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ABSTRACT

We study the spatiotemporal behavior of the Els€asser variables describing magnetic and velocity field fluctuations, using direct numerical
simulations of three-dimensional magnetohydrodynamic turbulence. We consider cases with relatively small, intermediate, and large values
of a mean background magnetic field and with null, small, and high cross-helicity (correlations between the velocity and the magnetic field).
Wavenumber-dependent time correlation functions are computed for the different simulations. From these correlation functions, the decor-
relation time is computed and compared with different theoretical characteristic times: the local nonlinear time, the random-sweeping time,
and the Alfv�enic time. It is found that decorrelation times are dominated by sweeping effects for low values of the mean magnetic field and
for low values of the cross-helicity, while for large values of the background field or of the cross-helicity and for wave vectors sufficiently
aligned with the guide field, decorrelation times are controlled by Alfv�enic effects. Finally, we observe counterpropagation of Alfv�enic fluctua-
tions due to reflections produced by inhomogeneities in the total magnetic field. This effect becomes more prominent in flows with large
cross-helicity, strongly modifying the propagation of waves in turbulent magnetohydrodynamic flows.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129655

I. INTRODUCTION

Turbulent fluctuations are essentially broadband, on both spatial
and temporal scales, involving nonlinear couplings among a wide
range of scales.1 In incompressible magnetohydrodynamics (MHD),2,3

these couplings are based on interactions of triads of modes,4–8 which
can be of different types, such as (local in wavenumber space) nonlin-
ear distortions of eddies or (nonlocal in wavenumber space) sweeping
of small eddies by larger ones.9–15 Of course, these nonlinear couplings
also involve interactions with waves in the flow, which are ubiquitous
in MHD flows as well as in plasma turbulence.

The incompressible MHD equations sustain Alfv�en waves, which
in the presence of a background magnetic field B00 are described by a
linear dispersion relation of frequency x ¼ k � VA for the wavevector
k, with Alfv�en velocity VA ¼ B00=

ffiffiffiffiffiffiffiffi
4pq
p

and with mass density q. It is
well known that these waves, when considered in isolation, are also

exact solutions of the nonlinear MHD (ideal) equations. The simulta-
neous presence of counterpropagating fluctuations, however, activates
nonlinear interactions among modes, producing dispersion, and in
consequence, the waves are no longer exact solutions of the system.16

As the background magnetic field controls the propagation velocity
(i.e., the Alfv�en velocity), the nonlinear interaction is influenced by the
Alfv�en crossing time of counterpropagating wave packets. There is
therefore a competition between nonlinear interactions (i.e., turbu-
lence) and wave propagation.17,18

The strength of counterpropagating fluctuations can be measured
by the cross-helicity, a quantity which is a quadratic invariant of the
ideal MHD equations (see Sec. II for specifics). This quantity is also of
relevance for the solar wind and for space plasmas, as large-scale flows
with cross-helicity (in the presence of a guide field) are often found in
the interplanetary medium. A spatiotemporal analysis of field
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fluctuations14,19 can thus be performed to quantitatively study the
importance of these different effects and to distinguish which is the
dominant time scale among the different ones depending on the con-
trolling parameters of the system. This kind of analysis was performed
in the past for MHD flows without cross-helicity,20–22 observing differ-
ent behaviors depending on whether the turbulence is weak or strong.
The prevailing conclusion, for strong turbulence, is that the time
decorrelation of Fourier modes in the inertial range is typically domi-
nated by the sweeping decorrelation due to large scale flows.11,14,21

However, the effect of changing the strength of counterpropagating
fluctuations in the spatiotemporal behavior of the flow, and in its
decorrelation time, was not considered before.

In the present paper, we perform a spatiotemporal analysis of
MHD turbulence, controlling simultaneously and separately the inten-
sity of the background magnetic field and the amount of cross-helicity
in the flow, extending our previous study21 of incompressible MHD
with a background magnetic field and no cross-helicity. We present
several numerical solutions of the incompressible MHD equations in a
turbulent steady state and analyze each time scale in the system using
wavenumber-dependent time correlation functions and spatiotempo-
ral spectra of the Els€asser variables. The spatiotemporal study of the
Els€asser variables allows us to disentangle the two possible polariza-
tions of the Alfv�en waves, as well as their direction of propagation, and
to quantify any imbalance between the two polarizations. We find that
decorrelation times are dominated by sweeping effects for low values
of the mean magnetic field and for low values of the cross-helicity,
while for large values of the background field or of the cross-helicity,
decorrelation times are controlled by the Alfv�enic times. Moreover, for
large values of the cross-helicity, we also observe counterpropagation
of Alfv�enic fluctuations (i.e., an inversion in the direction of propaga-
tion of one polarization of Alfv�en waves), resulting from reflections in
inhomogeneities of the total magnetic field produced by the turbu-
lence. Under some conditions, this can result in the propagation of
both polarizations of the Alfv�en waves in the same direction. This
effect strongly affects nonlinear interactions.

The structure of this paper is as follows. In Sec. II, we introduce
the equations and the numerical methods employed, as well as a
description of the spatiotemporal spectrum and of the correlation
functions. Results are presented in Sec. III. Finally, discussions and
conclusions are presented in Sec. IV.

