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Abstract 20 

Brazilian codling Urophycis brasiliensis is one of the main commercial coastal fish species from the 21 

Southwestern Atlantic Ocean. Regardless of its economic relevance, its stock structure remains 22 

largely unknown. In this study, we used the otolith shape and the core/outer edge multi-elemental 23 

fingerprints (Li:Ca, Mg:Ca, Mn:Ca, Fe:Ca, Zn:Ca, Rb:Ca, Sr:Ca, and Ba:Ca ratios) to evaluate the 24 

spatial segregation of young (nursery areas) and adult (stocks) stages of fish from the coast of 25 

northern Argentina, Uruguay, and southern Brazil. Otolith edge chemistry showed that several 26 

elemental ratios were significantly different between catching areas. Permutational multivariate 27 

analysis of variance (PERMANOVA) (p<0.05) and quadratic discriminant analysis (QDA), with 28 

jackknifed classification of 80.0% and 68.2% for otolith core and edge, respectively, were effective 29 

in discriminating between sampling sites considering young and adult life stages. PERMANOVA 30 

analysis of otolith shape revealed multivariate significant differences only between Argentina and 31 

Brazil (p=0.0001) individuals, whereas no differences were found between fish from Uruguay and 32 

Argentina (p>0.05). QDA classification rates were relatively low for Uruguay (48.0%) and values of 33 

66.7 and 70.0% were determined for Brazil and Argentina, respectively. Our results not only show 34 

the presence of at least two fish stocks (Argentina and Brazil), with a third potential stock in 35 

Uruguay, but also suggest a strong spatial segregation during ontogeny. 36 

 37 

Keywords: Brazilian codling; nursery; Southwestern Atlantic; population; sagittae otolith38 
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 39 

1. Introduction 40 

World fisheries have shown a consistent decline during the last three decades, where the biologically 41 

sustainable extraction of marine fisheries resources has been reduced from 90% in the 1970s to 70% 42 

in 2015 (FAO, 2018). Marine coasts have a high ecological relevance because they are suitable areas 43 

for spawning, feeding, and  the development of numerous fish species (Blaber and Blaber, 1980; 44 

Shulman, 1985). On the other hand, coastal systems are vulnerable to environmental impacts and 45 

overexploitation due to increasing fishing pressure (Worm et al., 2006). This is especially critical in 46 

the coast of the Southwestern Atlantic Ocean (SAO), which are important commercial and artisanal 47 

fishery areas and where some relevant aspects for fisheries management such as spawning areas, 48 

presence of different stocks, connectivity, and stock structure are still unknown for several fish 49 

species. Brazilian codling Urophycis brasiliensis (Kaup, 1858) is one of the main commercial coastal 50 

species from SAO, registering industrial and artisanal landings that exceed 2,000 tons per year for 51 

Argentina, Uruguay, and Brazil (CEPERG, 2012; DINARA, 2016; MINAGRO, 2018; UNIVALI, 52 

2014). This species inhabits relatively shallow waters from 23°S (Río de Janeiro State, Brazil) to 53 

45°S (Patagonia, Argentina) (Bovcon et al., 2011; Goldstein, 1986) and can be considered as a cross-54 

border resource. It follows then, that it is critical to determine the stock structure and distribution in 55 

order to develop comprehensive management plans (Cadrin et al., 2013; Ricker, 1981). 56 

Several methods have been used to determine fish stocks, such as capture-recapture methods, 57 

population parameters (growth rate, reproductive characteristics), abundance and richness of 58 

parasites, genetics, otolith and scale shape analyses, fish morphometry, and microchemistry of 59 

otoliths and fin spines (Avigliano, et al., 2019; Cadrin et al., 2013; Niklitschek et al., 2010).  60 

Otoliths are acellular and metabolically inert calcified structures present in the inner ear of teleostean 61 

fishes (Campana, 1999; Panfili et al., 2002). Trace elements dissolved in the water are incorporated 62 

and retained in the otolith structure as the fish grows (Avigliano et al., 2019; Campana, 1999; Kerr 63 

and Campana, 2014). Because the trace elements are acquired during ontogeny and are not resorbed 64 
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after deposition (Campana, 1999; Elsdon et al., 2008) the chemistry of the otolith core reflects the 65 

environmental conditions during the early stage of life, whereas the outer edge represents the most 66 

recent period of life (fishing area). Different techniques have been used for measuring the 67 

concentration of trace elements in otolith zones, i.e., core and edge (Avigliano and Volpedo, 2016). 68 

