
 

More on vacua of exotic massive 3D gravity

Gaston Giribet1 and Julio Oliva2
1Departamento de Física, Universidad de Buenos Aires FCEyN-UBA

and IFIBA-CONICET Ciudad Universitaria, pabellón 1,
1428 Buenos Aires, Argentina

2Departamento de Física, Universidad de Concepción Casilla 160-C, 4070386 Concepción, Chile

(Received 25 January 2019; published 18 March 2019)

In a recent paper [M. Chernicoff et al., J. High Energy Phys. 08 (2018) 087], we explored the space of
solutions of the exotic massive 3D gravity theory proposed in [M. Özkan et al., J. High Energy Phys. 08
(2018) 035]. We showed that the theory admits a rich space of vacua, including asymptotically anti de-
Sitter (AdS) geometries obeying different types of boundary conditions. The examples include black holes
dressed with low decaying gravitons. Based on what happens in other theories of massive gravity, we
conjectured that such geometries appear on a curve of the parameter space (chiral curve) where the exotic
massive gravity on AdS with sufficiently strong boundary conditions results dual to a 2D chiral conformal
field theory. Here, we show that this expectation is consistent with the conserved charges and
thermodynamical properties of the black holes of the theory, which have recently been computed [Mann
et al.,Energy of asymptotically AdS black holes in exotic massive gravity and its log-extension,
arXiv:1812.09525.]. When the boundary conditions are relaxed relative to the standard Brown-Henneaux
boundary conditions, the theory exhibits solutions consistent with the definition of the so-called log-
gravity. The asymptotic behavior of these solutions presents a logarithmic term in the Fefferman-Graham
expansion that, nonetheless, is compatible with the AdS asymptotic symmetries. This long range
interaction is due to a mode of the massive gravity that becomes massless precisely on the chiral curve.
We construct exact solutions exhibiting this behavior, which admit to be interpreted as fully backreacting
gravitational waves propagating on an extremal black hole, and carrying nonvanishing gravitational energy.
We also discuss other vacua of the theory, such as warped-AdS3 black holes, gravitational waves on such
backgrounds, AdS2 × S1 spaces, and black holes in dS3 space.

DOI: 10.1103/PhysRevD.99.064021

I. INTRODUCTION

Exotic massive gravity (EMG) is a parity-odd theory
describing a propagating massive spin-2 fields in three
dimensions (3D) [1]. It generalizes topologically massive
gravity theory (TMG) [2] supplementing it with third- and
fourth-order terms. EMG can be regarded as the next-to-
simplest example of an infinite sequence of consistent 3D
models obeying what has been called the third-way
mechanism [3], i.e., a mechanism by means of which
classical metric theories with no action can still satisfy the
Bianchi identities on-shell without imposing additional
constraints. The simplest example of such a theory is the
so-called minimal massive gravity (MMG), proposed in
[4]; EMG theory is its natural higher-order generalization.

In the metric formalism, EMG is defined by the field
equations

Rμν −
1

2
Rgμν þ Λgμν þ

1

μ
Cμν ¼ Tμν ð1Þ

where the Cotton tensor Cμν is

Cμν ¼
1

2
εμ

αβ∇αRβν þ
1

2
εν

αβ∇αRβμ; ð2Þ

and where the tensor Tμν is

Tμν ¼
1

m2
Hμν −

1

m4
Lμν ð3Þ

with

Hμν ¼ εμ
αβ∇αCνβ; Lμν ¼

1

2
εμ

αβεν
γσCαγCβσ: ð4Þ

μ and m are two arbitrary coupling constants of mass
dimension 1, and Λ is the cosmological constant.
The covariant divergence ofHμν and Lμν does not vanish

identically, and this is where the third-way mechanism
plays a role: Despite the tensor Tμν not being covariantly
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conserved identically, one can prove that in virtue of the
identities

εμ
αβCσ

α

�
Rβσ −

1

2
Rgβσ −

1

m2
Hβσ

�

¼ εμ
αβCσ

α

�
−Λgβσ −

1

m4
Lβσ

�
¼ 0 ð5Þ

the conservation condition ∇νTν
μ ¼ 0 does hold on-shell

without imposing incompatible constraints. This is the type
of theories recently studied in [3,5], for which the matter
contribution Tμν that supplements TMG field equations
satisfies the Bianchi identities as a consequence of the
gravitational field equation itself.
In a recent paper [6], we explored the space of solutions

