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The adsorption of gases on patchwise heterogeneous bivariate surfaces is studied. These surfaces are characterized
by a collection of strong and weak adsorbing patches with a typical length scalel. Different forms and spatial
arrangements of these patches determine different topographies characterized by aneffectiVe length, leff ) σl, where
σ takes values from 1 to 4 for the different topographies considered here. Previous studies showed that the mean square
deviation between isotherms corresponding to different values ofleff scaled as a power law with exponentR, without
providing any physical interpretation of such behavior. In the present work, we introduce a different scaling function,
ø(l), which is shown to be twice the difference in free energy per site between a reference isotherm and the given
isotherm, at half coverage. With this function the scaling behavior and the value of the scaling exponentR are
determined over the whole range of interparticles interaction energy and adsorptive energy, and for different temperatures,
through Monte Carlo simulations. The results are similar to those obtained in previous studies, with a value ofR which
is half the one obtained before due to the different definition of the scaling function, but the present analysis provides
a full understanding of the scaling behavior based on the physical significance of the scaling function and the scaling
exponent.

1. Introduction
Gas-solid interactions1 are the fundamental physical entities

for the understanding of adsorption, which is the first step in a
variety of processes in surface science and its applications, such
as gas separation, catalysis, and thin films growth. For a given
gas-solid system, the gas-solid interaction is given by an
adsorptiVe energy surface,2-4 AES, i.e., the energy surfaceseen
by a particle at the distance of adsorption on the solid surface,
representing the variation along the solid surface of the gas-
solid interaction potential minimum. Given the gas particle and
the solid, the AES can be calculated following the method
described in ref 4. For the great majority of real systems the AES
is not a flat, or even a periodic, surface but a quite irregular one
resembling a mountainous landscape. Such a solid surface is
regarded as heterogeneous, and it has been shown that hetero-
geneity affects strongly many molecular processes occurring at
the gas-solid interface.5-9

In the past the adsorptive energy distribution has been
considered as the only important characteristic to be known to
describe the behavior of adsorbed particles, and much effort was
dedicated to the development of methods for its determination
from experimental adsorption data.5,10 However, it has been

shown11-16 that many gas-solid surface processes are strongly
affected, not only by the adsorptive energy distribution but also
by the way these energies are spatially distributed (energetic
topography). It is then a challenge in the field of gas-solid
interactions to envisage methods for the determination of the
energetic topography of heterogeneous substrates from adsorption
experiments (characterization problem).

By looking at the AES corresponding to solids with random
impurities or defects, such as those obtained in ref 4, it becomes
clear that the energetic topography is spatially correlated and is
far from the idealistic random site distribution, being much closer
to a patchwise structure with finite size patches of stronger and
weaker sites. It is therefore reasonable to attempt an approach
to the characterization problem by studying very simple
topographies, such as those arising in bivariate surfaces, i.e.,
surfaces composed of two kinds of sites, say weak and strong
sites with adsorptive energiesε1 andε2, respectively, arranged
in patches of sizel. Recent developments in the theory of
adsorption on heterogeneous surfaces, such as thesupersite
approach,16 and experimental advances in the tailoring of
nanostructured adsorbates,17,18encourage this kind of study. Once
the behavior of bivariate surfaces is fully understood and methods
to extractl from adsorption experiments are developed, then one* Corresponding author. E-mail: giorgio@unsl.edu.ar.
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could go over to develop the theory for multivariate surfaces,
which could probably mimic satisfactorily general heterogeneous
surfaces.

Adsorption on bivariate surfaces with square patches and strip
topographies has recently been studied through Monte Carlo
simulations for the case of particles with nearest neighbor
interaction energy.19-22 It was found that both adsorption
isotherms and differential heats of adsorption follow scaling laws
involving the patch sizel with a universal exponent and that this
characteristic length defining the topography could, in principle,
be obtained from the analysis of experimental results. These
scaling laws, however, appeared in a quite mysterious way without
the basis of a physical interpretation. The scope of the present
work is to provide such a basis for the observed scaling behavior.
In section 2 we present the adsorption model and briefly review
the most important simulation results obtained in previous works.
These results are discussed from a new point of view in section
3, where a physical interpretation of the scaling behavior is
constructed. General conclusions are given in section 4.

2. Model and Simulation Results

We assume that the substrate is represented by a two-
dimensional square lattice of dimensionL × L adsorption sites,

with a total ofM sites, with periodic boundary conditions. Each
adsorption site can be either a “weak” site, with adsorptive energy
ε1, or a “strong” site, with adsorptive energyε2 (ε1 < ε2). Weak
and strong sites form patches of different geometry:

(a) Square patches of sizel (l ) 1, 2, 3, ...), which are spatially
distributed either in a deterministic alternate way (chessboard
topography), Figure 1a, or in a non-overlapping random way
(random topography), Figure 1b.