II. EQUATIONS AND NUMERICAL SIMULATIONS
A. The MHD equations and the Els€asser fields

The incompressible MHD equations (momentum and induction
equations) in dimensionless units as solved in the numerical simula-
tions are

@v
@t
þ v � rv ¼ � 1

q
rpþ j� Bþ 1

R
r2v þ Fv; (1)

@b
@t
¼ r� ðv � BÞ þ 1

Rm
r2bþ Fb; (2)

where v is the plasma bulk velocity, B ¼ bþ B0 is the total magnetic
field (in units of an Alfv�enic speed, and obtained from the total mag-
netic field B0 in Gaussian units after dividing by

ffiffiffiffiffiffiffiffi
4pq
p

, where q is the
plasma density), and Fv and Fb are forcing terms to be discussed in
more detail below. The total magnetic field has a fluctuating part b,

and a mean DC field B0 ¼ B0x̂ . Finally, j ¼ r� b is the current den-
sity and p is the plasma pressure. The units are based on a characteris-
tic speed v0, which for MHD is chosen to be the typical Alfv�en speed
of the magnetic field fluctuations, v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2i=ð4pqÞ

p
, where h:i

denotes a spatial average. The dimensionless parameters appearing
in the equations are the kinetic and magnetic Reynolds numbers,
R ¼ v0L=� and Rm ¼ v0L=l, respectively, with � the kinematic vis-
cosity, l the magnetic diffusivity, and L the characteristic length scale
(the simulation box side length is defined as 2pL). The unit time is
t0 ¼ L=v0, which for MHD becomes the Alfv�en crossing time based
on magnetic field fluctuations. The Els€asser fields are then defined as

z6 ¼ v6b: (3)

In terms of the Els€asser fields, the MHD equations can be
written14 as

@tz
6 ¼ 6VA � rz6 � z7 � rz6 �rP þ 1

R
r2z6; (4)

with P the total pressure divided by the plasma density, and with the
assumption that R ¼ Rm. In the rhs of Eq. (4), we explicitly separated
the convective term into a linear part describing Alfv�enic propagation
with VA ¼ B0 the Alfv�en velocity based on the background magnetic
field (with B0 the field in units of velocity), and the nonlinear part
describing the interaction among counterpropagating wavelike fluctu-
ations. It is evident from these equations that both Els€asser fields must
be present to activate the nonlinear interactions.

The ideal invariants (i.e., with zero viscosity and resistivity) of
incompressible MHD theory can be written in terms of the Els€asser
fields. The total energy E (kinetic plus magnetic) in terms of these vari-
ables is

E ¼ 1
2

ð
jvj2 þ jbj2
� �

dV ¼ 1
4

ð
jzþj2 þ jz�j2
� �

dV ; (5)

while the cross-helicityHc is

Hc ¼
ð
v � b dV ¼ 1

4

ð
jzþj2 � jz�j2
� �

dV : (6)

The ratio rc ¼ Hc=E measures the amount of counterpropagating
fluctuations in the system. A value rc ¼ 61 corresponds to only one
type of fluctuations z6, while rc ¼ 0 represents equipartition between
both fields.

As later in the analysis we will be interested in the effect of flow
inhomogeneities in the propagation of these fluctuations, following the
works of Matthaeus et al.23 and Zhou and Matthaeus,24 we can linear-
ize the ideal MHD equations considering the presence of an inhomo-
geneous background magnetic field and/or an inhomogeneous
background flow. From these works, the general MHD equations
(including density fluctuations) can be written as

@tz
6 þ L6

x þ L6
� �

z6 þM6
ik z

7
k ¼ 0: (7)

The linear operators L6
x ; L

6, and M6
ik involve gradients acting on

both the large- and the small-scale fields and are given by

L6
x ¼ U7VAð Þ � r; (8)

L6 ¼ 1
2
r � U

2
6VA

� �
; (9)
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and

M6
ik ¼ rkUi6

1ffiffiffiffiffiffiffiffi
4pq
p rkB

0
i �

1
2
dikr �

U
2

6VA

� �
; (10)

where U is a background flow. Here, both U and VA can include
large-scale inhomogeneities (including, for VA, inhomogeneities asso-
ciated with density fluctuations). The mixing terms (those involving
the M6

ik operators) allow the possibility of creating counter propagat-
ing fluctuations out of a single-sign propagating fluctuation, by means
of reflections due to inhomogeneities in any of the background fields.25

In this sense, even if the system starts from an initial condition with
only one sign of propagating fluctuations, the reflections by inhomoge-
neous background fields will create an amount of counter propagating
fluctuations which will turn on nonlinearities, producing dispersion
and turbulence.26,27 But this effect can also result, in flows with both
polarizations of Alfv�enic excitations, in the counterpropagation of one
of the excitations, as will be shown from numerical data in Sec. III.

B. Wavenumber-frequency spectrum and correlation
functions

Using scaling arguments, different characteristic times in the sys-
tem can be estimated. The local eddy turnover time or isotropic non-
linear time scale can be defined as snl � 1=½kvðkÞ�, where v(k) is the
amplitude of the velocity fluctuations at scale �1=k. Considering a
Kolmogorov-like scaling vðkÞ � vrmsðkLÞ�1=3, the nonlinear time in
the inertial range can be written as

snl ¼ Cnl vrmsL
�1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k2k

q� �2=3
" #�1

; (11)

where Cnl is a dimensionless constant of order one, and kk and k?
denote the wavenumbers parallel and perpendicular to the background
magnetic field. Here, vrms ¼ hjvj2i1=2 is a global quantity, dominated
by contributions from the large scales.3,28

Another time decorrelation effect is governed by the sweeping
characteristic time, which at the scale�1=k can be expressed as

ssw ¼ Csw vrms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k2k

q� ��1
: (12)

This time corresponds to the advection of small-scale structures by the
large-scale flow. Finally, a characteristic Alfv�en time can be defined as

sA ¼ CA vAkk
� ��1

: (13)

In the last two expressions, Csw and CA also are dimensionless con-
stants of order unity.