to the field equations (1)–(4) and we showed that it contains
interesting geometries, including asymptotically AdS3
black holes and gravitational waves. We also showed that,
on a particular curve of the parameter space, the theory also
admits logarithmically decaying solutions in AdS3. These
are analogous to the solutions of TMG that appear at the
so-called chiral point [7]. Therefore, we conjectured that,
on a special curve of the parameter space [see (23) below],
EMG on AdS3 with sufficiently strong boundary conditions
is dual to a 2D chiral conformal field theory (CFT2). Here,
we will show that this conjecture is consistent with the
conserved charges and thermodynamical properties of the
black holes of the theory [8]. In Sec. II, we will study
the simplest black hole solution of the theory, the Bañados-
Teitelboim-Zanelli (BTZ) solution, which describes black
holes in AdS3 space. We will review the main properties of
BTZ, now seen as a solution to EMG, and in particular its
conserved charges. By studying the black hole thermody-
namical properties, and assuming the existence of a CFT2

dual description, in Sec. III we will obtain the central
charges of the boundary theory. Then, in Sec. IV, we will
study the special properties the theory exhibits when
formulated on the aforementioned special curve of the
parameter space, to which hereafter we will refer to as the
chiral curve. On this curve, the left-moving central charge
of the dual CFT2 vanishes and this is taken as evidence that,
provided sufficiently strong AdS3 boundary conditions are
prescribed, the dual CFT2 turns out to be chiral. In contrast,
when weakened AdS3 boundary conditions are considered,
the dual CFT2 has both left- and right-moving dynamics,
and this is in correspondence with additional normalizable
massless fields appearing in the bulk. In Sec. V, we will
discuss explicit examples of these geometries, which
describe gravitational waves propagating on extremal black
holes. Sections VI–X will be dedicated to study other vacua
of the theory, including massive gravitational waves in
AdS3 and other deformations of the extremal BTZ solution,
black holes in warped-AdS3 (WAdS3) space, evanescent
gravitational waves on WAdS3 space, AdS2 × S1 spaces,
and hairy black holes in both AdS3 and dS3 space.

II. BTZ BLACK HOLES

As other bona fide massive modifications to Einstein
theory in 3D, EMG admits the BTZ black hole as exact
solution. Its metric takes the form [9]

ds2M;J ¼ −N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðNφðrÞdtþ dφÞ2 ð6Þ

with

N2ðrÞ ¼ r2

l2
− 8GM þ 16G2J2

r2
; NφðrÞ ¼ −

4GJ
r2

ð7Þ

where t ∈ R, r ∈ R≥0, 0 ≤ φ ≤ 2π, and where l2 ¼ −1=Λ.
M and J are two arbitrary integration constants. For generic
M, the space (6)–(7) has isometry R × SOð2Þ. This
geometry represents a black hole in AdS3 space, provided
M ≥ 0 and jJj ≤ Ml. The horizon radii are

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM þ JÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM − JÞ

p
; ð8Þ

with 0 ≤ r− ≤ rþ. This means

M ¼ r2þ þ r2−
8Gl2

; J ¼ rþr−
4Gl

: ð9Þ

Being a 3D Einstein spaces with negative cosmological
constant, BTZ black holes are locally equivalent to AdS3,
and they can be constructed by making global identifica-
tions on the universal covering of the maximally symmetric
geometry [10]. It is convenient to define the geometric
temperatures

T� ¼ rþ � r−
2πl2

ð10Þ

which are the inverse of periods of the geometry [10].
In terms of these, the Hawking temperature is given by

TH ¼ 2
TþT−

Tþ þ T−
¼ r2þ − r2−

2πl2rþ
: ð11Þ

The conserved charges of the BTZ solution in EMGwere
recently computed in [8] (see also [11]), being the energy

Q½∂t� ¼
1

8Gl2

��
1 −

1

m2l2

�
ðr2þ þ r2−Þ −

2

μl
rþr−

�
ð12Þ

and the angular momentum

Q½∂φ� ¼
1

8Gl

��
1−

1

m2l2

�
2rþr− −

1

μl
ðr2þþ r2−Þ

�
: ð13Þ

These are the conserved charges associated to the Killing
vectors ∂t and ∂φ, respectively. With them, one obtains the
black hole entropy
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SBH ¼ π

2G

��
1 −

1

m2l2

�
rþ −

1

μl
r−

�
ð14Þ

which follows from the first principle of black hole
thermodynamics

dQ½∂t� ¼ THdSBH −ΩdQ½∂φ� ð15Þ

with the horizon angular velocity Ω ¼ NφðrþÞ ¼ −r−=rþ.
Notice that, while for m2 ¼ μ ¼ ∞ (14) obeys the
Bekenstein-Hawking area law, the presence of higher-
derivative terms introduce corrections to it. This is, of
course, a common feature of higher-curvature gravity.