Currently, Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is 69 

considered the most powerful method because it provides a high precision, spatially resolved 70 

analysis of specific domains within the otolith, and which represent different ontogenetic stages. 71 

Hence, the chemistry of the core and outer edge are commonly used to discriminate nursery areas 72 

and fish stocks, respectively (Avigliano et al., 2017b; Avigliano et al., 2018b; Campana, 2014; Reis-73 

Santos et al., 2015).  74 

On the other hand, the otolith contour (shape), which is the result of both phenotypic and genetic 75 

factors, has also been used to delimit stocks (Reichenbacher and Reichard, 2014; Vignon and Morat, 76 

2010). In recent years, the combination of  chemistry and morphometry of otoliths has improved our 77 

understanding of stock structures for several fish groups from SAO (Avigliano et al., 2015, 2016, 78 

2017; Avigliano et al., 2019; Soeth et al., 2019; Volpedo and Cirelli, 2006) and around the world 79 

(Ferguson et al., 2011; Soeth et al., 2019; Tanner et al., 2015).  80 

The present study tests the hypothesis of the presence of different stocks and nursery areas of 81 

Urophysis brasiliensis in Southwestern Atlantic Ocean (Argentina, Uruguay and Brazil). In this 82 

regard, the stock structure of U. brasiliensis was studied by using multi-elemental fingerprints 83 

(Li:Ca, Mg:Ca, Mn:Ca, Fe:Ca, Zn:Ca, Rb:Ca, Sr:Ca, and Ba:Ca ratios) in otoliths (core and edge) 84 

from young and adult individuals. Moreover, Fourier elliptical analysis of otoliths was also used to 85 

assess the spatial segregation of adult stages. 86 

 87 

2. Materials and Methods 88 

2.1. Study area and sampling  89 
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The study area is located in the Southwestern Atlantic Ocean between 25°S and 38°S, covering both 90 

tropical and temperate regions. This coastal marine area presents a decreasing water temperature 91 

gradient from north (~18-30°C) to south (~7-24°C) (Avigliano et al., 2016; Guerrero et al., 2010; 92 

Lana et al., 2001). 93 

A total of 175 fish were collected between July 2016 and July 2017 from catches by commercial 94 

trawlers operating at three specific locations: Villa Gesell (Argentina, AR), Piriápolis (Maldonado, 95 

Uruguay, UR) and (Itajaí, Paraná, Brazil, BR) (Figure 1). Fish were measured (total length = TL, 96 

cm), weighted (g) (Table 1), and dissected to extract both sagittal otoliths.  97 

In order to evaluate fish stocks it is highly recommended to use individuals of similar age because 98 

both otolith chemistry and morphometry can change during ontogeny (Avigliano et al., 2017b; Kerr 99 

and Campana, 2014). Nonetheless, several authors have reported the presence of fake rings, not only 100 

in U. brasilensis (Acuña, 2000; Andrade et al., 2004; Cavole et al., 2018), but also in U. tenuis (Clay 101 

and Clay, 1991), U. chuss (Dery, 1988), and U. cirrata (Martins and Haimovici, 2000). Therefore, 102 

despite several attempts, a valid method to determine the age of U. brasiliensis (and of other species 103 

from the same genus) remains elusive (Cavole et al., 2018). Herein, only fish with a total length 104 

between 30 and 54 cm (TL, Table 1) were selected to reduce the potential effect of size/age on the 105 

studied variables (Avigliano et al., 2018b; Ferguson et al., 2011). This TL range is within the 106 

commercial size of U. brasiliensis.  107 

2.2. Otolith chemistry 108 

Eighty-five left sagittal otoliths were randomly sub-sampled, weighted, and cleaned by using 3% 109 

hydrogen peroxide and 2% HNO3 (Merck KGaA, Garmstadt, Germany) (Avigliano et al., 2017a). 110 

Otoliths were later rinsed three times with ultrapure water (resistivity of 18.2 MOhm ·cm) and dried 111 

at room temperature. Otolith core-sections (thickness = 1000 µm) were obtained by embedding the 112 

sample in epoxy resin. Samples were later sectioned transversely using a Buehler Isomet low-speed 113 

saw (Hong Kong, China). Otolith sections were polished using a 9 µm-grit sandpaper and later 114 

cleaned using an ultrasonic cleaner with ultrapure water for 5 minutes.  115 
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Elemental concentrations were determined in otolith cores and edges by using Laser Ablation 116 

Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) following the procedure described in 117 

(Avigliano et al., 2019). The analytical isotopes were 7Li, 34Mg, 55Mn, 57Fe, 66Zn, 85Rb, 88Sr, and 118 

138Ba. The first 300-500 µm from the core and the last 350-600 µm from the outer edge represent 119 

approximately the core radius and the last two complete annuli, respectively (Figure 3). The laser 120 

ablation system used is a Teledyne Analyte G2 ArF excimer (193 nm) coupled to an iCapQ 121 

ThermoFisher ICP-MS. The otolith was pre-ablated using a spot size of 85 µm at 10-20 µm/s in 122 

order to avoid possible surface contamination. Measurements were carried out using a circular 123 

aperture of 65 µm, an ablation rate of 5 µm/s, a repetition rate of 10 Hz, and an energy density of 5 124 

J/cm2.  125 

The ICP-MS was operated at a power of 1500 W using helium as carrier gas with a flow of 6,000 126 

mL/min. Prior to each analytical session, the LA-ICP-MS was tuned and monitored by analyzing the 127 

NIST SRM 610 reference standard (238U+/232Th+ ratio between 0.95 – 1.05), oxide production 128 

(ThO+/Th+ < 0.5%), and double-charged production (22M+/44Ca++ < 0.01%). The USGS MACS-3 and 129 

the NIST SRM 612 reference materials were used as a primary and secondary standard, respectively 130 

(Jochum et al., 2011; NIST, 2012; Pearce et al., 1997). The USGS MACS-3 is a synthetic calcium 131 

carbonate pellet and was used as a primary standard because it has a similar composition as fish  132 

otoliths, thereby reducing matrix effects (Avigliano, et al., 2019; Avigliano et al., 2018a). Data 133 

reduction was performed using Iolite (Paton et al., 2011) and the X_Trace_Elements_IS DRS 134 

(Longerich et al., 1996). The concentration (mg/kg) of the different elements was determined by 135 

using 43Ca (38.8 wt.%) as the internal standard (Yoshinaga et al., 2000). 136 

Replicate analyses of the NIST SRM 612 reference material show the following recoveries: 92% for 137 

Li, 85% for Mg, 96% for Mn, 87% for Zn, 100% for Sr and 97% for Ba. The Fe and Rb 138 

concentration of NIST SRM 612 determined in this study was within reported values (Jochum et al., 139 

2011). Copper was not considered because at least 30% of the values were below detection limit 140 

(0.07-0.18 mg/kg). Estimates of precision were determined by the relative standard deviation 141 
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percentage (RSD, %) of quadruplicate samples. RSD values below 7% were obtained (Table S1), 142 

with the data indicating good precision (Currie, 1999). The detection limits (DL) were estimated 143 

from the standard deviation of the background intensity (Campana et al., 1997). The DL (in mg/kg) 144 

for the analyzed elements in otoliths were: Ba: 0.006, Fe: 7, Li: 0.05, Mg: 0.04, Mn: 0.2, Rb: 0.02, 145 

Sr: 0.04, and Zn: 0.4. Elemental concentrations were reported as molar ratios relative to Ca 146 

(mmol/mol). 147 

2.3. Otolith shape analysis 148 

The internal side (Tuset et al., 2008) of each right sagittal otolith (N=175, Table 1) was 149 

photographed using a Nikon Coolpix L110 (15x optical zoom wide) digital camera at the same focal 150 

length and all images were taken with a black background. Then, the fields of the images were 151 

digitally cleaned and a scale was added (1 x 1 cm). Finally, the images were saved as BMP files. 152 

Elliptic Fourier analysis (EFA) was used for assessing differences in the otolith contour between 153 

sampling sites (Avigliano et al., 2018c; Crampton, 1995). This analysis allows the shape of an otolith 154 

to be represented as a closed curve in a two dimensional outline. This outline is a combination of 155 

sine and cosine functions harmonically related (descriptors), where each one is composed of 4 156 

Fourier coefficients (FC) (Crampton, 1995).  157 

Otolith images were digitized using the Shape 1.3 software to perform the EFA (Iwata and Hukai, 158 

2002). The numerical contour of each otolith was extracted by using a chain coding algorithm 159 

(Crampton, 1995). According to Fourier power spectrum (Crampton, 1995), the first 28 harmonics 160 

achieved 99.99% of the cumulated power (Figure 2) and hence, the otolith outline is represented by 161 