These are not all the time scales that could be present in MHD
turbulence, but the ones most relevant for the discussions in the fol-
lowing section (Sec. III). As an example, another time scale worth
mentioning is the decorrelation time of triple moments when there is
no equipartition between magnetic and kinetic energies, e.g., in the
dynamo context.29

To disentangle these time scales in the flow, and to identify which
is the most relevant time scale at a given spatial scale, two tools can be
used: the statistical properties of the correlation function in space and
time, and the wavenumber-frequency spectrum. We start by

introducing the former. The statistics of the Els€asser fields can be char-
acterized by the spatiotemporal two-point autocorrelation function,14

R6ðr; sÞ ¼ hz6ðx; tÞ � z6ðx þ r; t þ sÞi=hjz6j2i: (14)

The Fourier transform in r leads to a time-lagged spectral density
which can be further factorized as Sðk; sÞ ¼ SðkÞCðk; sÞ. The function
Cðk; sÞ is the scale-dependent correlation function30–32 which
describes the time decorrelation of each spatial mode k, that is, the
loss of memory of fluctuations with characteristics lengths of order
k�1x ; k�1y , and k�1z .

When there is a preferential direction in the flow (as in the pre-
sent case of MHD turbulence with a guide magnetic field), it is useful
to assume axial symmetry in Fourier space and to write Cðk; sÞ
¼ Cðk?; kk; sÞ. As this function is three dimensional, it is also useful
to study Cðk?; kk; sÞ with one of the arguments fixed; for instance, fix-
ing a value of k? and analyzing Cðk?; kk; sÞ as a function of kk and s
gives us information on fluctuations that vary only in the parallel
direction, and allow us to distinguish between decorrelation arising
from Alfv�enic nonlinear interactions or sweeping.

The Fourier transform in the time lag of the scale-dependent cor-
relation function results in the wavenumber-frequency spectrum
E6ðk;xÞ for each of the Els€asser fields. This property follows directly
from 1 that states that the Fourier transform of a signal autocorrelation
is the power spectrum of the same signal (see Refs. 19 and 33, and pp.
35–36 from Ref. 34 for further details). The spectra E6ðk;xÞ allow
identification of modes satisfying a generalized dispersion relation of
the system, and provide a direct measurement of how much energy is
in those modes, and of how much energy is in other modes. For the
two separate Els€asser fields, from Eqs. (5) and (6) it is easy to see that

E ¼ Eþ þ E�; Hc ¼ Eþ � E�; (15)

where E6 ¼
Ð
jz6j2=4 dV . Thus, for the wavenumber-frequency spec-

tra of the Els€asser fields, the two following relations hold,

Eþðk;xÞ ¼ Eðk;xÞ þ Hcðk;xÞ½ �=2; (16)

E�ðk;xÞ ¼ Eðk;xÞ � Hcðk;xÞ½ �=2: (17)

Therefore, computation of the wavenumber-frequency spectra of the
energy and of the cross-helicity allows unique determination of the
wavenumber-frequency spectra of the Els€asser fields, and vice versa.

C. Numerical simulations

To solve numerically the incompressible MHD Eqs. (1) and (2),
we employ a parallel pseudospectral code.35–37 We consider a spatial
resolution of N3 ¼ 5123 grid points, with a second-order Runge-Kutta
time integration scheme. Spatial resolution is moderate as we need to
store a large amount of data in space and time to compute the correla-
tion functions and spectra defined in Sec. IIB. Values considered for
the intensity of the external magnetic field are B0 ¼ 0; 0:25, 1, 2, 4,
and 8 (in units of the initial rms magnetic fluctuations value). We
assume periodic boundary conditions in a cube of side 2pL (with L the
initial correlation length of the fluctuations, defined as the unit length).
Aliasing is removed by the two-thirds rule truncation method.

The initial condition in all simulations consists of nonzero ampli-
tudes for the vðkÞ and bðkÞ fields, equipartitioned in all the wavenum-
bers within shells 1:1 � k � 4 (in units of 2pL=k, with k the
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wavelength). Random phases are chosen for all Fourier modes in both
fields. To keep the system in a turbulent steady state, we apply a driv-
ing consisting of forcing terms Fb and Fv for b and v, respectively, in
Eqs. (1) and (2). Fb and Fv are bands limited to a fixed set of Fourier
modes in the band 0:9 � k � 1:8. The driving has a random and a
time-coherent component, and the correlation time of the forcing is
sf � 1 (of the order of the unit time t0), which is larger than all the
characteristic times defined in the Sec. II B. To change the level of
cross-helicity in the flow, correlations were introduced between the
mechanical and electromotive drivings, resulting at late times (depend-
ing on the level of cross correlation between the drivers) in a normal-
ized cross-helicity of rc ¼ 0, 0.3, or 0.9 (these values correspond to the
time average in the turbulent steady state; in practice, in each simula-
tion, the instantaneous cross-helicity fluctuates in time around the
reported mean values).

Note the different values of B0 and of rc explored result in a total
of 18 simulations (see Table I). All simulations were continued until
the system reached a turbulent steady state, and then continued fur-
ther to perform the spatiotemporal analysis on the evolution of the
Els€asser fields presented in the Sec. III. We will first characterize the
spatial behavior of the flows (in particular considering the degree of
anisotropy as the intensity of the background flow is increased), to
then study the behavior of the Els€asser fluctuations using the spatio-
temporal information.

III. RESULTS
A. Wavenumber spectra

After the system reached the turbulent steady state, we analyzed
the results during 10 large-scale unit times, after verifying that this
time span was enough to ensure convergence of spatiotemporal spec-
tra and correlation functions.

We start discussing the spatial spectral, to characterize the turbu-
lence and to quantify its anisotropy as the intensity of the guide field is
varied, for different values of the cross-helicity. But first we need to
define some quantities, as we are dealing with anisotropic flows. In
principle, we could study spectra in terms of the wave vector k, but
this results in a three-dimensional spectral density. Using the preferen-
tial direction associated with the guide field, reduced spectra can be
defined that simplify substantially the data analysis.