(b) Strips of transversal sizel (l ) 1, 2, 3, ...), which are
spatially distributed either in an ordered alternate way, Figure
1c, or in a non-overlapping random way (random topography),
Figure 1d.

To easily identify a given topography, we introduce the notation
lC for a chessboard topography of sizel and, similarly,lR for
random square patches,lOS, for ordered strips andlRSfor random
strips. Then, in Figure 1a-d, the topographies are 4C, 4R, 4OS,
and 4RS, respectively. We also use the notation “bp” to refer to
the extreme case of big patches topography (l f ∝), i.e., a surface
with one-half of weak sites and one-half of strong sites.

The substrate is exposed to an ideal gas phase at temperature
T and chemical potentialµ. Particles can be adsorbed on the
substrate with the restriction of at most one adsorbed particle per
site and we consider a nearest neighbor (NN) interaction energy
w among them (we use the conventionw > 0 for repulsive and
w < 0 for attractive interactions). Then the adsorbed phase is
characterized by the Hamiltonian
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Figure 1. Schematic representation of heterogeneous bivariate surfaces with chessboard (a), random square patches (b), ordered strips (c),
and random strips (d) topography. The patch size in the figure isl ) 4.

H ) -M[(ε1θ1 + ε2θ2) - µθ] + w ∑
(i,j)

ninj (1)
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whereθ ) θ1 + θ2 is the total surface coverage (summing the
coverages on weak and strong sites),ni is the site occupation
number ()0 if empty or)1 if occupied), and the sum runs over
all pairs of NN sites (i,j). Without any loss of generality, we can
consider that all energies are measured in units ofkBT (kB being
the Boltzmann constant) and thatε1 ) 0 andε2 ) ε1 + ∆E, in
such a way that the adsorptive energy is characterized by the
single adimensional parameter∆E.

The adsorption process is simulated through a grand canonical
ensemble Monte Carlo (GCEMC) method, following the
procedure described in detail in previous works,19-22 and mean
values are obtained for the surface coverageθ and the internal
energyU as

whereN is the number of adsorbed particles and the brackets
denote averages over statistically uncorrelated configurations.
From these, the differential heat of adsorptionqd as a function
of the coverage is calculated as23

The typical behavior of adsorption isotherm and differential
heat of adsorption is shown in Figures 2 and 3 for square patches
and strips topographies.

Figure 2 shows the behavior of adsorption isotherms, (a-b),
andqd(θ), (c-d), for different topographies forw ) 3, ∆Ε )

(23) Bakaev, V.; Steele, W. A.Langmuir1992, 8, 148.

Figure 2. Adsorption isotherms (a-b) and differential heats of adsorption (c-d) for different square patch topographies corresponding to
Regime I (in this case∆E ) 12, w ) 3). Symbols in (c) and (d) are as in (a) and (b), respectively.

Figure 3. Adsorption isotherms (a-b) and differential heats of adsorption (c-d) for different square patch topographies corresponding to
Regime II (in this case∆E ) 12, w ) 4). Symbols in (c) and (d) are as in (a) and (b), respectively.

θ ) 〈N〉/M; U ) 〈H〉 - µ〈N〉 (2)

qd(θ) ) [∂U
∂θ ]T

(3)
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12, andkBT ) 1. It can be seen that all curves are contained
between two limit ones: the one corresponding to 1C and the one
corresponding to bp. For chessboard topographies, four different
adsorption processes can be visualized (they can be seen as
separated by shoulders in the adsorption isotherm and by steps
in qd): (i) strong site patches are filled first up toθ ) 0.25,
forming ac(2 × 2) structure on them (in this regionqd ) 12);
(ii) as long as 4w < ∆Ε, the filling of strong site patches is
completed up toθ ) 0.5 (in this regionqd decreases continuously
from 12, zero occupied NN, to 0, four occupied NN); processes
(iii) and (iv), corresponding to the regions 0.5< θ < 0.75 and
0.75< θ < 1, respectively, are equivalent to processes (i) and
(ii) for weak site patches. Random topographies are seen to behave
in a similar way with a particularly interesting feature: the
behavior of random topography of sizel seems to approach that
for chessboard topography with an effective sizeleff > l. As can
be easily understood, as long as the conditionw/∆Ε e 1/4 is
satisfied, the adsorption process is similar to the one described
above; i.e., strong site patches are filled first and weak site patches
are filled after. We call this feature Regime I.