III. CENTRAL CHARGE

As for other 3D models, we can rewrite the entropy (14)
in a suggestive form: A Cardy-type formula of the dual
CFT2 can be written in terms of the geometric temperatures
(10) and the entropy (14), namely [12]

SBH ¼ π2l
3

ðcþTþ þ c−T−Þ ð16Þ

which is obeyed for the following values of the central
charge(s)

c� ¼ 3l
2G

�
1 −

1

m2l2
∓ 1

μl

�
: ð17Þ

This, of course, agrees with the right-moving and left-
moving central charges of TMG in the limit m2 → ∞.
Now, let us convince ourselves of (17) being the cor-

rect result: We can write the operators L0 and L̄0, which
generate the SOð2Þ ×R piece of the global conformal
group at the cylindrical boundary (r ¼ ∞). These opera-
tors would correspond to the zero-modes of the Virasoro
operators Ln, L̄n that generate the whole asymptotic
symmetry algebra [13]. These are related to the conserved
charges (12)–(13) as follows

L0 þ L̄0 ¼ lQ½∂t�; L0 − L̄0 ¼ Q½∂φ�: ð18Þ

Denoting Lþ
0 ≡ L0 and L−

0 ≡ L̄0, we can write

L�
0 ¼ c�

24

ðrþ � r−Þ2
l2

: ð19Þ

Notice that these values are consistent with (17) and with
the vacuum (vac) of the theory: In fact, global AdS3 space
corresponds to (6)–(7) with r2þ ¼ −l2 and r− ¼ 0. Then,
the values of the charges (12)–(13) corresponding to the
vacuum geometry are

QðvacÞ½∂t� ¼
1

8G

�
1

m2l2
− 1

�
; QðvacÞ½∂φ� ¼

1

8Gμ
;

ð20Þ

and this implies that, for the vacuum,

L�ðvacÞ
0 ¼ −

c�
24

: ð21Þ

Moreover, notice that with (19) we can alternatively write
the Cardy formula as follows

SCFT ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
0

cþ
24

r
þ 4π

ffiffiffiffiffiffiffiffiffiffiffiffi
L−
0

c−
24

r
ð22Þ

which, again, reproduces the black hole entropy (14).
In other words, we get SBH ¼ SCFT and thus (17) seem
to be the correct values of the central charges.
Conformal and diffeomorphism anomalies in the dual

CFT2 pose restrictions on the parameters of the bulk theory
for the latter to have chances of being well defined [14]:
On the one hand, assuming the existence of a dual CFT2

with an SLð2;CÞ invariant vacuum, the values of the
central charges c� imply that the theory cannot be defined
for continuous values of 3lðm2l2 − 1Þ=ð2Gm2l2Þ. This
follows from the Zamolodchikov c-theorem in the dual
CFT2. On the other hand, as in TMG, the diffeomorphism
anomaly in the dual CFT2 is controlled by the number
cþ−c−¼−3=ðGμÞ, which has to take values 1=ð8GμÞ ∈ Z
for the theory to be modular invariant.

IV. CHIRAL CURVE

In [6], we were particularly interested in the curve of
the parameter space of EMG defined by the relation

μ ¼ m2l
1 −m2l2

; Λ ¼ −
1

l2
: ð23Þ

Hereafter, we will refer to this as the chiral curve, as the
conjecture in [6] was that EMG with couplings obeying
(23) and sufficiently strong boundary conditions turns out
to be dual to a chiral CFT2. Indeed, when the values of the
central charge (17) are evaluated on (23), we obtain

c− ¼ 0; cþ ¼ 3l
G

�
1 −

1

m2l2

�
; ð24Þ

which is a necessary condition for chirality [7]. This is
related to the fact that logarithmically decaying modes in
EMG appear at (23), and chirality demands these modes to
be decoupled. The picture might be similar to what happens
in TMG. I.e., at the point c− ¼ 0, two theories exist: while
the theory with standard boundary conditions in AdS3 [13]
results dual to a chiral CFT2, the theory defined with

MORE ON VACUA OF EXOTIC MASSIVE 3D GRAVITY PHYS. REV. D 99, 064021 (2019)

064021-3



weaker boundary conditions is presumably dual to a
logarithmic CFT2 [15].
The theory exhibits other special features at c− ¼ 0. At

this point, all BTZ solutions satisfy the extremal condition

Q½∂φ� ¼ lQ½∂t�; ð25Þ

regardless the values of M and J. This suggests a high
degeneracy of the spectrum. Also at this point, the solutions
with r− ¼ rþ (i.e., jJj ¼ lM) present vanishing entropy,
SBH ¼ 0. We will see in the next section that, in addition to
BTZ black holes, at c− ¼ 0 the theory presents a large
family of asymptotically AdS3 solutions with R × SOð3Þ
isometries, vanishing entropy, and nonvanishing gravita-
tional energy.