The axisymmetric energy spectrum eðk?; kk; tÞ provides infor-
mation on the anisotropy of the turbulence relative to the guide field.38

It is defined as

eðk?; kk; tÞ ¼
X

k? � jk � x̂j < k? þ 1

kk � kx < kk þ 1

jûðk; tÞj2 þ jb̂ðk; tÞj2

¼
ð
jûðk; tÞj2 þ jb̂ðk; tÞj2
� �

jkj sin hk d/k: (18)

The first equality corresponds to the way the spectra are computed in
the simulations (as Fourier modes are discrete), while the second
corresponds to the theoretical definition in the continuum case. Since
the guide field is B0 ¼ B0x̂ , in both cases, the wave vector components

kk ¼ kx and k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
, and the polar angles in Fourier space

hk and /k are relative to the x-axis. That is, in Eq. (18), hk
¼ arctanðk?=kkÞ is the colatitude in Fourier space with respect to the
x-axis, and /k is the longitude with respect to the y-axis. Note that
below we treat the discrete and continuum expressions of Fourier
spectra as equivalent, bearing in mind that in all cases integrals should
be replaced by sums when required for the numerics.

Using the axisymmetric spectrum, one can define the time aver-
aged isotropic energy spectrum E(k) as

E kð Þ ¼ 1
T

ð ð
eðjk?j; kk; tÞjkj dhk dt; (19)

and the reduced perpendicular energy spectrum Eðk?Þ38 as

E k?ð Þ ¼
1
T

ð ð
eðjk?j; kk; tÞ dkk dt; (20)

where in the latter case, we integrate over parallel wave numbers to
obtain a spectrum that depends only on k?, and in both cases, we
average in time over a (sufficiently long) time T.

The reduced perpendicular energy spectra Eðk?Þ are shown in
Fig. 1 for the simulations with B0 ¼ 0:25, 1, 2, 4, and 8 with normal-
ized cross-helicity rc ¼ 0:3. In this figure, we also show the isotropic
energy spectrum E(k) for the simulation with B0 ¼ 0, with rc ¼ 0:3.
The simulations with rc ¼ 0 and rc ¼ 0:9 display a similar behavior.
A Kolmogorov power law is also indicated in the figure as reference.
As can be seen, despite the moderate spatial resolution of the runs, the
observed spatial spectra are compatible with Kolmogorov scaling
�k�5=3? , and the simulations are well resolved displaying a dissipative
range for large wavenumbers (for example, the Kolmogorov

FIG. 1. Reduced perpendicular energy spectra Eðk?Þ for simulations with B0 ¼ 0,
0.25, 1, 2, 4, and 8. All curves correspond to the case rc ¼ 0:3, but the cases with
rc ¼ 0 and 0.9 show the same behavior. Kolmogorov scaling, �k�5=3? , is shown
as the reference.

TABLE I. List of numerical simulations performed, with guide field B ¼ B0x̂ and
normalized cross-helicity rc.

B0 ¼ 0 B0 ¼ 0:25 B0 ¼ 1 B0 ¼ 2 B0 ¼ 4 B0 ¼ 8

0 0 0 0 0 0
rc � 0.3 0.3 0.3 0.3 0.3 0.3

0.9 0.9 0.9 0.9 0.9 0.9
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dissipation wavenumbers k� are k� � 91, 152, and 122 for the simula-
tions with B0 ¼ 1 and rc ¼ 0, 0.3, and 0.9, respectively).

We can see the spectral behavior (and of the anisotropy of the
flows) in more detail in Fig. 2. There, we show isocontours of the axi-
symmetric energy spectrum eðk?; kkÞ (i.e., the energy density as a
function of perpendicular and parallel wavenumbers) for B0 ¼ 0, 1, 4,
and 8, and in all cases for flows with rc ¼ 0:3. As a reference, we also
indicate the curves (in Fourier space) where the Alfv�en time is equal to
either the sweeping time, or the nonlinear time. In other words, these
curves separate regions in which (from theoretical arguments) the fast-
est time scale can be expected to be either sA (above the dashed red
curve) or snl (below the solid blue curve). The sweeping time can be
relevant for all modes below the dashed red curve.

Note that for B0 6¼ 0 the energy is not distributed isotropically in
the axisymmetric spectra in Fig. 2. Energy tends to accumulate in
modes with small kk as B0 is increased, and for B0 ¼ 4 and 8, a

substantial fraction of the energy accumulates in the vicinity of the
curves satisfying sA � ssw and sA � snl .

B. Wavenumber-frequency spectra

We calculate the energy spectrum Eðk;xÞ from the relation

Eðk;xÞ ¼ 1
2
jûðk;xÞj2 þ 1

2
jb̂ðk;xÞj2; (21)

where ûðk;xÞ and b̂ðk;xÞ are the Fourier transforms in time and in
space of the velocity and the magnetic fields, respectively. The main
results of the present study are summarized in Figs. 3–6, which quan-
tify the spatiotemporal behavior of the Els€asser fields separately. These
figures show the normalized wavevector and frequency spectra of the
zþ and z� variables, for simulations with different values of the back-
ground mean field B0 and normalized cross-helicity rc. As the spectra
are multidimensional, in all cases we show slices of the spectrum for

FIG. 2. Isocontours of the axisymmetric energy spectrum eðk?; kkÞ for B0 ¼ 0, 1, 4, and 8, and for rc ¼ 0:3. In all cases, dark means larger energy density (in logarithmic
scale). The lines indicate the modes for which the sweeping time (red dashed line) or the local nonlinear time (solid blue line) becomes equal to the Alfv�en time. For large B0,
the flow becomes more anisotropic, and isocontours change shape as they cross these lines. Note also the increase in the energy in modes that have the Alfv�en time as the
fastest time (i.e., of modes below the solid blue curve) as B0 increases.
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k? ¼ 0 and as a function of kk and x (other slices, with other values
of k?, display the same behavior for the waves reported below).