112 FCs. The first harmonic was used to normalized the FCs, transforming these into invariant with 162 

respect to size and rotation (Ferson et al., 1985). This method transforms the first three FCs into 163 

constants, resulting in a total of 109 variables instead of 112.  164 

2.4. Statistical analysis 165 
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Elemental ratios and FCs were tested for normality and homogeneity of variance using the Shapiro-166 

Wilk and Levene’s tests.  167 

Only the Li:Ca ratio of the otolith edge fulfilled the assumptions of normality and homogeneity 168 

(Shapiro-Wilk and Levene’s tests, p<0.05). After log(x+1) transformation, only the otolith edge 169 

Mg:Ca and core Sr:Ca ratio met the assumptions (Shapiro-Wilk and Levene’s tests, p>0.05). For this 170 

reason, univariate differences between sampling sites were assessed by using parametric tests for 171 

Li:Ca and Log(Mg:Ca+1) for edge and Log(Sr:Ca+1) for core, whereas non-parametric statistics 172 

were used for all other ratios. 173 

The total length (TL) and otolith weight effect on the element:Ca ratios were assessed by using 174 

Spearman or Pearson correlations, according to the fulfillment of the normality and homogeneity 175 

assumptions. No significant correlation were found between TL or otolith weight and elemental 176 

ratios for both core and edge (p>0.05). ANOVA, followed by the Bonferroni test, was used to 177 

evaluate univariate differences between sites for Li:Ca and Log(Mg:Ca+1) (edge) and Log(Sr:Ca+1) 178 

(core). Kruskal-Wallis was used to test univariate comparisons between sampling sites for all other 179 

elemental ratios. Permutational multivariate analysis of variance (PERMANOVA), based on 180 

Mahalanobis distance (Anderson, 2006) with 9999 permutations, was employed to test multi-181 

elemental differences in otolith core and edge fingerprints between catch areas. Because the 182 

assumption of homogeneity of variance-covariance matrices was not met (Box test, p<0.001), 183 

quadratic discriminant analysis (QDA) was used instead of linear model to test the ability of the 184 

ratios to classify fish into specific sampling sites using core and edge fingerprints, separately.  185 

FCs were normalized to TL (mean 47.1 cm) for discarding allometric effects taking into account the 186 

allometric relationship (b) (Lleonart et al., 2000). PERMANOVA was employed to test differences 187 

in the otolith shape between catch areas, whereas QDA (Box test, p<0.001) was used to test the 188 

ability of data to classify fish into sampling sites.  189 

Prior to QDA analysis, multicollinearity was assessed by obtaining the tolerance (Hair et al., 2014). 190 

The classification prior probabilities were calculated based on group numbers and sample sizes 191 



9 

 

(White and Ruttenberg, 2007). Discriminant results were verified using the leave-one-out cross-192 

validation (Jackknifed classification matrix). 193 

Statistical analyses were performed by using Systat 13 and SPSS 19 softwares. 194 

 195 

3. Results 196 

3.1. Otolith chemistry 197 

The otolith core Fe:Ca ratio was significantly lower in Brazilian waters than in Argentinian and 198 

Uruguayan waters.(p <0.05). Otolith core Zn:Ca and Ba:Ca ratios were significantly higher in 199 

Argentina than in Brazil and Uruguay (p < 0.05). Rb:Ca ratio was high in Argentina, intermediate in 200 

Uruguay, and low in Brazil (p < 0.05), while Sr:Ca was higher in Argentina that in Brazil (p < 0.05). 201 

No significant differences were found between sites for otolith core Log (Mg:Ca+1), Mn:Ca and 202 

Li:Ca ratios (p > 0.05) (Table 2).   203 

Regarding the otolith edge chemistry, the Li:Ca ratio was significantly higher in Argentina than in 204 

Uruguay and Brazil (p < 0.05), whereas the Mn:Ca ratio was high in Brazil, intermediate in Uruguay, 205 

and low for Argentina (p < 0.05). The otolith edge Fe:Ca ratio was significantly lower in Brazil than 206 

in Argentina and Uruguay (p < 0.05). The Rb:Ca, Sr:Ca and Ba:Ca ratios were significantly higher in 207 

Argentina than in Uruguay and Brazil (p < 0.05). No significant differences were found between 208 

sites for the otolith edge Mg:Ca and Zn:Ca ratios (p > 0.05, Table 2). Multivariate analyses were 209 

effective in discriminating between the three sampling sites for both edge and core. Specifically, 210 