Figure 3 shows the behavior of adsorption isotherms, (a-b),
andqd(θ), (c-d), for different topographies forw ) 4, ∆Ε )
12, andkBT ) 1. In this case, wherew/∆Ε g 1/3, the adsorption
process follows a different regime, which we call Regime II:
(i) the strong site patches are filled until thec(2 × 2) ordered
phase is formed on them; (ii) the weak site patches are filled until
the c(2 × 2) ordered phase is formed on them; (iii) the filling
of the strong site patches is completed; (iv) the filling of the
weak site patches is completed.

These two regimes have been visually observed in simulation
snapshots (not shown here). It should be noticed that Regimes
I and II are disconnected. In between, i.e.,1/4 < w/∆E < 1/3, the
system behaves in a mixed transition regime changing continu-
ously from one to another.

Qualitatively similar results for adsorption isotherms and
differential heat of adsorption (not shown) were obtained at other
temperatures corresponding to values ofkBT ranging from 2
to 10.

3. Discussion

In previous works19-22 the quantity

(ref 24) inspired in a kind of “mean square deviation” was used
to test the scaling behavior of adsorption, whereθR is a reference
isotherm. It was found that this quantity scaled with the patch
size l as a power law with a scaling exponentR. However, no
physical explanation was found for this behavior. In the present
analysis we use instead the quantity

which, as we shall show below, is related to the difference in
free energy in the processes of filling the two involved surfaces
and therefore leads to a physical interpretation of the scaling
behavior.

By taking as a reference isotherm the one corresponding to
the bp topography, we find that, for a given adsorption regime,
the functionsø collapse on a single curve for any topography
when represented in terms of aneffectiVe length scale(repre-

senting an effective patch size),leff, given by

whereσ ) 1 for chessboard topography,σ ) 2 for random
square patches and for ordered strips, andσ ) 4 for random
strips. These values ofσ have been calculated analytically in ref
21. Figure 4 shows how simulation data for the functionø cast
over a single curve for Regime I when the effective length scale
is used. In general, it is found thatø obeys a power law inleff

of the form

This scaling behavior is found to hold over the whole range of
energy, with different values of the exponentR given by

with â ) 0.42( 0.04. These results are similar to those obtained
in previous works19-22 with the difference that the value of the
exponentR obtained previously is the double of the value given
in eq 7 due to the difference in definition of the functionø.

It is to be noted that, in the case of attractive interactions,w
< 0, only Regime I is possible and the value of exponentR is
given byR1 over the whole energy range.

As the temperature is changed, the scaling exponent does not
change for Regime I, while for Regime II its value approaches
that corresponding to Regime I, as temperature increases, in the
form

Simulations have shown that this variation with temperature is
also approximately valid in the intermediate range between
Regimes I and II; therefore, eqs 7 and 8 give the general behavior
of R over the whole energy range and for all temperatures. This
behavior is shown in Figure 5.

Just as in previous works, it is found that the scaling exponent
R presentsuniVersality properties, in the sense that its behavior

(24) Unfortunately, a typing error was included in the definition of the scaling
functionø in refs 19-22, where the square of the integrated quantity was omitted.

øa ) ∫-∞

+∞ |θ(µ) - θR(µ)|2 dµ

ø ) ∫-∞

+∞ |θ(µ) - θR(µ)| dµ (4)

Figure 4. Power-law behavior of the functionø(l), showing the
collapse of data for different topographies on a single curve for each
adsorption regime when the effective length scaleleff is used. The
cases shown in the figure correspond to∆E ) 24,w ) 4 (Regime
I) and ∆E ) 12, w ) 4 (Regime II).

leff ) σl (5)

ln ø ) const+ R ln leff (6)

R ) R1 ) -0.976( 0.053 forw/∆E e 1/4

R ) R2 + [12(1/3- w/∆E)]â(R1 - R2)

for 1/4 e w/∆E e 1/3 (7)

R ) R2 ) -1.525( 0.065 forw/∆E g 1/3

R2(kBT/∆E) ) -1 - 0.806 exp(-5.2174kBT/∆E) (8)
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and value are identical for different degrees of heterogeneity,
∆E, different topographies, different reference curves (even a
theoretical reference curve like, for example, the mean field
solution corresponding to bp) and for a definition ofø involving
the functionqd(θ) instead of the functionθ(µ). It is therefore
important to base the understanding of the observed behavior on
an appropriate physical interpretation.