Figure 3 shows these spatiotemporal spectra for simulations with
B0 ¼ 0. In this case, the dispersion relation for Alfv�enic fluctuations
becomes x ¼ 0, and Alfv�en waves are indistinguishable (in this spec-
trum) from slow modes such as turbulent eddies. The sweeping rela-
tion, for eddies with velocity vrms, becomes x ¼ 6vrmsk, and in
practice, as all turbulent eddies with this velocity (or a smaller velocity)
can randomly sweep small-scale structures in the flow, the relation for
random sweeping becomes jxj � vrmsk. Both relations are indicated,
respectively, by dashed and solid lines in Fig. 3.

Accumulation of energy in the spectra in Fig. 3 can be seen for all
modes in the region enclosed by the sweeping relation, evidencing the
presence of broadband (strong) turbulence rather than of wave turbu-
lence or linear wave propagation. Moreover, for large values of the
normalized cross-helicity (rc ¼ 0:9), energy accumulates instead in

modes with x � 0, and more energy can be observed in zþ modes
when compared to the z� modes. From these spectra, we can conclude
that for B0 ¼ 0 and rc ¼ 0 the dominant time scale is that of the
sweeping, while for large values of rc either the nonlinear time scale or
the Alfv�en time become dominant.

Figure 4 shows the spatiotemporal spectra for simulations with
B0 ¼ 0:25. The case with rc ¼ 0 shows again a broad range of fluctua-
tions in the range of frequencies enclosed by the sweeping relation. As
the value of rc is increased, the zþ fluctuations become dominant, a
situation which is more evident in the case with rc ¼ 0:9. Also, as rc
is increased, energy in zþ fluctuations leaves the funnel defined by the
sweeping relation, and concentrates in the vicinity of the dispersion
relation of Alfv�en waves xþ ¼ þVA � k (see the case with rc ¼ 0:9 in
Fig. 4). Note that the choice of signs for waves described by z6

¼ z6
0 e

iðk�xþx6tÞ follows from the fact that the Fourier transforms used
in space and in time follow the same sign convention, and where z6

0

FIG. 3. Normalized wave vector and frequency spectra E6ðk;xÞ=EþðkÞ of z� (left) and zþ (right), for the isotropic simulations (B0 ¼ 0) with rc ¼ 0:3 [top, panels (a) and
(b)] and rc ¼ 0:9 [bottom, panels (c) and (d)], as a function of kk and for fixed k? ¼ 0. Lighter regions indicate larger energy density. The spectra correspond to the power in
the time and space Fourier transform of the fields, such that accumulation of energy in modes near the dispersion relation (or in all modes below the sweeping curve) points to
a dominance of a physical effect (i.e., of its associated frequency) in the dynamics of a given scale �1=kk. As a reference, the sweeping time relation giving by Eq. (12) is indi-
cated by solid (green) lines. A broad excitation of modes is observed for all modes with x � 1=ssw (sweeping) in panels (a) and (b), and for x � 0 in panels (c) and (d).
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FIG. 4. Normalized spectra E6ðk;xÞ=EþðkÞ of z� (left) and zþ (right), for the runs with B0 ¼ 0:25, for modes with k? ¼ 0, and thus as a function of kk and x. Panels (a)
and (b) correspond to rc ¼ 0, (c) and (d) to rc ¼ 0:3, and (e) and (f) to rc ¼ 0:9. The sweeping time relation, given by Eq. (12), is indicated by solid (green) lines, and the
dashed (blue) lines indicate the dispersion relation of Alfv�en waves. Lighter regions indicate larger energy density, and the accumulation of energy in modes near the dispersion
relation (or in all modes below the sweeping curve) points to a dominance of a physical effect (i.e., of its associated frequency) in the dynamics of a given scale �1=kk. For
low normalized cross-helicity, rc sweeping is the dominant effect, while for large rc, energy accumulates near the dispersion relation of the waves, albeit for both zþ and z�

with the same sign of the frequency x.
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FIG. 5. Normalized spectra E6ðk;xÞ=EþðkÞ of z� (left) and zþ (right), for the runs with B0 ¼ 1, for modes with k? ¼ 0, and thus as a function of kk and x. Panels (a) and
(b) correspond to rc ¼ 0, (c) and (d) to rc ¼ 0:3, and (e) and (f) to rc ¼ 0:9. The sweeping time relation, given by Eq. (12), is indicated by solid (green) lines, and the
dashed (blue) lines indicate the dispersion relation of Alfv�en waves. Lighter regions indicate larger energy density. In this case, power for rc ¼ 0 is concentrated in a region
near the wave dispersion relations x6 � 6VA � k up to kk � 10. For rc ¼ 0:9, both fields zþ and z� follow the same dispersion relation x � þVA � k, and Alfv�enic exci-
tations dominate over all scales.
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FIG. 6. Normalized spectra E6ðk;xÞ=EþðkÞ of z� (left) and zþ (right), for the runs with B0 ¼ 8, for modes with k? ¼ 0, and thus as a function of kk and x. Panels (a) and
(b) correspond to rc ¼ 0, (c) and (d) to rc ¼ 0:3, and (e) and (f) to rc ¼ 0:9. The sweeping time relation, given by Eq. (12), is indicated by solid (green) lines, and the
dashed (blue) lines indicate the dispersion relation of Alfv�en waves. Lighter regions indicate larger energy density. In all cases, power is concentrated in a narrow region near
the wave dispersion relations x6 � 6VA � k or near x � 0, for all the wavenumbers studied, and there is no evidence of counterpropagation of waves.
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are the amplitudes of the waves. This way, the sign of xþ implies that
zþ fluctuations propagate antiparallel to the guide field, as expected.
However, in an apparent contradiction, the waves with the opposite
polarization, i.e., the z� fluctuations, also populate (albeit with smaller
amplitude) the same upper branch of the Alfv�enic wave dispersion
relation. As the z� fluctuations satisfy another dispersion relation
(x� ¼ �VA � k), in the linear regime these fluctuations should popu-
late instead the lower branch of the dispersion relation shown in
Fig. 4. This behavior indicates that z� fluctuations also propagate in
real space in the direction antiparallel to the guide field (i.e., with nega-
tive velocity), instead of parallel to this field (i.e., with positive velocity)
as would be expected. Such a behavior was predicted by Hollweg39 for
the solar wind and caused by, e.g., reflections of waves in density fluc-
tuations in the interplanetary medium, using a WKB expansion. In
our case, the flow is incompressible and density is uniform in space
and constant in time.