V. CHIRAL WAVES ON BLACK HOLES

The metric of the extremal BTZ solution takes the form

ds2M;∓lM ¼ −
ðr2 − r2þÞ2

l2r2
dt2 þ l2r2

ðr2 − r2þÞ2
dr2

þ r2

l2

�
ldφ� r2þ

r2
dt

�
2

; ð26Þ

where r2þ ¼ r2− ¼ 4l2GM. Starting from this geometry, a
new family of nonlocally AdS3 solutions to EMG can be
constructed by means of a Kerr-Schild transformation: At
the chiral point (23), the following deformation of the
extremal BTZ is also a solution

ds2 ≡ gμνdxμdxν ¼ ds2M;−lM þ Lðt; r;φÞðdtþ ldφÞ2;
ð27Þ

with

Lðt; r;φÞ ¼ AðxþÞ logðr2 − r2þÞ þ BðxþÞðr2 − r2þÞ1þm2l2
2

þ CðxþÞðr2 − r2þÞ þDðxþÞ ð28Þ

where x� ¼ t� lφ, and where A, B, C, andD are arbitrary
functions that depend only on xþ; namely, they satisfy

∂−A ¼ 0; ∂−B ¼ 0; ∂−C ¼ 0; ∂−D ¼ 0;

ð29Þ

with ∂� ¼ ∂=∂x�.
We can now analyze all the contributions appearing in

(28) and study their physical meaning: Let us start with the
A-modes, which accompany the logarithm in (28). This
logarithmically growing potential is compatible with the
AdS3 boundary conditions

gtt≃
r2

l2
þOðlogrÞ; gtφ≃OðlogrÞ; gφφ ≃ r2þOðlogrÞ;

grr ≃
l2

r2
þOð1=r4Þ; grφ≃Oð1Þ; grt≃Oð1Þ; ð30Þ

which are the boundary conditions proposed in [16] in
the context of log-gravity [15]. Periodicity of φ implies
functions A to be periodic under t → tþ 2πl. This yields
the mode expansion

AðxþÞ ¼
X∞
n¼0

ðζneinðt=lþφÞ þ ζ�ne−inðt=lþφÞÞ: ð31Þ

The periodicity in t is well understood, since l is the time
that takes for a massive or massless mode in AdS3 to go
toward the boundary and bounce back due to the gravita-
tional potential. The long range interaction represented by
the A-mode is due to the fact that this mode is actually a
mode of the massive theory that becomes massless pre-
cisely on the curve (23). In fact, it satisfies the fourth-order
massless wave equation

□
2
Ae

inðt=lþφÞ logðr2 − r2þÞ ¼ 0; ð32Þ

where n ∈ Z and where □A is the Laplacian operator
corresponding to the metric (27)–(28) with a given function
A. The fact that the A-mode is massless, in the sense of
obeying (32), does not mean that the full nonlinear solution
has vanishing gravitational energy. In fact, we will see
below that the A-mode does contribute to the gravitational
energy of the geometry.
The B-mode also satisfies a wave equation: it obeys the

massive second order equation

ð□A − κ2Þeinðt=lþφÞðr2 − r2þÞ1þm2l2
2 ¼ 0; with

κ2l2 ¼ ðm2l2 þ 3Þðm2l2 þ 1Þ: ð33Þ

However, unlike the A-mode, the B-mode does not re-
present a massive mode in AdS3 as it grows like ∼r1þm2l2

and thus violates the asymptotic (30). In other words, its
linearized version would correspond to a non-normalizable
state in AdS3. To understand the origin of the B-mode, we
can notice that in the limit m2 → 0 Eq. (23) implies μ ¼ 0,
and this is the point of the parameter space where the field
equations are satisfied by any conformally flat metric. This
is because atm2 ¼ μ ¼ 0 all the terms in the field equations
contain the Cotton tensor and its derivatives. In that limit,
the B-mode behaves at large distance like ∼r, and this is the
typical behavior of the mode of conformal gravity [17]. We
will discuss nonlinear solutions associated to this mode in
Sec. X.
While the A- and B-modes are lawful modes of the

