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The study region is seismically and tectonically characterized by the angle variations in the subduction
of the Nazca plate. The results obtained from earthquakes location between 32� and 36�S latitude and
67�e71�W longitude are presented in this work. The presence of a wedge of asthenospheric materials
and the partial or total eclogitization of the subducted Nazca plate and its relation with isostatic cortex
models published was analyzed. In addition, a gravimetric profile obtained from gravity forward
modeling is presented at 33.5�S, proposing a new configuration at depths for the main tectonic com-
ponents: Nazca plate, asthenospheric wedge and South American plate. Also, a new density scheme
using recently published velocity models was obtained.
© 2018 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Nazca plate subducts below the South American plate along
the ocean trench of Chile and Peru, at a velocity of 6.7 ± 0.2 cm/year
according to GPS measurements [1]. The plate convergence direc-
tion is consistent with horizontal displacements triggered by
earthquakes in the megafault. Tong et al. [2], Vigny et al. [3] and
Delouis et al. [4] obtained displacements that range from 3.3 to 5 m
in the same direction.

Also, the region is seismically and tectonically characterized by
angle variations at which the oceanic plate subducts below the
continental plate [5e7]. North of 32.5� S, the plate subducts flat at
100 km deep for 300 km towards the east. In the south of this
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latitude the plate subducts with a normal angle of 27� at approxi-
mately 170 km deep [8,9]. The study area was divided into three
regions with different subduction angles obtained from Wadati-
Benioff curves (Fig. 1).

In particular, the seismicity of intermediate depths
(~50e~300 km deep) has its origin in different processes in sub-
ducted Nazca plate [11]. For the depths presented here, Kirby et al.
[12] and Meade and Jeanloz [13], suggest dehydration processes,
and Hacker et al. [14], using thermo-petrological models, relate
metamorphic dehydration reactions to seismicity, proposing this
phenomena as the origin of intermediate earthquakes.

Oceanic lithosphere flexure causes normal fault in the outer rise
faults and deep hydration by water infiltration into the crust fragile
sector [15]. The slab flexure creates conjugated extensional faults
for each of them. The strikes and dips of focal mechanism suggest
reactivation of outer rise faults at intermediate depths [16,17]. The
bathymetries performed on the Chilean coast [18,19] show three
different structural patterns: fault reactivation of the ocean open-
ingwith a strike angle of 145�, new faults formed by the flexure and
parallel to the trench, and faults parallel to Juan Fernandez Ridge
with strike of 60�.
ion and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an
s/by-nc-nd/4.0/).
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Fig. 1. Study area: points indicate the NEIC/USGS seismicity, in black morphology of
subducted Nazca from Mulcahy et al. [10], studied earthquakes projected horizontally
in red error ellipses here.
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In this paper, we calculate the stress tensor and make a density
model, contributing new knowledge to understand the geo-
dynamics of the subduction of the Nazca plate.

2. Tectonic environment

2.1. North sector

In the northernmost study region, the slab initially subducts
with a normal angle up to 100 km deep and then remains hori-
zontal for about 300 km to the east [7].

Kopp et al. [19]find subducted slab thicknesses of only 10 kmand
attribute buoyancy to the crust hydration and upper mantle of the
slab. Gans et al. [20], using receiver functions, find thicknesses of
13e19 km. The Green's functions at the flat slab region, rotated ac-
cording to the trajectory of the Juan Fern�andez Ridge, show a slab
ripple, suggesting a small dip to thewest around69�W.Theyalsofind
that the subducted crust is fractured by faults parallel to the trench,
which theyattributed to old structures of subducted plate or tectonic
underplating caused by the coupling between the plates in the flat
slab region. Pardo et al. [21] evaluate intermediate depth seismicity
along the subducted Juan Fern�andez Ridge and report normal fault
with the Taxes along the slab and other strike-slipmechanismswith
Taxeswithnorth-south component,which cannot be explainedonly
by slab pull forces. They proposed the reactivation of preexisting
faults in the oceanic crust near the subduction and outer rise zone
due to the Juan Fern�andez Ridge subduction influence.

The regional stress tensor from Bilbao [22] reports shows s1
vertical (azimuth 149� and inclination 80�), whereas the s3 is
almost horizontal and with orientation of NNW-SSE (azimuth 339�

and dip 9.6�). The Bilbao [22] results indicate a clear influence of
the raised sector of the subducted plate. It is important to point out
that the referred tensor was obtained with the data from a reduced
region around the flat slab.