As B0 is increased, this effect becomes more evident. In Fig. 5, we
show the spatiotemporal spectra for simulations with B0 ¼ 1. Now
energy tends to concentrate near the dispersion relation of the Alfv�en
waves for all values of rc, i.e., as we increase the value of B0 the rele-
vance of random sweeping decreases and Alfv�en waves become more
important. For rc ¼ 0, we observe waves propagating in both direc-
tions: zþ fluctuations propagate antiparallel to the guide field, and z�

fluctuations propagate parallel to this field. Also, for values of kk larger
than �20, the dispersion in the excitation of modes increases and
energy starts to populate the funnel in spectral space associated with
sweeping, indicating random sweeping plays a role at sufficiently small
vertical scales. Instead, for rc ¼ 0:3 and 0.9 energy accumulates only
near the wave dispersion relation, and we recover counterpropagation
of one of the wave motions: both zþ and z� fields propagate in the
same direction, antiparallel to the guide field. Increasing B0 further
reduces this effect (see the cases with B0 ¼ 8 in Fig. 6), resulting in the
expected propagation for each excitation, or in very little or no propa-
gation of z� when rc is sufficiently small.

What is the origin of the observed z� fluctuations propagating in
the same direction as the zþ fluctuations? Based on the results of
Hollweg,39 and on Eq. (7), they must be caused by reflections in large
scale inhomogeneities of the mean magnetic field (note there is no
mean background flow in our simulations, nor density fluctuations).
Although our background guide field B0 is uniform (i.e., constant in
space as well as in time), the total mean field a fluctuation sees includes
a slowly varying component (e.g., from magnetic field fluctuations at
large scales, such as those in k¼ 1 modes, which evolve on a slower
time scale than fast waves and small-scale fluctuations). As a result,
the flow has an effective Alfv�en velocity that depends on the spatial
coordinates. We can then write for either type of Els€asser fluctuations
the ideal linearized Eq. (7) for constant density and for U ¼ 0 (no
mean background flow) as

@tz
6 ¼ 6VA � rz67z7 � rB

0ffiffiffiffiffiffiffiffi
4pq
p ; (22)

where VA can now include large-scale fluctuations of the magnetic
field, and B0 as before is the total magnetic field in Gaussian units. If
the normalized cross-helicity rc is close to 1, that is, if jzþj 	 jz�j, we
have for zþ,

@tz
þ � VA � rzþ; (23)

and using z6 ¼ z6
0 e

iðk�xþx6tÞ, we recover the usual dispersion relation
for waves propagating antiparallel to the mean field xþ ¼ þVA � k
(where now VA can fluctuate slowly in space and time). However, for
z�, we obtain

@tz
� � �VA � rz� þ zþ � rB

0ffiffiffiffiffiffiffiffi
4pq
p : (24)

This equation indicates that the propagation of z� perturbations
(which are smaller in amplitude than zþ) can be strongly affected by
the zþ field and by spatial variations of the large-scale magnetic field.

From Eq. (24), we can also extract some phenomenological con-
ditions for the behavior seen in Figs. 3–6 (and in particular, for the
counterpropagation of waves) to take place. Using again z6

¼ z6
0 e

iðk�xþx6tÞ, and assuming B0 ¼ B00 þ b00 where b00 ¼ ~b
0
0e

iK�x is
the slowly varying large-scale magnetic field with wavenumber
K 
 k, Eq. (24) reduces to

x� þ VA � kð Þz�0 eix
�t ¼ K � zþ0

� �
b00ffiffiffiffiffiffiffiffi

4pq
p eix

þt : (25)

Taking the dot product with z�0 , defining Els€asser energy densities
e6 ¼ jz6

0 j
2=4, and defining the fluctuations in the Alfv�en velocity

(associated with the large-scale magnetic field fluctuations) as
vA ¼ b00=

ffiffiffiffiffiffiffiffi
4pq
p

, we finally get

x� þ VA � kð Þeix�t ¼
K � zþ0
� �

vA � z�0ð Þ
4e�

eix
þt : (26)

This equation admits solutions

x� ¼ xþ ¼ þVA � k; (27)

2VA � k ¼ K � zþ0
� �

vA � z�0ð Þ=ð4e�Þ; (28)

which correspond to both waves traveling in the same direction as
long as the second condition, given by Eq. (28), can be fulfilled. From
dimensional analysis, this condition requires that

2
VA

vA

k
K
�

ffiffiffiffiffi
eþ

e�

r
; (29)

which (as VA � vA and k	 K) cannot be satisfied when rc � 0 (as
observed in Figs. 3–6), or when the guide field becomes too strong for
a fixed value of rc (as also observed in the spatiotemporal spectra).
Thus, this last qualitative argument indicates (in agreement with the
simulations) that z� fluctuations can propagate with the same phase
speed and direction as the zþ fluctuations as long as rc 6¼ 0 and B0 is
not too strong for a fixed value of the normalized cross-helicity.