massive theory, the C- and the D-modes correspond to
general relativity (GR) modes and they can be regarded as
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pure gauge. Therefore, we can set C ¼ D ¼ 0. When
m2l2 ¼ 1, the B- and the C-modes degenerate. The
solutions with B ¼ C ¼ 0 and generic A and D represent
asymptotically AdS3 solutions, which nonetheless are not
locally equivalent to AdS3 and are not conformally flat. In
the context of AdS=CFT correspondence, function A acts
as a source of a field in the dual CFT2, while it determines
the boundary condition for the bulk field configuration.
The particular case M ¼ J ¼ 0 of solution (27)–(28)

corresponds to the so-called AdS-waves, which are special
example of Siklos spacetimes [18,19]; see also [20,21].
Metrics (27)–(28) thus generalize the TMG wave solutions
of [18], and then can be interpreted as nonlinear gravita-
tional waves on the extremal BTZ geometry. Function A
determines the profile of the wave. Remarkably, Eq. (32) is
also obeyed if one replaces the Laplacian operator □A by
the Laplacian of the undeformed BTZ solution,□A¼0. This
is the case even when the two operators do not identically
coincide. Therefore, (27)–(28) can either be interpreted as
gravitational waves propagating in stealth mode on the
black hole background, or as nonlinear waves propagating
on their own backreacting geometries.
As explained above, the periodicity in t is easily

explained because l is the characteristic timescale in
AdS space. That is, the period of the wave is determined
by the AdS radius itself and not by the rotation period of the
black hole. What the black hole angular momentum does
determine is the growth of the radial dependence close to
the horizon. It produces a divergence in the angular and
temporal components of the metric at r ¼ rþ, and this
ultimately determines the direction of the rotation: The
wave turns out to be corotating with the black hole.
Solutiond (27)–(28) also come to generalize the log-

gravity solution presented in [22], which corresponds to the
particular case A ¼ const. The gravitational energy and
angular momentum of (27)–(28) can be computed, yielding

Q½∂t� ¼
1

4πGl

�
1þ 1

m2l2

�Z
2πl

0

AðsÞds;

Q½∂φ� ¼ −lQ½∂t�; ð34Þ

which reduces to the result of [8] in the particular
case ∂�A ¼ 0.

VI. MASSIVE WAVES IN THE MIRROR

A mirror image of the family of solutions (27)–(28) can
be constructed by means of a similar Kerr-Schild ansatz
but considering as a seed the extremal BTZ with the
opposite angular momentum. This anticlockwise version of
(27)–(28), however, does not behave in the same way as the
theory is not parity invariant. In fact, the following
deformation of theM ¼ þJ=l black hole is also a solution
of EMG when (23) holds,

ds2 ¼ ds2M;þlM þ Lðt; r;φÞðdt − ldφÞ2; ð35Þ

with

Lðt; r;φÞ ¼ Aðx−Þðr2 − r2þÞ logðr2 − r2þÞ
þ Bðx−Þðr2 − r2þÞ1−m

2l2
2 þ Cðx−Þðr2 − r2þÞ

þDðx−Þ; ð36Þ

and where the functions now satisfy

∂þA ¼ 0; ∂þB ¼ 0; ∂þC ¼ 0; ∂þD ¼ 0: ð37Þ

Again, at m2 ¼ 0 the B-mode corresponds to the
conformal mode, and at m2l2 ¼ 1 the B-mode degenerates
with the C-mode. Within the range 0 ≤ m2l2 < 1 the
B-mode blows up at infinity. In contrast, when
m2l2 > 1, the B-modes becomes compatible with the
Brown-Henneaux AdS3 boundary conditions [13].
Indeed, provided A ¼ C ¼ 0, the solution (35) obeys

gtt ≃
r2

l2
þOð1Þ; gtφ ≃Oð1Þ; gφφ ≃ r2 þOð1Þ;

grr ≃
l2

r2
þOð1=r4Þ; grφ ≃Oð1=r3Þ; grt ≃Oð1=r3Þ;

ð38Þ

and the B-mode now does represent a massive mode in
AdS3. It satisfies the wave equation

ð□A − κ2Þeinðt=l−φÞðr2 − r2þÞ1−m
2l2
2 ¼ 0; with

κ2l2 ¼ ðm2l2 − 3Þðm2l2 − 1Þ; ð39Þ

it decays rapidly enough at large distance and acts as a
source in the dual CFT2.

