled δz2 using an arbitrary value (indicated
in the figure inset), so the curves can be distinguished more easily. In other cases, the same normalization as in Fig. 1
was used for δz2 and time. The model is in good agreement with the DNS data in all cases, and captures early and
late time behavior independently of the forcing function (TG or RND), as well as cases with saturation of δz2(t)
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FIG. 15: Color online). Left: two-particle vertical dispersion for particles with initial vertical separation δz0 � η, and two
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collapse during the ballistic regime. A power law at later times is indicated as a reference. Right: two-particle vertical

dispersion from DNSs with RND or TG forcing (thick lines), and from the model (thin lines). The amplitude of the curves
have been rescaled for better visualization (see the rescaling factor in the inset).

for t > 2π/N as cases in which δz2(t) keeps growing at late times. The differences in these two behaviors can now
be further clarified by the model (see Fig. 14). At early times, the waves dominate the dispersion resulting in the
observed ballistic regime up to the period of the slowest waves, t . 2π/N , for which the largest “fast” displacements
(on the time scale of the waves) can take place. If considered alone, trapping by turbulent eddies in the CTRW model
would also result in ballistic growth of δz2, but it has an initial value significantly smaller, and as a result this process
is subdominant to the dispersion by the waves. At intermediate times (t ≈ 2π/N) dispersion by the waves saturates
generating the plateau. If turbulence is moderate (and thus R is also moderate), trapping by eddies is inefficient,
resulting in a temporary saturation of the dispersion, or, in the most extreme cases, in a complete saturation of δz2.
Depending on how strong the turbulence is, at a certain time overturning events can start enhancing the dispersion,
and for longer times the turbulence dominates the dynamic surpassing the effect of the waves.

VI. TWO-PARTICLE VERTICAL DISPERSION

We can also study the two-particle vertical dispersion ζ2z , which the two simple processes presented above (dispersion
by a random superposition of waves, and a CTRW process to capture the effect of turbulent overturning events) can
also model. The two-particle vertical dispersion is defined as ζ2z =

〈
[zi(t)− zj(t)]2

〉
(i,j)

, where i 6= j are the labels of

two particles that at the initial time have a vertical separation δz0 and a horizontal separation δr0, and where the
subindex (i, j) denotes that the average is computed over pairs of particles. Figure 15 shows the resulting two-particle
vertical dispersion for runs TG44, TG48, and TG88. We consider pairs of particles which at time t = 0 have a vertical
separation δz0 � η (where η is the Kolmogorov dissipation scale), and horizontal separations δr0 ≈ η or δr0 ≈ 2η (see
[29] for a detailed study on different choices of the initial separation in two-particle dispersion in SST). Normalizing
the vertical dispersion ζ2z by (UzK‖δr0)2/N2 all curves approximately collapse during the ballistic regime. As for
the case of single-particle dispersion, we see again a growth of the two-particle dispersion at late times, which is
linear or almost linear with t in all runs. Here we also see an effect of Rb: simulations with larger Rb display larger
two-particle vertical dispersions at late times. It is also worth pointing out that when the initial horizontal separation
δr0 is increased (for a given run), the short-time two-particle dispersion augments proportionally, but the late-time
two-particle dispersion remains equal, indicating a decorrelation of the two particles at late times as reported before
in [29] (note that in Fig. 15, as ζ2z is normalized by δr20, this late-time decorrelation results in different amplitudes of
(ζz/δr0)2 as δr20 is changed).

As mentioned above, the two-particle vertical dispersion can be modeled using an extension of the single-particle
model. As before, we consider the effect of the waves and of the turbulent eddies separately. First, if we have two
particles which are initially very close to each other (almost at the same height, but with a horizontal displacement
δr0), we can assume they will be displaced by the same waves but with a phase difference between the two (for each
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wave with frequency ω) given by

φ′ω ≈ φω + k δr0. (16)

Here φω is the phase of the wave seen by one of the particles, φ′ω is the phase seen by the other particle, k is the
wavenumber, and we approximate the total separation between the two particles by δr0 (as δz0 � η). Using the
expressions for the displacements of a particle in a superposition of random waves given by Eqs. (12) and (14), we
can estimate the separation as a function of time for a single pair as

ζij,(wav)(t) =
∑
ω

Aω {[cos(ωt+ φω)− cos(φω)]− [cos(ωt+ φ′ω)− cos(φ′ω)]}+ δz0, (17)

where the subindexes i and j again label the pairs of particles that at the initial time meet the condition δr0 ≈ η
(or ≈ 2η). Equation (17) is just the difference between two single-particle vertical trajectories, to which we added an
initial vertical separation δz0 � η. As we did in the previous section, the resulting dispersion, when averaged over
several pairs of particles and sets of random waves, can be approximated as (see Appendix B)