With this purpose, we start from the basic thermodynamic
relationship25

whereF is the Helmholtz free energy. Introducing the free energy
per site,f ) F/ M, the last equation can be rewritten in terms
of intensive variables in the form:µ ) (∂f/∂θ)T. Accordingly,
the area to the left of each adsorption isotherm corresponding
to a topography characterized byl in Figures 2 and 3 up to a
determined coverageθ is given by

Therefore, this area represents the variation in free energy per
site in filling a surface, with topography characterized by the
patch sizel, up to a coverageθ.

Following this line of reasoning, and making use of the
symmetry properties of the adsorption isotherm, which are a
consequence of the vacancy-particle symmetry, the functionø,
representing the area between a given isotherm and the bp
reference isotherm, turns out to be

From eqs 10 and 11 we obtain

Therefore, the functionø defined in eq 4 is simply twice the
difference in free energy per site between the reference isotherm
(in this case that corresponding to bp) and the given isotherm,
at half coverage. This result also explains why it depends on the
topography parameterl: because the free energy at half coverage
depends strongly on the structure of the adsorbate, which changes
with l.

Calculation of the way in which this free energy changes with
l leads to the physical significance and determination of the

scaling exponentR. Without any loss of generality, we choose
for this calculation the case of chessboard topography in Regime
I. As already described in our discussion of the characteristics
of Regime I, at half coverage strong site patches are completely
filled while weak site patches are empty. Under these conditions,
and considering thatf ) u - Ts, whereu ands are the internal
energy and configurational entropy per site, respectively, we
obtain

sinces(1/2,bp) ) s(1/2,l) ) 0. By substituting eqs 13 and 14 in
eq 12, we finally obtain

which represents a power law with exponentR ) -1, as
determined through simulations for Regime I. The same kind of
analysis can be straightforwardly carried out for other topog-
raphies and for Regime II, leading to the values of the scaling
exponent already determined by simulations. Of course, the value
of R cannot be determined by these simple arguments in the
intermediate regime (because of the problem of the determination
of the configurational entropy for system of interacting particles),
but the physical meaning of the scaling behavior is just the same.

The above analysis allows us also to understand the universality
properties of the scaling exponent we described above. In
particular, given that the functionø is related to the free energy
per site at half coverage, and that the entropy per site is null at
half coverage for both regimes (in fact for Regime II we have
a unique orderedc(2 × 2) structure on both strong and weak
patches), from the definition of the differential heat of adsorption,
eq 3, we can easily see that the observed scaling behavior should
also be valid for the function

and this is verified through simulations.
In previous works it was shown how the scaling behavior

could be used in the characterization problem, i.e., in obtaining
information about the energetic topography from adsorption
experiments of gases on heterogeneous surfaces. The present
analysis provides fundamental physical insight into the scaling
behavior and much more confidence for the proposed method
based on the understanding of how the scaling works.

4. Conclusions

The scaling properties of adsorption of gases on heterogeneous
surfaces characterized by a bivariate adsorption energy (strong
and weak sites) and different kinds of patchwise topographies
have been reviewed by using a different scaling function,ø, than
that used in previous studies.

The present scaling function is shown to be directly related
to the free energy per site of the adsorbed layer at half coverage.
Taking advantage of the fact that the configurational entropy at
half coverage is null, it is shown how the functionø scales as
a power law with the effective lengthleff characterizing the
energetic topography of the surface and how the scaling exponent
R can be obtained. The analysis provides a physical understanding
of the scaling behavior.

(25) Hill, T. L. An Introduction to Statistical Thermodynamics; Addison
Wesley: New York, 1960.

Figure 5. Behavior of the scaling exponentR over the whole range
of energy.

µ ) (∂F
∂N)T,M

(9)

A(θ,l) ) ∫0

θ
µ dθ ) f(θ,l) - f(0,l) (10)

ø(l) ) 2[A(1/2,bp)- A(1/2,l)] (11)

ø(l) ) 2[f(1/2,bp)- f(1/2,l)] (12)

f(1/2,bp)) u(1/2,bp)) (ε2 + 2w)/2 (13)

f(1/2,l) ) u(1/2,bp)) ε2/2 + w(l - 1)/l (14)

ø(l) ) 2w/l (15)

øq ) ∫0

1 |qd(θ) - qd
R(θ)| dθ (16)
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The scaling behavior and the value of the scaling exponent
R are determined over the whole range of interparticles interaction
energy and adsorptive energy, and for different temperatures,
through Monte Carlo simulations. The results are similar to those
obtained in previous studies, with a value ofR which is half the
one obtained before due to the different definition of the scaling
function, but the present analysis provides a full understanding

of the scaling behavior based on the physical significance of the
scaling function and the scaling exponent.
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