In other words, if jzþj at large scales is comparable to jVAj and
rc � 1, we can see z� fluctuations propagate in the same direction as
zþ fluctuations as a result of reflections in inhomogeneities of the
large-scale magnetic field. A similar behavior can result, for example,
from mass density fluctuations when the flow is compressible, as is the
case in some regions of the solar wind and the interplanetary
medium,40 and this argument does not preclude other effects such as
strong nonlinear interactions from resulting in reflection and counter-
propagation of excitations. Moreover, when the intensity of the back-
ground magnetic field B0 is further increased, the arguments used
above are not valid anymore and the relevance of the reflections
reduces. This is compatible with the behavior seen in Fig. 6 for the
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simulations with B0 ¼ 8, which show similar amounts of power in
both types of fluctuations when rc ¼ 0, less power in z� fluctuations
when rc ¼ 0:3 (and propagating opposite to the zþ field), and no
appreciable power for z� fluctuations when compared to zþ in the
case with rc ¼ 0:9.

C. Decorrelation times

From the discussions in Sec. II B, another way to identify domi-
nant time scales for individual modes is to study the decorrelation
time sD, i.e., the time it takes for each Fourier mode with wave vector
k to be decorrelated from its history either by nonlinear eddy interac-
tions (if sD � snl), by the crossover of waves (if sD � sA), or by the
sweeping by the large-scale flow (when sD � ssw). Again, as sD
depends on the wave vector k, in the following we show it for fixed
values of kk or k?, and as a function of the remaining wavenumber. In
all cases, the decorrelation time sD is obtained from the numerical
data by computing the correlation function Cðk?; kk; sÞ, and looking
at the value of the time lag s for which the correlation function decays
to 1=e from its value for s ¼ 0. Note the choice of 1=e as a reference
value is arbitrary, but similar results are obtained if instead the decor-
relation time is defined as the half width of C, or as the time when the
correlation function crosses the zero.21,33 With any of these choices, sD
is a measure of the characteristic time for the decay of the correlation.

Figure 7 shows the different decorrelation times for a fixed value
of kk ¼ 10 and as a function of k?, for the simulation with B0 ¼ 1
and rc ¼ 0:3. The theoretical predictions for the different decorrela-
tion times are also indicated as a reference. Since the Alfv�enic time is
independent of k? it shows as a constant vale in this figure. The decor-
relation time sD obtained from the numerical data is very close to the
Alfv�enic time for small values of k? (up to k? � 10), but it deviates
and becomes closer to the sweeping time for large values of k? (i.e., for
small perpendicular lengthscales). This is more clear for z� fluctua-
tions than for zþ fluctuations, for which the decorrelation time sD for
k? > 10 is in between the scaling of ssw and of snl.

Figure 8 shows the decorrelation times sD for the zþ field for
cases with rc ¼ 0:3, with a guide field of B0 ¼ 0:25, 1, 4, and 8, and
for fixed kk ¼ 15 as a function of k?. Again, for low values of B0, sD is
mostly dominated for the sweeping, either for all values of k? (for
B0 ¼ 0:25) or down to k? � 20 (for B0 ¼ 1). However, for larger val-
ues of B0 (or for small values of k? when B0 ¼ 1) Alfv�enic effects
become dominant, with sD taking values close to sA. Overall, the fast-
est time scale at any given k? seems to be the dominant one. These
results are consistent with the previous ones we obtained21 for the case
of strong incompressible MHD turbulence with no cross-helicity,
although the presence of some cross-helicity in the flow seems to favor
a transition toward a flow more dominated by Alfv�en waves as also
seen in the spatiotemporal spectra in Sec. III B. This can be also associ-
ated with the fact that under certain conditions the nonlinear time of
the dominant Els€asser fluctuations becomes too long, and the decorre-
lation time scale is then determined by the so-called “minority species”
as reported before in closure calculations by Grappin et al.41

This behavior can also be seen when k? is fixed, and sD is studied
as a function of kk (see Fig. 9). For simulations with rc ¼ 0:3 and with
increasing B0, we see that sD varies with kk as ssw when B0 is small or
moderate and when kk is small, and varies as sA when B0 or kk are suf-
ficiently large. In other words, modes with wave vectors sufficiently
aligned with the guide field are dominated by the Alfv�en time. And

again, the fastest time scale in this figure is the one that dominates the
dynamics.

However, and as mentioned before, this picture changes when rc
is sufficiently large. This can be seen in Fig. 10, where the decorrelation
time sD is plotted for the simulations with B0 ¼ 1, for fixed k? ¼ 40,
and as a function of kk for rc ¼ 0, 0.3, and 0.9. While for small values
of rc we observe the same behavior as before, for large values of rc the
Alfv�en time becomes dominant, even when it is slower than all the
other time scales, as in the case of the simulation with rc ¼ 0:9 and
small values of kk.

Thus, while for small values of rc the analysis of the decorrelation
time confirms the tendency observed in our previous study21 that the
sweeping time dominates the decorrelations except for the cases with
medium and large values of B0 where the Alfv�enic time is dominant
for small values of k? or large values of kk (see also studies of MHD
turbulence in the weak regime in Refs. 20 and 42, or of the transition

FIG. 7. Decorrelation times sD for the run with B0 ¼ 1 and rc ¼ 0:3, for kk ¼ 10
constant and as a function of k?. Panel (a) corresponds to z� and panel (b) to zþ.
The theoretical prediction for the sweeping time ssw, the nonlinear time snl, and the
Alfv�en time sA are indicated as references.
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from weak to strong MHD turbulence in Refs. 21 and 22) increasing
the cross-helicity content of the flow has interesting consequences.
The appearance of the Alfv�enic time as dominant becomes more clear
for large values of rc, even when it is not the fastest time scale, and
consistent with a linear (or weakly nonlinear) picture in which most of
the fluctuations have a single direction of propagation. However, as
evidenced in the spatiotemporal analysis of the energy spectrum of
each Els€asser field as a function of k and x, inhomogeneities of the
large scale magnetic field can induce reflections, and turn on nonlinear
interactions dominated by the Alfv�en crossover time between waves
for modes with wave vectors sufficiently aligned with the guide field,
or by the sweeping or nonlinear time for other modes.