〈
ζ2z,(wav)

〉
(t) ≈



U2
z

(
2.1δr0

2π

L‖

)2

t2 if t < N−1,

Q(t) if N−1 < t < 4N−1,

16U2
z (2.1δr0π)2(
L‖N

)2 if t ≥ 4N−1,

(18)

where, as in the single-particle approximation in Eq. (15), Q(t) is a third order polynomial interpolation obtained by
imposing the function and its derivative to be continuous in time, and we neglected all terms in δz0 and δz0

2 as they
are very small when compared with the leading order terms.

As at late times the particles separate significantly from each other, to take into account the effect of overturning we
can assume the two particles are uncorrelated, and as a result we can just consider two independent CTRW processes
with the same properties as the one described in the previous section for single-particles, one for each particle in the
pair. This is compatible with observations of two-particle dispersion in DNSs of SST [29], and with the results from
DNSs shown above, indicating the late time dispersion becomes independent of the original separation δr0. The final
result of combining ζz,(wav) with the CTRW processes is shown in Fig. 15. The model is in good agreement with the
two-particle vertical dispersion obtained from the DNSs, both in the ballistic regime as well as for long times when
dispersion becomes dominated by the turbulent eddies, for both forcing functions considered, different domain aspect
ratios, and different values of Fr and Rb.

VII. CONCLUSIONS

In this paper we studied single- and two-particle vertical dispersion for Lagrangian trajectories in forced stably
stratified turbulence, using two different forcing functions (Taylor-Green and random forcing), domains with different
aspect ratios, and different Froude and Reynolds numbers. Using direct numerical simulations we showed that late-
time saturation of single-particle vertical dispersion, reported in previous studies of this problem, is obtained only for
moderate values of the buoyancy Reynolds number, and that for larger values of Rb, or even for moderate Rb in the
case of the Taylor-Green flow that develops a vertical circulation, the saturation does not take place. Instead, δz2

keeps growing in time after the ballistic regime, albeit at a slower rate than in homogeneous and isotropic turbulence.
We showed that the gradient Richardson number plays an important role in the strength of the vertical mixing of

Lagrangian tracers, as overturning fluid elements with Rig < 0 give an important contribution to vertical displacement
of Lagrangian particles. In particular, regions of the flows with higher vertical velocity present a higher probability
of having particles with Rig < 0 and vice versa. The joint probability (or restricted PDFs) between Rig and the
Lagrangian vertical velocity, temperature fluctuations and gradients were studied, confirming this correlation.

Based on these results, we derived models for single- and two-particle dispersion that consist of a superposition
of random waves (to capture the early time ballistic regime), and an eddy-constrained continuous-time random walk
process (to capture the effect of turbulent eddies and overturning instabilities in the flow at late times). The dispersion
obtained from these models is in good agreement with the vertical dispersions obtained from the direct numerical
simulations. This agreement strengthens the observation that the waves dominate the dynamic of particles at short
times, resulting in the initial ballistic regime, while at intermediate times (t ≈ 2π/N) linear and non-linear effects
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coexist in the dynamics, giving rise to a transient that can develop (or not) a plateau on the dispersion depending
on how strong (or weak) is the effect of overturning events. At later times, and if turbulence is sufficiently strong
(as measured by Rb, or equivalently, by the probability of a fluid element to suffer overturning, R = P (Rig < 0)),
turbulence (modeled here by the continuous-time random walk process) dominates.

The superposition of linear and turbulent contributions to the dispersion in the model thus allows clarification of
the relevant time and length scales involved in the dynamics of Lagrangian tracers in stratified turbulence. Finally,
as all parameters in the model can be obtained from large-scale Eulerian properties of the flow, the model opens the
door to modeling turbulent dispersion of tracers in Eulerian simulations of stratified flows that do not resolve the
smallest scales in the flow, as usually is the case in the study of atmospheric and oceanic flows.