The regional stress tensor solved by Pardo et al. [21] in the same
sector, is similar but s1 and s2 are rotated [22]. The difference may
be in that, when taking mechanisms located south of Bilbao [22],
the influence of the slab pulls in the transition zone and it is more
relevant. Additionally Salazar [23], Alvarado et al. [24] and Alvarado
et al. [25], find the sigma s1 vertical in the horizontally subducting
plate.
2.2. Central sector

This zone is located in the transition section where the Nazca
plate changes from flat slab in the north of ~33�S to normal slab in
the south of that latitude [9]. In the central sector Nacif [26],
Spagnotto [27] and Nacif et al. [9] detect a decrease in seismicity at
120 km depth. This process can be explained as a product of the
completion of the metamorphic process by dehydration and sub-
sequent eclogitization taking place from ~100 to ~170 km deep [12].
Nacif et al. [9] consider that eclogitization process could have been
the source of fluid release which originated from the magmatic
activity that contributes to the formation of pleistocene volcanoes
and now have little or no magmatic activity. This process also
influenced the densification of the oceanic plate which produces a
differential sink leading to have an angle greater than 27�.

On the other hand, in the plate, Spagnotto et al. [28] observed a
rupture that penetrates the upper lithosphere mantle. In this study,
two events are related when the second of them is entirely
developed in the mantle breaking 40 km down. The fault plane
generated by these two events has a strike and dip consistent with
the outer rise faulting and for this reason, they reactivate at 120 km
deep. In addition, the slip is consistent with the flexure and 20
stretching produced by the slab pull force.

2.3. South sector

Nazca plate subducts with a normal angle of 27� to a depth of
170 km [8,26]. In this area Burd et al. [29], using magnetotelluric
data, identified two plume structures with significant electrical
conductivity, one shallow asthenospheric towards West and
another deep towards East. The first structure approaches the
surface beneath the Caldera Payún Matrú and the Tromen volcano
with west dip toward the subducted Nazca plate. The second
structure, called DEEP (Deep Eastern Plume), approaches the sur-
face approximately 100 km to the south and steeply deepens at
400 km deep to the east but always above the subducted slab.

A similar structure to DEEP had already been identified by Burd
et al. [30], and had also been recognized by Ramos and Folguera
[31], but in that study it was only interpreted as an indicator of
current flow between mantle transition zone and surface crust.
Lupari et al. [32] found earthquakes at anomalous intermediate
depths (between 50 and 100 km deep) above the subducted Nazca
plate.

Also Rojas Vera et al. [33], through the analysis of geophysical,
geochemical and geochronological data, obtained the reconstruc-
tion of the Loncopue trough and its evolution from the Jurassic to
the late Cretaceous-Eocene. The authors found a positive relief
followed by a relaxation in two extensional stages. This scenario,
characterized by a thinning of the crustal seismic thicknesses and
relatively unusual heat flow areas, is discussed on the basis of
below three main hypotheses:

- An increase of slab subduction slope after a shallow subduction
scenery.

- A stretching of the co-seismic crust linked to large earthquake in
the interplate subduction zone.

- A slab tearing associated with asthenospheric ascent.

3. Methodology

We use data of year 2001, from CHARGE (CHile Argentina
Geophysical Experiment) recorded between November 2000 to
May 2002. Seismic events (magnitude� 3) located and reported by
U.S. Geological Survey (NEIC-Catalog) were selected. The waveform
data from Seismic Query (http://www.iris.edu/SeismiQuery/breq_
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fast.phtml) were downloaded. Between 2012 and 2014 we added
temporary experiment data from San Rafael Block (SRB) located in
the backarc region of Malargüe, Mendoza Province, Argentina
(Fig. 2).

The seismological processing was made within Seisan 9.1
[34,35] platform and the HYPOCENTER code was used (within
Seisan) to obtain relocations and coda magnitudes (Mc). Two
different one-dimensional velocity models were considered by
Nacif et al. [9] and Spagnotto [27], for the northern and southern
region respectively. To obtain focal mechanisms from P-wave first
motion polarities we applied three different programs: HASH [36],
FOCMEC [37] and FPFIT [38]. Additionally, the FaultKin 7.4.1 soft-
ware was used to obtain the regional P and T axes.