PERMANOVA analysis shows significant multivariate differences between the three sampling sites 211 

for both edge and core (4.4<,F2:82<6.1, p < 0.05).  212 

Mean cross-classification rates of QDAs were high/moderate for both edge (mean = 80.0%) and core 213 

(mean = 68.2%) (Table 3 and Figure 5). For core, the percentage of well classified individuals was 214 

lower for Uruguay (48.0%) than for Argentina and Brazil (60.0 and 93.3%, respectively). Based on 215 

the QDA coefficients, the order of the discriminatory power of the variables was: Rb:Ca (-0.59), 216 
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Fe:Ca (-0.55), Sr:Ca (0.49), Ba:Ca (-0.47), Mn:Ca (0.29), Zn:Ca (-0.048), Mg:Ca (-0.037) and Li:Ca 217 

(-0.003). For edge, the percentage of correctly classified individuals ranged from 68.0 to 86.7% 218 

(Table 3 and Figure 5). For otolith edge, the QDA coefficient order was: Li:Ca (0.64), Mn:Ca (-219 

0.62), Ba:Ca (0.60), Rb:Ca (0.20), Fe:Ca (0.17), Mg:Ca (-0.16),  Sr:Ca (-0.084) and Zn:Ca (-0.082). 220 

The prior probabilities were 0.29 for Uruguay, 0.35 for Argentina and Brazil.  221 

3.2. Otolith shape analysis 222 

Multivariate analyses were effective to discriminate sites using FCs (Table 3). PERMANOVA 223 

revealed multivariate significant differences between Argentina-Brazil and Uruguay-Brazil (p < 224 

0.05), but no differences were found between Uruguay and Argentina (p > 0.05). QDA classification 225 

rates were relatively low to moderate (mean = 61.5%), ranging from 48.0 to 70.0% (Table 3 and 226 

Figure 5).  227 

4. Discussion 228 

The results obtained from otolith edge microchemistry and shape analysis suggest the presence of at 229 

least two fish stocks of U. brasiliensis in the SAO. Otolith microchemistry and shape analysis are 230 

effective and widely used tools for the discrimination of fish stocks and nursery areas (Avigliano et 231 

al., 2018b; Avigliano et al., 2017b; Callicó Fortunato et al., 2017; Soeth et al., 2019). In this study, 232 

the otolith edge chemical signature was an effective approach to discriminate Brazilian codling 233 

stocks in three study sites.  234 

In addition, core analysis revealed a marked segregation during the early stage of life for Argentina 235 

and Brazil, suggesting the existence of at least two nursery areas. For Uruguay, the correctly 236 

classified individual rate using core microchemistry was relatively low (48%), although significant 237 

multivariate differences were observed (PERMANOVA, p<0.05). Moreover, this jackknifed 238 

classification rate was nonetheless higher (0.48) than the prior probability (0.29), suggesting a non-239 

negligible segregation behavior during the early stage. This relatively high misclassification rate 240 

could be due to limitations in the discriminant power of the model used or to the presence of 241 
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connectivity between stocks. Considering both approaches simultaneously (core and edge 242 

chemistry), the results suggest a high segregation through life between the three studied sites. 243 

Factors affecting the incorporation of trace elements into the otolith calcium carbonate matrix are 244 

element-species-specific and can be related to environmental factors such as salinity and water 245 

composition (Bouchard et al., 2015; Brown and Severin, 2009; Elsdon, and Gillanders, 2003; Martin 246 

et al., 2004). Furthermore, in several marine species, temperature, physiological, and genetic factors 247 

can also affect the incorporation rate of specific elements (Brown and Severin, 2009; Limburg et al., 248 

2015; Martin and Wuenschel, 2006). For example, because the salinity of marine environments is 249 

relatively homogeneous, the otolith Sr:Ca and Ba:Ca ratios can be relatively constant in several 250 

marine fishes (Brown and Severin, 2009). In these cases, Sr:Ca and Ba:Ca can be strongly influenced 251 

by genetic factors and may not be a good habitat indicator (Brown and Severin, 2009).  252 

On the other hand, in several euryhaline species the otolith Sr:Ca ratio is positively correlated with 253 

the water Sr:Ca and salinity, whereas the otolith Ba:Ca ratio may be negatively related to salinity 254 