Appendix A: Derivation of the single-particle dispersion wave model

We want to derive averaged expressions for the dispersion as a function of time resulting from a random superposition
of waves as that given by Eq. (14). For short times, from

δzwav(t) =
∑
ω

Aw [cos(ωt+ φω)− cos(φω)] , (A1)

we can take the square, use the trigonometric identity cos(ωt + φω) = cos(ωt) cos(φω) − sin(ωt) sin(φω), the Taylor
expansions to first order sin(ωt) ≈ ωt and cos(ωt) ≈ 1, and Eq. (13) with A0 = (2U2

z /Nω)1/2, to get

δz2wav ≈ t2
2U2

z

Nω

[∑
ω

sin(φω)

][∑
ω′

sin(φω′)

]
= t2

2U2
z

Nω

∑
ω

sin2(φω) +
∑

ω,ω′ 6=ω

sin(φω) sin(φω′)

 . (A2)

As the average over random phases φ uniformly distributed between 0 and 2π is

〈sin(φ)〉φ = 〈cos(φ)〉φ = 0, (A3)〈
sin2(φ)

〉
φ

=
〈
cos2(φ)

〉
φ

= 1/2, (A4)

for φω and φω′ two independent stochastic variables, for short times and after averaging over an ensemble of particles
with different sets of random waves, we then have〈

δz2wav
〉

(t) ≈ t2U2
z . (A5)

For long times

δz2wav(t) =
2U2

z

Nω

{∑
ω

1

ω
[cos(ωt+ φω)− cos(φω)]

}{∑
ω′

1

ω′
[cos(ω′t+ φω′)− cos(φω′)]

}
, (A6)

which can be rewritten as

δz2wav(t) =
2U2

z

Nω

∑
ω

1

ω2
[cos(ωt+ φω)− cos(φω)]

2
+

∑
ω,ω′ 6=ω

1

ωω′
[cos(ω′t+ φω′)− cos(φω′)) (cos(ωt+ φω)− cos(φω)]

 .

(A7)
As the time average over several wave periods results in

〈
cos(ωt+ φω)2

〉
t

= 1/2, 〈cos(ωt+ φω)〉t = 0, and

〈cos(ωt+ φω) cos(ω′t+ φω′)〉t = 0, using Eqs. (A3) and (A4), we obtain the average of Eq. (A7) over time and
over an ensemble of particles and random waves as

〈
δz2wav

〉
t
≈ 2U2

z

Nω

N∑
ω=ωmin

1

ω2
. (A8)

Using ∆ω = (N − ωmin)/Nω, then

N∑
ω=ωmin

1

ω2
=

N∑
ω=ωmin

1

ω2

∆ω

∆ω
≈ 1

∆ω

∫ N

ωmin

1

ω2
dω =

1

∆ω

N − ωmin
Nωmin

=
Nω

Nωmin
, (A9)
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and finally, Eq. (A8) can we rewritten as 〈
δz2wav

〉
t
≈ 2U2

z

Nωmin
, (A10)

where we chose ωmin = N/2.
This gives the early time (t ≤ N−1) and late time (t ≥ 4N−1) expressions in Eq. (15) (note the choices of N−1

and 4N−1 as the two limits for the validity of the approximations are somewhat arbitrary). To obtain a smooth (i.e.,
continuous in

〈
δz2wav

〉
(t) and in its time derivative) interpolation between these two expressions, we use a third order

polynomial function to interpolate
〈
δz2wav

〉
(t) between ta = 1/N and tb = 4/N . Writing a polynomial approximation〈

δz2wav
〉

(t) = P (t) = At3 +Bt2 + Ct+D, then the coefficients after imposing the continuity conditions are

A = [P ′(ta)(ta − tb)− 2(P (ta)− P (tb))] /(ta − tb)3, (A11)

B = −
[
P ′(ta)(t2a + tatb − 2t2b) + 3(ta + tb)(P (tb)− P (ta))

]
/(ta − tb)3, (A12)

C = tb
[
P ′(ta)(2t2a − tatb − t2b) + 6ta(P (tb)− P (ta))

]
/(ta − tb)3, (A13)

D = −
[
tat

2
bP
′(ta)(ta − tb) + t2bP (ta)(tb − 3ta) + t2aP (tb) + (3tb − ta)

]
/(ta − tb)3, (A14)

where the values P (ta) and P (tb) are given by the expressions in Eq. (15) evaluated at t ≤ N−1 or t ≥ 4N−1.