With regard to the gravimetric study, the data was provided by
the IGSV (Instituto Geofísico Sismol�ogico F. Volponi) e Argentina.
Data from different sources such as the IGN (Instituto Geogr�afico
Nacional) e Argentina, the IFIR (Instituto de Física de Rosario) e
Argentina, the IGSV, and the University of Leeds (England) was put
into a unified database, namely IGSN 1971 (International Gravity
Standardization Net 1971) [39]. The software used to perform data
processing was Geosoft's Oasis Montaj. The charts of anomalies
were calculated for the central sector of study using the interna-
tional reference ellipsoid of 1967 (Geodetic Reference System 1967
(GRS67) [39]) and applying the free air corrections, Bouguer and
topographic corrections. To perform the topographic correction it
is necessary to have two models of digital terrain elevation: local
one and regional one. These models were downloaded (http://
www.ngdc.noaa.gov). An average density in the rocks was
assumed to be 2.67 g/cm3 [40], to a distance of 167 km. A Bouguer
anomaly chart was obtained, gridded every 2.5 km with the
least square method. To make gravimetric and seismological
Fig. 2. Stations used in this work. Stations in red belong
interpretations we applied filtering techniques, such as analytical
continuation and trend surfaces (the 1st, 2nd and 6th order
polynomial surfaces approximately representing regional
anomalies).

In order to link the different anomalous sources with the
gravimetric signal, a gravimetric model was performed along the
AB profile at 33.5�S. This cross section with a length of 380 km in
EeW direction cuts different geological structures of crustal
domain.

The density model along the AB profile (Fig. 3) was calculated
with the Bouguer anomaly using the GM-SYS program developed
by Webring [41]. Gravity forward modeling denotes the computa-
tion of the gravitational field generated by some source mass
distribution.

It was based on a simple five-layer model where the following
was considered:

Upper crust (r ¼ 2.9 g/cm3)
Lower crust (r ¼ 2.9 g/cm3)
Upper mantle (r ¼ 3.3 g/cm3)
Nazca Plate (r ¼ 3.05 g/cm3)
Lower mantle (r ¼ 3.41 g/cm3)

All initial densities were established according to Nacif et al. [9]
and Tassara et al. [42]. The obtained values were quite coincident
with those globally recognized, such as Woollard [43], Introcaso,
et al. [44], Gimenez et al. [45], Martinez et al. [46], etc. This simple
model was modified to include a wedge of asthenospheric mate-
rials, lateral variation of densities in the continental crust (Chilenia
and Cuyania) [47e49], and lateral variation of densities in the
subducted Nazca plate since it sinks, dehydrates and densifies [50].
ing to CHARGE; stations in blue belonging to SRB.

http://www.iris.edu/SeismiQuery/breq_fast.phtml
http://www.ngdc.noaa.gov
http://www.ngdc.noaa.gov


Fig. 3. Geographic location of gravimetric profile (orange line). It has a length of 380 km and extends in the WeE direction. NEIC/USGS catalog earthquakes (black and white dots)
are also shown.
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The response calculated from this initial model was adjusted by
varying the geometry of the mentioned interfaces to achieve the
model that best fits the observed data.

4. Results and discussion

A profile of subsurface densities was made for 33.5�S from a
gravity forward modeling and adjusted a theoretical response with
observed data. The density model (Fig. 4) extends for 380 km and
includes lateral variation of densities in the Continental Crust (Up-
per and Lower) between the Chilenia and Cuyania terrains. There is
also the representation of the subducted Nazca Plate (Oceanic Crust
and Oceanic Mantle), the asthenospheric materials wedge, the base
of the Lithospheric Mantle and the Asthenosphere.

It is important to note that the asthenospheric wedge materials
in this study had not been taken into account in previous works for
the latitude involved neither was the consideration of a Nazca plate
densified by possible dehydration processes.

In Table 1, we show localizations, magnitude and focal mecha-
nism obtained with polarities of first arrivals and amplitude re-
lations of analyzed sixteen events.

We obtained three profiles, one in the north (32�e33�S), one in
the center (33�e34�S) and a third one in the south (34�e36�S)
(Figs. 5e7), on which the seismicity of the NEIC/USGS catalog and
the ones studied in this work were plotted.