(Avigliano et al., 2018a; Tabouret et al., 2010). Thus, these ratios can be useful habitat indicators in 255 

environments with salinity gradients (Avigliano et al., 2018a; Daros et al., 2016; Tabouret et al., 256 

2010). Acuña Plavan and Sellanes (2007) and Acuña Plavan and Viana (2000) have reported that U. 257 

brasiliensis can inhabit estuarine waters (it is found in salinities higher than 18), and migrates among 258 

coastal areas and the open sea, according to reproductive purposes, salinity and temperature changes. 259 

Our results show that both the Sr:Ca and Ba:Ca ratios tended to be higher in the core than in the edge 260 

(Figure 4), therefore, the typical antagonistic relationship reported in euryhaline fish was not 261 

observed. Based on our data, we cannot recommend the use of the Sr:Ca and Ba:Ca ratios as markers 262 

of displacement among environments with different salinities. Nevertheless, additional studies are 263 

needed to confirm the usefulness of these elements as salinity indicators. 264 

The combination of otolith shape and chemistry has been widely used to discriminate stocks because 265 

it allows to obtain more robust information on the stock structure (Avigliano et al., 2014; Callicó 266 
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Fortunato et al., 2017; Soeth et al., 2019). In this study, the EFA allowed us to discriminate the 267 

samples caught at the border of Brazil and Argentina (Table 3). However, the shape analysis did not 268 

allowed us to discriminate the Uruguayan population from the other two areas (Table 3 and Figure 269 

5), which could be due to a connectivity between stocks or a weakness of the method to separate 270 

certain groups. Brazilian codling otolith are very irregular (highly scalloped edges, Figure 2), which 271 

could affect the discrimination power of EFA. Environmental factors such as depth, salinity, water 272 

composition, and temperature − as well as genetics−can be responsible for inter-stock differences in 273 

the otolith shape (Avigliano et al., 2017b; Campana and Casselman, 1993; Cañás et al., 2012; Sea et 274 

al., 2008; Tuset et al., 2003). Vignon and Morat (2010) have indicated that both genetic and 275 

environmental factors play a significant role in determining the otolith shape of the snapper Lutjanus 276 

kasmira. In that species, environment and nuclear and mitochondrial DNA have a synergistic 277 

influences that control the otolith shape (Vignon and Morat, 2010). Nevertheless, in some cases 278 

where there are no intraspecific genetic differences, environmental factors (i.e., temperature, salinity, 279 

and feeding) are the main parameters that control the otolith shape variations (Vignon and Morat, 280 

2010). In addition, a strong correlation between the otolith morphometric and genetic components 281 

have been reported in several species such as killifish (Reichenbacher and Reichard, 2014). 282 

The study area has a decreasing thermal gradient from north to south with different climatic and 283 

oceanographic features, depths, and several tropical and temperate estuaries (Avigliano et al., 2016). 284 

These factors could imprint a distinctive shape and chemistry in the otoliths, which could explain 285 

some multivariate differences found between the U. brasiliensis stocks. This is supported by several 286 

studies which have reported different stocks of species such as Genidens barbus (Avigliano, et al., 287 

2019; Avigliano et al., 2015b, 2017b), Percophis brasiliensis (Avigliano et al., 2015a), 288 

Micropogonias furnieri and Cynoscion guatucupa (Volpedo and Cirelli, 2006) from the same study 289 

area by using otolith microchemistry. In addition, Spalding et al. (2007) divided the SAO into three 290 

main marine ecoregions (Southeastern Brazil, Rio Grande and Uruguay–Buenos Aires Shelf, Figure 291 

1) based on oceanographic and faunal characteristics. The U. brasiliensis stocks from Brazil and 292 
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Argentina found in our work seem to reflect the Atlantic biogeographic regions described by 293 

Spalding et al. (2007), which is in agreement with the stock delimitations of other species such as P. 294 

brasiliensis (Braicovich and Timi, 2008) and G. barbus (Avigliano, et al., 2019).  295 

On the other hand, the collection areas from Uruguay and Argentina are within the same ecoregion 296 

(Figure 1), which could also explain the relative low percentages of classification found for Uruguay 297 

(shape and microchemistry). Again, this could be due to: 1) high connectivity, 2) relatively 298 

homogeneous environment, 3) discriminant power of the variables used, or 4) a combination of these 299 

factors. The environmental homogeneity is an unlikely factor because the sampling sites from 300 

Argentina and Uruguay have a different salinity, temperature, and depth (Guerrero et al., 2010). 301 