Appendix B: Two-particle dispersion wave model

To derive averaged expressions for the two-particle dispersion resulting from a random superposition of waves, we
start from Eq. (17),

ζij,(wav)(t) = zi,(wav)(t)− zj,(wav)(t) =
∑
ω

Aω {[cos(ωt+ φω)− cos(φω)]− [cos(ωt+ φ′ω)− cos(φ′ω)]}+ δz0, (B1)

where φ′ω is the phase of the wave with frequency ω as seen by the particle j, which is displaced a distance ≈ δr0
(as δz0 � δr0) from the particle i (with phase φω). Thus, φ′ω ≈ φω + k δr0 (note we ignore any increase in time of
the horizontal distance between the two particles, and in the following we consider only the increase in the vertical
distance between them). We can approximate k ≈ K‖/ cosα, where α is the angle of propagation of the waves with
respect to the vertical direction, and K‖ is the parallel integral wave number as introduced in Sec. II. From the

dispersion relation of internal gravity waves we have ω = N sinα (or sinα = ω/N), and using cosα = (1− sin2 α)1/2

and that ω/N in the single-particle model is a random variable uniformly distributed between 1/2 and 1, we can
estimate the mean value of the wavenumber k for an ensemble of waves propagating in all available directions as

〈k〉 =

〈
K‖

cosα

〉
ω/N

= 2K‖

∫ 1

1/2

d(ω/N)√
1− (ω/N)2

≈ 2.1K‖, (B2)

where the factor 2 multiplying the integral comes from computing the mean of ω/N in the interval [1/2, 1]. Thus, the
mean phase shift results to be 〈δφ〉 ≈ 2.1K‖ δr0.

The two-particle squared vertical dispersion caused by the waves
〈
ζ2z,(wav)

〉
is the average over an ensemble of

particle pairs of the square of the vertical two-particle dispersion for a single pair ζij,(wav). For a very small initial
separation between the particle pairs δφ is also small and we can use in Eq. (B1) the approximation cos(ωt+φ+δφ) ≈
cos(ωt+ φ)− δφ sin(ωt+ φ) to get

ζij,(wav) ≈
∑
ω

−kδr0Aω [sin(ωt+ φω)− sin(φω)] + δz0. (B3)

For short times we can take the first order Taylor approximations sin(ωt) ≈ −ωt and cos(ωt) ≈ 1. Also, using the
trigonometrical identity sin(ωt+ φω) = sin(ωt) cos(φω) + cos(ωt) sin(φω) we obtain

ζij,(wav) ≈ tδr0
∑
ω

[−ωkAω cos(φω)] + δz0. (B4)

Finally, we take the ensemble average of the square of ζij,(wav), we use that α and ω are stochastic variables, we use
Eq. (13) for Aω, and we use Eqs. (B2), (A3) and (A4) to get〈

ζ2wav
〉

(t) ≈ U2
z

(
2.1K‖δr0

)2
t2, (B5)
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where terms in δz0 and δz20 are neglected for being much smaller than the leading order term.
To obtain the long time approximation we start by neglecting the term δz0 and taking the mean squared value of

Eq. (B1)

〈
ζ2ij,(wav)

〉
=

〈∑
ω

A2
ω

{
[cos(ωt+ φω)− cos(φω)]

2
+ [cos(ωt+ φ′ω)− cos(φ′ω)]

2−

2 [cos(ωt+ φω)− cos(φω)] [cos(ωt+ φ′ω)− cos(φ′ω)]}+
∑

ω,ω′ 6=ω

(...)

〉
,

(B6)

where the mean is taken both over time and over particle pairs. The cross-product terms in Eq. (B6) have mean value〈∑
ω,ω′ 6=ω(...)

〉
= 0, as discussed in Appendix A. Using again the approximation cos(ωt+ φω + δφ) ≈ cos(ωt+ φω)−

δφ sin(ωt+ φ) we get

〈
ζ2ij,(wav)

〉
≈

〈∑
ω

A2
ω

{
[cos(ωt+ φω)− cos(φω)]

2
+ [cos(ωt+ φω)− cos(φω)− δφ (sin(ωt+ φω)− sin(φ))]

2−

2 [cos(ωt+ φω)− cos(φω)] [cos(ωt+ φω)− cos(φω)− δφ (sin(ωt+ φω)− sin(φ))]}〉 .
(B7)

Finally, using Eqs. (A3), (A4), (A7), (A8), and (A10) and given that 〈sin(φ) cos(φ)〉φ = 0 with φ uniformly distributed
between 0 and 2π, we have〈

ζ2z,(wav)

〉
t
≈
〈
(kδr0)2

〉〈∑
ω

A2
ω [sin(ωt+ φ)− sin(φ)]

〉
t

≈
〈
(kδr0)2

〉 〈
δz2wav

〉
t
≈

2(2.1K‖δr0)2U2
z

Nωmin
. (B8)
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