These locations are consistent with the morphology of the plate
proposed by other authors [8,9]. We show two events in the profile
at 33.5�S (Fig. 4), one located at 198.3 km and the other at 207.6 km
deep, which indicates the existence of rigid slab at these depths.
Pesicek et al. [51], using tomography, interpreted horizontal and
vertical tearing of the slab at 38�S, but the transition from a hori-
zontal to moderately subducting slab in the northern portion of the
model is imaged as a continuous slab bend. We speculate that the
tearing was most likely facilitated by a fracture zone in the
descending plate or a continental scale terrain boundary in the
overriding plate. Nacif and Triep [52] have suggested a similar
break at least at those longitudes. This result contradicts with ours.
On the other hand, Portner et al. [53] reported a plate hole in the
northern sector. On the contrary, our gravimetric model is consis-
tent with a denser plate with low water content (Fig. 4) and we see
no evidence of broken plate. However small amounts of water
added to the slab pull could be responsible for the earthquakes
mentioned. The normal fault mechanism of 2011/12/24 earthquake
seems consistent with this interpretation.
Table 1 shows the locations, depth error, rms and the number of
stations used in each case. In Fig. 1 horizontal errors can be seen
and it is clear that these are small. In all cases, the horizontal and
vertical errors are approximately equal to those of the morphology
or less. Relocated earthquakes did not show great variations with
respect to the latitude and longitude given by NEIC/USGS, although
the same did not happen with the depth.

The fault plane of the events corresponds to a west-dipping
normal fault with strike and dip which are consistent with those
of the outer ridge faults [54]. Thus, these events could be related to
a preexisting fault originated in that environment and reactivated
at 100 km deep. The slip is consistentwith the bending produced by
the slab pull. Spagnotto et al. [28] find evidence that two earth-
quakes at 32.5�Swould be reactivations of the outer rise and be part
of a fault that penetrates the mantle.

There may also be faults associated with current stresses, which
is why other orientations also appear.

In order to analyze the plate stress state, considering the tec-
tonic behavior in each one of them, the study area was separated
into three regions: to the north, horizontal subduction, normal
subduction in the center and in themost austral zone, in addition to
normal subduction, the presence of a plume of asthenospheric
material. Then the results were compared with those obtained by
other authors.

In the northern area several authors calculated the regional
stress tensor. If we compare the principal axes of the stress tensor
obtained in this work for that region and those obtained by Bilbao
[22], Salazar [23], Pardo et al. [21] and Alvarado et al. [25], we can
observe that the position of the maximum principal stress axis (P)
is almost vertical in all the studies (in this work it has some incli-
nation towards the NE). However, theminimummain stress axis (T)
presents more noticeable variations (Fig. 7). Bilbao [22] awarded
the difference of the position of s3, compared to that obtained by
Pardo, since it also uses earthquakes in the back-arc Andean region,
(between 30� and 32� and 65� and the coast). Salazar [23] calcu-
lates the P and T axes with events distributed between 31.3� and
34� and 67.5� and the coast. Bilbao [22] explains that the s3 ob-
tained in her work matches with the plate morphology in the most
elevated horizontal section of the Nazca slab in subduction, sug-
gesting that the flexural stresses of the plate in combinationwith its
weight and buoyancy in the raised part would determine the
occurrence of seismicity.

Our result is consistent with that of Alvarado et al. [25] (Fig. 8)
and inconsistent with the average of Bilbao [22]- which was



Table 1
Localization parameters, error in depth, magnitude and focal mechanisms. The used velocity models are indicated, Spagnotto [27] velocity model in gray and Nacif [9] velocity
model in pink.

Date Hour Latitude (�) Longitude (�) Depth (km) Depth
error
(km)

RMS of time
residuals

Number
of station
used

Magnitude
(Mc)