VII. WARPED BLACK HOLES

Now, let us discuss black holes in warped deformations
of AdS3 space (WAdS3). These solutions were found in
[23] in the context of TMG, and they were exhaustively
studied in [24]. The metric of these black holes is given by

ds2rþ;r− ¼ dt2 þ l2

ν2 þ 3

dr2

ðr − rþÞðr − r−Þ

− 2

�
νrþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q �
dtdϕ

þ r
4

�
3ðν2 − 1Þrþ ðν2 þ 3Þðrþ þ r−Þ

þ 4ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q �
dϕ2 ð40Þ

where t ∈ R, r ∈ R≥0, and 0 ≤ ϕ ≤ 2π; l is a real
parameter related to the Gaussian curvature of the
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manifold; and r� are two integration constants taken to
satisfy 0 ≥ r− ≥ rþ. rþ represents the outer horizon of the
black hole, and r− represents its inner horizon.
WAdS3 black holes (40) are locally equivalent to the

three-dimensional section of the Gödel cosmological sol-
ution to Einstein equations. This is locally equivalent to
either squashed (ν2 < 1) or stretched (ν2 > 1) deformations
of AdS3, with the parameter ν controlling such deforma-
tion. ν2 ¼ 1 corresponds to locally AdS3 (undeformed)
spaces. ν ¼ 0 corresponds to another interesting case that
we will discuss below: it is locally AdS2 × S1. In fact, space
(40) and its equivalents can be written as a Hopf fibration
over AdS2 or over its Euclidean version Hþ

2 , with the fiber
being R:ν ¼ 0 is a kind of extreme limit.
Black holes (40) are solutions to EMG field equations

provided

μ ¼ l3m4ν

3ðν4 − ν2ð1þ l2m2Þ þ l4m4=9Þ ;

ν6 − 2ν4 þ ν2 þm4l2ð1þ Λl2Þ=9 ¼ 0: ð41Þ

They have nonvanishing gravitational energy, which is
given by

Q½∂t� ¼
ðν2 þ 3Þð3ν2 þ l2m2Þ

24Gm2l3

×

�
rþ þ r− −

1

ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þr−rþ

q �
: ð42Þ

Notice that this formula generalizes the TMG formula to
which it reduces in the limit m2 → ∞.

VIII. EVANESCENT GRAVITONS IN WAdS3

EMG field equations admits further deformations of
(40). In particular, it admits solutions that describe evan-
escent gravitational waves on WAdS3 spaces. To see this,
let us consider the case r� ¼ 0, whose metric is

ds20;0 ¼ dt2 þ 2dr2

ðν2 þ 3Þr2 − 2νrdtdϕþ 3

4
r2ðν2 − 1Þdϕ2;

ð43Þ

where we are using the convention l≡ 1 for short. Field
equations (1)–(4), provided equations (41) hold, admits the
following solution

ds2 ¼ ds20;0 þ e−ωtr−
2νω
ν2þ3Aðx−Þðdx−Þ2; ð44Þ

where A is an arbitrary periodic function of x−, with

x� ¼ ϕ� 2

ðν2 þ 3Þr ; ð45Þ

and where ω is a parameter given by the polynomial
equation

ð5ν2 þ 6νωþ ω2 þ 3Þm4

− 3νðνþ ωÞð5ν2 þ 6νωþ ω2 þ 3Þm2

− 27ν2ðν2 − 1Þðν2 − 3νω − ω2 − 3Þ ¼ 0: ð46Þ
This solution generalizes one of the TMG solutions found
in [25]. In fact, notice that in the limit m2 → ∞, (46)
reduces to the TMG condition ω ¼ −3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ν2 − 3

p
found

therein. Provided ω > 0, solution (44) describes an evan-
escent gravitational wave on the massless WAdS3 black
hole geometry. As the log-gravity waves discussed in
Sec. V, waves (44) concentrate close to the horizon (in
this case, at r ¼ 0), where the metric components gtt, gφt,
and gφφ diverge (assuming ων > 0, which is necessary for
the solution to be asymptotically WAdS3). This wave
satisfies the massive equation

ð□A − κ2Þe−ωtþinx−r−
2νω
ν2þ3 ¼ 0; with κ2 ¼ ωðω − 2νÞ;

ð47Þ
n ∈ Z. □A stands here for the Laplacian corresponding to
metric (44); nevertheless, the same equation holds if one
replaces□A by□A¼0. This follows from the arbitrariness of
A, what makes the ansatz to be linear in the function of x−.
Perturbation (44) carries no gravitational energy.