Regardless, it is clear that the relationship between the otolith chemical composition and the 302 

environment must be further tested. 303 

The delimitation of stocks found in this work is consistent with those reported by Pereira et al. 304 

(2014) that suggested the presence of 3 stocks in the SAO based on the analysis of parasite 305 

assemblages. Unlike our study, Pereira et al. (2014) collected samples from the three different 306 

ecoregions (greater areas and more marked environmental differences), which could contribute to a 307 

better discrimination of the stocks.  308 

Our results not only indicate the presence of different stocks, as previously reported by Pereira et al. 309 

(2014), but also suggest a strong spatial segregation during ontogeny. Additional studies should 310 

incorporate samples from the Rio Grande ecoregion, which we infer could correspond to the 311 

Uruguayan stock. Moreover, the incorporation of other methods such as genetics and otolith stable 312 

isotopes could contribute to better evaluate the connectivity between these three areas and define 313 

more appropriate stock management policies. 314 

 315 
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Table 1: Summary of fish descriptive statistics (mean and range) for each sampling site. N, sample 575 

size; TL, total length (cm); W, weight (g); SD, standard deviation. 576 

 577 

 N TL ± SD W ± SD 

  Otolith chemistry 

Argentina 30 46.0 ± 3.4 (37.0-52.0) 904 ± 221 (445-1365) 

Uruguay 25 46.7 ± 6.9 (31.5-54.0) 1025 ± 459 (232-1658) 

Brazil 30 48.7 ± 4.9 (30.2-54.0) 1004 ± 304 (193-1500) 

  Fourier descriptors 

Argentina 86 44.6 ± 4.1 (32.0-52.0) 844 ± 212 (315-1365) 

Uruguay 28 44.6 ± 9.0 (26.0-54.0) 931 ± 512 (142-1658) 

Brazil 61 51.4 ± 5.5 (29.2-54) 1139 ± 333 (179-1630) 

 578 

579 
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Table 2: Statistics and p-values of the ANOVA (F, Fisher) and Kruskal–Wallis (H) tests used to 580 

evaluate univariate differences between sites. df=degrees of freedom. 581 

Core chemistry (df=82) Edge chemistry (df=82) 
Element:Ca ratio Statistic p Statistic p 
Li:Ca H = 2.12 0.3 F = 17.5 0.0001 
Mg:Ca H = 2.39 0.3 F= 2.54 0.08 
Mn:Ca H = 0.02 0.9 H = 34.9 0.0001 
Fe:Ca H = 19.9 0.0001 H = 23.9 0.0001 
Zn:Ca H = 17.5 0.0002 H = 2.25 0.3 
Rb:Ca H = 22.6 0.0001 H = 19.5 0.0001 
Sr:Ca  F = 5.59 0.005 H = 21.4 0.0001 
Ba:Ca H = 22.2 0.0001 H = 22.3 0.0001 
 582 

Table 3: Cross-classification matrix of the discriminant analysis. The numbers represent the 583 

classification percentage. N: sample size. Percentage of correctly reclassified individuals were 584 

indicates in bold numbers. 585 

 N Argentina Uruguay Brazil  

  Otolith core chemistry 
Argentina 30 60.0 20.0 20.0 
Uruguay 25 28.0 48.0 24.0 

Brazil  30 3.3 3.3 93.3 
Mean    68.2 

  Otolith edge chemistry 
Argentina 30 83.3 6.7 10.0 
Uruguay 25 12.0 68.0 20.0 

Brazil  30 6.7 6.7 86.7 
Mean    80.0 

  Fourier descriptors 

Argentina 86 70.0 16.7 13.3 
Uruguay 28 16.0 48.0 36.0 

Brazil  61 10.0 23.3 66.7 
Mean    61.5 

586 
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Table S1: Mean concentration and standard deviation (SD) obtained for the NIST SRM 612 587 