Focal mechanisms

HASH FOCMEC FPFIT

Strike Dip Rake Strike Dip Rake Strike Dip Rake

Jan. 7, 2001 02:52:47.00 �34.506 �70.004 125.9 7.8 0.7 13 4.1 24 88 �29
Jan. 7, 2001 20:59:30.00 �34.836 �70.703 134.4 15.5 0.5 10 3.9 102 51 �139
Apr. 18, 2001 09:29:07.20 �33.411 �67.708 207.6 20.3 1.1 15 3.9 55 40 �25
June 20, 2001 10:45:28.40 �32.044 �69.699 133.1 15.7 1.2 16 4.0 94 54 �58
June 23, 2001 22:19:37.30 �32.561 �69.766 126.1 7.4 1 17 3.9 219 59 �59
Nov. 19, 2001 11:06:21.07 �33.065 �70.161 112.1 7.4 1 21 4.4 71 35 0
Dec. 4, 2001 09:09:47.20 �32.611 �39.665 135.2 13.2 1.2 22 4.1 20 81 �171
Dec. 24, 2001 10:09:00.04 �33.636 �67.857 198.3 21.1 1.3 21 4.2 101 52 51
Apr. 20, 2012 03:37:20.83 �34.370 �70.240 133.3 22.4 1.2 12 4.4 180 83 38 352 80 �17 350 88 �42
Aug. 22, 2012 16:33:06.79 �35.660 �70.050 163.3 17.1 0.7 9 2.1 18 28 �179 35 30 215 49 51 �147
June 6, 2013 17:42:16.68 �34.940 �69.500 166 4.1 0.1 6 3.5 185 69 78 162 90 80 176 69 77
Jan. 29, 2014 19:17:38.26 �35.510 �70.100 161 8.3 0.4 9 3.8 327 86 �114 309 11 62 140 83 134

Fig. 4. Discontinuities of profile for 33.5�S: Bouguer anomalies (observed and calculated). There is a difference between them towards the west of the profile due to the fact that the
Central Depression (DC), the San Ram�on fault (FSR), or the El Fierro fault (FEF) have not been taken into account in the model. Neither have smaller intermontanas depressions.
Below: Model of densities and earthquakes located in this work (in blue). The black spots are the events previously located and extracted from the NEIC/USGS catalog. References in
letters: CF e Frontal Cordillera, CP e Main Cordillera, CPM e Cerro Pampa Muerto.
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Fig. 6. NEIC/USGS catalog seismicity (black and white dots) and other earthquakes studied in this work (red dots) along a profile at 33.5�S (green line).

Fig. 5. NEIC/USGS catalog seismicity (black and white dots) and other earthquakes located in this work (red dots) along a profile at 32.2�S (green line).
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Fig. 7. NEIC/USGS catalog seismicity (black and white dots) and other earthquakes studied in this work (red dots) along a profile at 35�S (green line).

Fig. 8. Direction of the principal axes of stress tensor obtained in the northern zone of this study, compared to those obtained by other authors in the same area.
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Fig. 9. Regional axes of minimum principal stress (T). All are oriented towards the center of the study area.

L. Eckerman et al. / Geodesy and Geodynamics 9 (2018) 57e6664
obtained with a strip of earthquakes in the west of the flat slab. This
difference in earthquake selection criterions to obtain the regional
tensor is responsible for these s3 disagreements.

It was also found that the T axes of all the regions are ori-
ented towards the central part of the study zone where the
seismicity is very scarce (Fig. 9). This could indicate that in this
area the slab is denser (eclogitized) and it would also explain
the absence/scarcity of earthquakes in that sector. On the other
hand, to the south, the existence of a plume pushing in the
opposite direction to the slab pull force could counteract this
force, even allow reverse and strike mechanisms by the twisting
of the plate. It is noteworthy that the only mechanisms reported
by CMT-NEIC at these depths and latitudes are a thrust solution
in a region of typically normal earthquakes as well as the
mechanism proposed in this study (2001/04/18). It is ruled out
that these results are related to some transient phenomenon
after the earthquake Mw ¼ 8.8 February 27, 2010 of Maule
(Chile) since the formerly mentioned CMT mechanisms are
previous. The gravimetric profile at 33.5�S is consistent with the
conclusions obtained here, indicating the presence of a denser
plate (eclogitized).

5. Conclusion

The Bouguer regional anomaly obtained in this work indicates
the strong influence on gravity measurements of the Andean
root.

The gravimetric model that best fits the observed data is
consistent with a dense Nazca plate, which strengthens theories
that affirm that it is totally or partially eclogitized at the latitudes
analyzed.

The obtained results with the seismic and gravimetric tech-
niques in this work were satisfactorily complemented.
The presence of seismic events at more than 190 km deep in-
dicates that the Nazca plate continues to be present at these depths
and contradicts theories that this could be broken at 33.5�S and
longitudes around 68�W. Besides, the stress tensors suggest a
denser plate, similar to that obtained with the gravimetric model.
The locations of the events as well as their corresponding focal
mechanisms are independent of the two velocity models used
because such models do not differ for intermediate depths. Most of
the focal mechanisms analyzed in this work are consistent in strike
and dip to the outer rise faulting rotated at an angle equal to the
subduction angle, therefore could be considered as reactivations of
these.
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