IX. ADS2 × S1 VACUA

EMG generalizes TMG and, consequently, contains
conformal gravity as a particular case: The latter corre-
sponds to the limit μ→0,m2→∞. In particular, AdS2 × S1

andHþ
2 ×R spaces appear as solutions of EMG only in that

limit. Let us briefly discuss these geometries and relate
them with the ones discussed above: In fact, an ingenious
trick to work out the AdS2 × S1 case is to think of it as the
ν → 0 limit of the WAdS3 space. From (41), one observes
that when ν goes to zero μ also goes to zero, in such a
way that

μ

ν
¼ 3

l
; l2 ¼ −

1

Λ
: ð48Þ

We can think of the large m2 limit. In that case, the
left- and right-moving central charges for asymptotically
WAdS3 spaces are [26]

c− ¼ 4νl
Gðν2 þ 3Þ ; cþ ¼ ð5ν2 þ 3Þl

Gνðν2 þ 3Þ : ð49Þ

Notice that these expressions are consistent with (17) in the
AdS3 limit ν → 1: Considering μl ¼ 3 and m2 ¼ ∞, one
obtains c− ¼ l=G and cþ ¼ 2l=G, in accordance with
(17). In the AdS2 limit ν → 0, on the other hand, one gets
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c− ¼ 0; cþ ¼ 3

Gμ
≡ 24k; ð50Þ

where the Chern-Simons (CS) level k relates to the TMG
coupling constant by k=ð4πÞ ¼ 1=ð32πGμÞ, which is the
correct normalization of the gravitational CS action

ICS ¼
k
4π

Z
d3xεμνρ

�
Γβ
μα∂νΓα

ρβ þ
2

3
Γη
μαΓα

νβΓ
β
ρη

�
ð51Þ

that yields the field equation ð1=μÞCμν ¼ 0, in agreement
with the μ → 0 limit of (1). It is worth noticing that (50)
exactly reproduces the result of [27] for Hþ

2 holography.
Furthermore, one can easily verify that the nonperturbative
states discussed in [27] are actually diffeomorphic to the
ν → 0 limit of the metric (40), which have vanishing
conserved charges.

X. HAIRY BLACK HOLES IN (A)DS

The theory (1) can also be defined in the limit m2 → 0,
μ → 0, in which the Einstein tensor disappears from the
field equations. This limit, however, is subtle; it has to be
taken in the right order for the consistency equations
∇μTμ

ν ¼ 0 to hold. When the Einstein tensor is absent,
the field equations are satisfied for all conformally flat
spaces. This is because the Cotton tensor is zero if and only
if a metric is conformally equivalent to flat space, at least
locally. A very interesting case of conformally flat space is
the following [17]

ds2 ¼ −
ðr − rþÞðr − r−Þ

l2
dt2 þ l2dr2

ðr − rþÞðr − r−Þ
þ r2dφ2

ð52Þ

with t ∈ R, r ∈ R≥0, and 0 ≤ φ ≤ 2π. This space, provided
either rþ or r− is positive, represents a static black hole.
For l2 > 0, (52) is asymptotically AdS3, in the sense of
the weakened boundary conditions studied in [28]. In
particular, this implies the behavior

gtt ≃ −
r2

l2
þOðrÞ: ð53Þ

This linear term in r, together with its analogs in the angular
components of the metric, correspond to the conformal
gravity mode that, as we discussed in Sec. V, appears in the
m2 → 0 limit. Despite this weakened asymptotics, solution
(52) has finite conserved charges: Defining

M≡ −
rþr−
8Gl2

; N ¼ ðrþ þ r−Þ2
32Gl2

ð54Þ

we obtain that the mass and the angular momentum are
given by

Q½∂t� ¼ −
M þ N
m2l2

¼ −
ðrþ − r−Þ2
32Gm2l4

;

Q½∂φ� ¼ −
M þ N

μ
¼ −

ðrþ − r−Þ2
32Gμl2

; ð55Þ

respectively. These values for the charges can be obtained
from the results (12) and (13) in a simple way: One con-
siders in (52) the coordinate changes r → r − ðrþ þ r−Þ=2,
and then takes in (12)–(13) the limit m2 → 0, μ → 0.
Assuming rþ ≥ r− ≥ 0, for which two horizons exist,

the temperature of the black hole takes the form

TH ¼ rþ − r−
4πl2

; ð56Þ

which vanishes in the extremal limit rþ ¼ r−, for which the
near horizon geometry renders AdS2 × S1. This means that
the entropy of the black hole is proportional to the differ-
ence between the outer and inner horizons. More precisely,