(analyzed as unknown) in each analytical session. Rb is not validated for NIST (Relative standard 588 

deviation obtained <3.8%). 589 

Replicates for NIST 
SRM 612 

Concentration (mg/kg) Li Mg Ca Mn Fe Cu Zn Sr Ba 

A Mean 36 56 84000 36 101 35 32 76 37 

  SD 1 2 2446 1 15 2 2 3 1 

B Mean 36 55 82436 35 91 34 35 76 37 

 SD 1 2 2162 1 12 2 4 2 1 

C Mean 36 56 83848 36 101 35 32 76 37 

  SD 1 2 2357 1 15 2 2 3 1 

D Mean 38 60 84848 38 91 37 33 77 37 

 SD 1 2 2801 1 12 2 2 2 1 

E Mean 36 56 85062 36 102 34 32 78 36 

  SD 2 2 2542 1 12 2 2 3 1 

F Mean 37 59 87156 37 101 34 35 79 38 

 SD 1 2 2799 1 13 2 2 2 1 

G Mean 36 56 85151 36 87 33 35 73 37 

  SD 1 2 2583 1 12 2 2 2 1 

H Mean 38 59 86934 38 94 36 38 79 40 

 SD 1 2 2691 1 13 1 3 2 1 

I Mean 38 59 84857 37 94 35 34 76 39 

  SD 1 3 3448 2 12 2 2 3 2 

J Mean 37 57 86283 37 95 35 33 76 38 

 SD 1 2 2998 1 14 2 2 3 5 

K Mean 36 55 86716 35 86 32 35 75 36 

  SD 1 2 2579 1 10 2 2 2 1 

L Mean 35 54 85602 35 91 32 34 75 36 

 SD 1 2 2392 1 12 2 2 2 1 

M Mean 35 55 83713 35 99 33 36 76 37 

  SD 1 2 2116 1 13 2 2 2 1 
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N Mean 37 61 84716 38 102 37 38 78 40 

 SD 1 2 2611 2 13 2 2 2 2 

O Mean 39 62 85053 39 100 38 37 81 40 

  SD 1 2 2579 1 9 2 2 3 1 

P Mean 35 53 83776 34 95 32 33 74 36 

 SD 1 2 2239 1 11 2 3 2 1 

Q Mean 38 57 86369 36 109 34 36 76 38 

  SD 2 3 3926 1 13 2 2 3 2 

R Mean 39 62 85053 39 100 38 37 81 40 

 SD 1 2 2579 1 9 2 2 3 1 

  Average of all the NIST 612 
analysed 

37 57 85089 36 96 35 34 77 37 

 SD 1 3 1306 1 6 2 2 2 1 

 Relative difference (%) eith 
respect to Jochum et al. (2011) 

8 16 1 4 In the 
range 

   9 14 1 4 

 590 

591 
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Figure 1: Study area map. Red areas show the sampling sites of Urophysis brasiliensis. 1, Brazil; 2, 592 

Uruguay; and 3, Argentina. Dashed lines delimit the ecoregions according to Spalding et al. (2007): 593 

a, Southeastern Brazil; b, Rio Grande and c, Uruguay–Buenos Aires Shelf. 594 

 595 

Figure 2: Otolith of Urophycis brasiliensis from each sampling site. A: Right sagittal otolith. D: 596 

dorsal, V: ventral, A: anterior and P: posterior. B: Brazilian codling otolith shape outlines 597 

reconstruction for successive cumulative contribution of the first 28 harmonics of the elliptical 598 

Fourier analysis (Fourier power spectrum = 99.9999%). Dotted line: original otolith outline; solid 599 

line: the cumulative contribution of harmonics. 600 

Figure 3: A: Otolith section of Urophycis brasiliensis from Argentinian coast showing the core and 601 

edge laser ablation area. The white arrows indicate the direction of ablation. D: dorsal, V: ventral, I: 602 

internal face, E: external face. B: element:Ca results (logarithmic scale for better visualization) of the 603 

otolith edge.  604 

Figure 4: Box plot showing the distribution of the elemental ratios (mmol/mol) for otolith edge and 605 

core of Urophycis brasiliensis from different sampling sites, including: median (midline); mean 606 

(dot); 25th and 75th percentiles for Mn:Ca; Fe:Ca; Zn:Ca; Rb:Ca and Ba:Ca ratios or standard error 607 

for Li:Ca, Mg:Ca and Sr:Ca ratios (box); and the range (bars). Different letters show significant 608 

difference between sampling sites (p < 0.05, Table 3).  609 

Figure 5: Quadratic discriminant analysis of Urophycis brasiliensis otolith. AR, Argentina; UR, 610 

Uruguay; BR, Brazil. 611 













Spatial segregation in young and adult stages of Urophycis brasiliensis was studied. 

Otolith microchemisty and shape are potential tools for stock identification. 

Results suggest the presence of at least 2 fish stocks and nursery areas. 

High percentages of classification suggest low connectivity between populations. 

The populations should be managed as separate groups. 
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