IV. CONCLUSIONS

We analyzed the spatiotemporal behavior of MHD fluctuations
considering their polarizations in terms of the Els€asser variables, using
direct numerical simulations of three-dimensional incompressible
MHD turbulence. We considered cases with relatively small, interme-
diate, and large values of a mean background magnetic field and with

null, small, and high cross-helicity. The correlation function as a func-
tion of the wavenumber (decomposed in perpendicular and parallel
directions to the mean magnetic field) and of the time lag was directly
computed for all the different simulations considered, as well as the
spatiotemporal spectra. From the correlation functions, we computed
the decorrelation time for each Fourier mode, and we compared it
with different theoretical predictions for relevant time scales in the sys-
tem: the local nonlinear time, the random sweeping time, and the
Alfv�enic time. It was observed that time decorrelations are dominated
by sweeping effects for low values of the mean magnetic field and of
the cross-helicity, while for large values of the mean magnetic field or
of the cross-helicity, time decorrelations are controlled by Alfv�enic
effects even when the Alfv�en time is not the fastest time, a new feature
when compared with previous studies of spatiotemporal behavior of
strong MHD turbulence with zero cross-helicity. In principle, this
behavior could be interpreted as a transition toward a regime with
weaker nonlinearities as the cross-helicity is increased, as often argued
on theoretical grounds and apparently indicated by our numerical
simulations.

FIG. 8. Decorrelation times sD for the zþ field in simulations with rc ¼ 0:3 and (a) B0 ¼ 0:25, (b) 1, (c) 4, and (d) 8, for kk ¼ 15 and as a function of k?. The theoretical pre-
diction for the sweeping time ssw, the nonlinear time snl, and the Alfv�en time sA are indicated as references.
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However, it should be noted that the spatiotemporal spectra indi-
cate that even in this regime, nonlinear interactions are relevant: the
other main result obtained from our analysis is the finding of a regime
in which opposite polarizations z� and zþ fluctuations are generated
and propagate in the same direction due to wave reflections caused by
inhomogeneities of the large-scale magnetic field. This is more evident
in the spatiotemporal spectra of the Els€asser fields for intermediate val-
ues of the background magnetic field (that is, when the uniform and
constant component of the large-scale magnetic field is not too
strong). A phenomenological analysis based on previous ideas in Zhou
and Matthaeus24 confirms the conclusions of Hollweg,39 which indi-
cate that Alfv�enic fluctuations with opposite polarizations can indeed
propagate in the same direction and even with the same speed. If the
background magnetic field becomes too strong (or if the cross-helicity
is close to zero), this effect is no longer observed. Thus, the spatiotem-
poral analysis of the turbulent flows provides direct evidence of a phe-
nomenon that was predicted before using WKB theory, which can
play a relevant role modifying wave propagation and nonlinear inter-
actions in the interplanetary medium.

The results analyzed in this paper show in detail that, at least in
the strong turbulence regime, the wave picture is not complete enough
to describe the system of incompressible MHD. A broad band of fluc-
tuations appear in this system coming from local and nonlocal (sweep-
ing) effects, which bring in dispersion and nonlinear effects. It is
important to recall, of course, that much of the present study has con-
centrated on the study of the Eulerian decorrelation time, decomposed
into a scale-dependent decorrelation time of individual Fourier modes.
This decorrelation is generally interpreted as a competition between
sweeping decorrelation by large scale fluctuations and decorrelation
originating from wave propagation. However, neither of these effects
are in principle responsible for the spectral transfer that gives rise to
the turbulence cascade. In fact, the main effect of Alfv�en propagation,
from the perspective of the strong turbulent energy cascade, is not to
cause spectral transfer but to suppress it.43 Understanding the cascade
itself requires examination of the strength of the nonlinearities. In this
case, the appropriate characteristic time becomes the nonlinear time,
whose isolation requires analysis of timescales in the Lagrangian
frame44 (note that only in a few particular cases in our analysis, the

FIG. 9. Decorrelation times sD for the zþ field in simulations with rc ¼ 0:3 and (a) B0 ¼ 0:25, (b) 1, (c) 4, and (d) 8, for k? ¼ 15 and as a function of kk. The theoretical pre-
diction for the sweeping time ssw, the nonlinear time snl, and the Alfv�en time sA are indicated as references.
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nonlinear time was positively identified as a candidate for the decorre-
lation time). Nevertheless, we have shown that physically relevant phe-
nomena such as reflection and “anomalous propagation” of reflected
fluctuations can produce observable effects in the flow energetics, and
these phenomena have been recognized in a variety of configurations
of the different controlling parameters of the system, with potential
applications.

For example, interesting effects associated with reflection add to
the complexity of the dynamics, even in the simplest case of incom-
pressible MHD considered here. This has important implications for
applications such as coronal heating, solar wind acceleration, and par-
ticle energization in the interplanetary space.25,26 As a further example,
fluctuations observed in the solar wind, which tend to have the mag-
netic and the velocity field aligned or antialigned (i.e., with different
Alfv�enic polarizations), cannot always be trivially interpreted as travel-
ing “downstream” or “upstream” the mean magnetic field. Extensions
of this study to compressible MHD,45 considering the dependence
with the cross-helicity in the flow and its interplay with compressible
effects, as well as a study considering other helicities such as the kinetic
helicity Hv or the magnetic helicityHb and the hybrid helicity for Hall-
MHD, would be an interesting follow up of the present study and a
first step toward a deeper understanding of the role of nonlinear effects
in the propagation of waves in plasma turbulence.
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