SBH ¼ −
πðrþ − r−Þ
4Gm2l2

; ð57Þ

which follows from the first principle of the black hole
thermodynamics. The negative sign in (57) and in the mass
Q½∂t� demands to perform m → im. Remarkably, this
entropy can be obtained from (56) by using Cardy formula:
By considering the large 1=m2, 1=μ limit in (17), we
actually obtain

SBH ¼ π2l
3

ðcþ þ c−ÞTH ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
0

cþ
24

r
þ 4π

ffiffiffiffiffiffiffiffiffiffiffiffi
L−
0

c−
24

r
;

ð58Þ

where Lþ
0 þL−

0 ¼lQ½∂t�, Lþ
0 −L−

0 ¼Q½∂φ�, and cþ þ c− ¼
−3=ðGm2lÞ, cþ − c− ¼ −3=ðGμÞ. This is a case in which
the Cardy formula is shown to hold for a solution with
nonconstant curvature invariants—unlike the cases of BTZ
and WAdS3 black holes—in this sense, this case is more
general than the analysis of [29]; see also [30].
This black hole solution generalizes the static BTZ black

hole solution, which corresponds to the special case rþ ¼
−r− ≥ 0 (i.e., N ¼ 0). In (52), N is a sort of hair. This hair
is, however, of gravitational origin. One can easily verify
that the value of N explicitly appears in the scalar curvature
and it makes the black hole with N ≠ 0 to have a curvature
singularity at r ¼ 0. It is also worth mentioning that a
rotating generalization of (52) also exists [28]. More
interestingly, the solution above may also describe a static
asymptotically de Sitter (dS) black hole, which follows
from considering in (52) the change l2 → −l2. In that case,
r− gives the location of the black hole horizon, while rþ is
the radius of the cosmological horizon, which turns out to
be in thermal equilibrium with the black hole. This also

MORE ON VACUA OF EXOTIC MASSIVE 3D GRAVITY PHYS. REV. D 99, 064021 (2019)

064021-7



represents a solution to field equations (1) in the limit
m2 → 0, μ → 0.

XI. CONCLUDING REMARKS

In this paper, we have continued the study of the vacua of
the exotic massive 3D gravity theory [1] initiated in
Ref. [6]. We mainly focused our attention on asymptoti-
cally AdS3, Warped-AdS3, and AdS2 × S1 geometries. This
includes black holes and nonlinear gravitational waves. In
the case of asymptotically AdS3 geometries, we obtained
the values of the central charge of the dual CFT2 for the
Cardy formula (22) to reproduce the entropy of BTZ black
holes of EMG. The theory, however, contains a much more
rich bestiary of black holes with different asymptotics [6];
this includes warped-WAdS3 black holes, which we also
discussed, together with Lifshitz black holes. In those
cases, a similar type of holography inspired computation
is in principle possible. Of particular interest is the case of
Lifshitz black holes, for which EMG enables an arbitrary
value of dynamical exponent z. It would be interesting to
verify that a computation similar to the one in [31] can be
done in EMG; see also [32]. This would first demand to
compute the conserved charges in nonconstant curvature,
asymptotically Lifshitz spaces for such a third-way grav-
ity model.
We also discussed deformations of AdS3 and WAdS3

black holes. In the case of AdS3 space, we constructed a
family of logarithmically decaying gravitons on the
extremal BTZ black holes. These solutions are analogous

to the log-gravity solutions that TMG exhibits at the chiral
point. In the case of WAdS3 spaces, we gave explicit
examples of evanescent gravitational waves propagating on
massless black holes. We also discussed the conformal
gravity limit of the theory and its locally AdS2 × S1

solutions, recovering some results of [27] as a limit of
the WAdS3=CFT2 symmetry analysis. Finally, we showed
that, in a particular limit of the parameter space, EMG
admits asymptotically hairy ðAÞdS3 black holes with
nonvanishing conserved charges and nontrivial thermody-
namical properties. The fact that all these holographically
well-motivated geometries appear in different corners of
the space of solutions of EMG manifestly shows that this
theory is a very nice toy model to explore holography
beyond AdS. The theory, however, has peculiar features
that make its holographic application knotty: The lack of
an action in its metric formulation and the subtle problem
of how to couple matter in a consistent way are two
features that require further analysis. In relation to that, it
would be interesting to investigate further the definition of
EMG in the Chern-Simons like formulation, for which an
action in terms of the dreibein and the spin connection is
available.
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