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Abstract: We analyze the infrared behavior of the two and four-point functions for the massless
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in the study of the Schwinger-Dyson equations on the sphere (Euclidean de Sitter space), using

the fact that the infrared behavior in Lorentzian spacetime is determined by the pole structure of

the Euclidean correlation functions. We compute the two-point function up to the NTLO in 1/N ,

and show that in the infrared it behaves as the superposition of two massive free propagators with

effective masses of the same order, but not equal to, the dynamical mass mdyn. We compare our

results with those obtained using other approaches, and find that they are equivalent but retrieved

in a considerably simpler way. We also discuss the infrared behavior of the equal-times four-point

functions.
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1 Introduction

The analysis of the infrared (IR) behavior of correlation functions for interacting fields in de Sitter

(dS) spacetime is of high interest in the context of semiclassical and quantum gravity. It has been

shown that the loop expansion breaks down at large dS-invariant distances for light fields, due

to seculary growing corrections. It is particularly compelling for massless fields, where the free

two-point function shows a non-dS invariant behavior, and does not vanish for largely separated

points.

Several non-perturbative techniques have been developed to cure this problem: the stochastic

approach [1], Hartree approximation [2], 1/N expansion [3], renormalization group equation [4],

exact treatment of the zero-mode in Euclidean space [5–7], including partial resummations of the

non-zero modes [8], etc. For a recent review on the IR behavior of quantum fields in inflationary

cosmology see Ref.[9].

In this paper, we will be concerned with the analysis of the problem in the context of the

O(N) model, in the large N limit. It is well known that, to leading order, the propagators of the

interacting fields are given by free massive propagators, with a non-perturbative dynamical mass

m2
dyn =

√

λ/(2Vd), where λ is the coupling constant and Vd the volume of the d-sphere. As a free

massive propagator decays exponentially in the IR, the non-perturbative result restores the usual

dS-invariant behavior of a massive two-point function. However, there are still secular contributions

in each individual diagram that need to be resummed in a consistent way 1.

Our main goal here is to compute the NTLO 1/N corrections to the correlation functions.

Although this problem has been studied before [8, 11], we will provide an alternative, and technically

simpler approach that may be used to generalize the results to compute NNTLO corrections. The

main idea is the following: As shown in [12] (see also [13]) the correlators of an interacting massive

theory, computed using in-in perturbation theory in the expanding cosmological patch of dS space,

and for which the free propagators are taken to be those of the Bunch-Davies vacuum, coincide with

those obtained by analytic continuation from Euclidean dS; i.e., with the correlators in the fully

interacting theory on the sphere. Since at leading order in 1/N , the two-point correlation functions

of the theory correspond to massive propagators with the self-consistent dynamical mass, the next

1See for instance [10] for a discussion of different types of secular effects.
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to leading order corrections in 1/N are computed using these massive two-point functions in the

Feynman diagrams. We can therefore apply the previous results obtained for massive theories. In

this approach, dS invariance is maintained, and therefore one can go from the sphere to Lorentzian

dS spacetime by analytic continuation of the isometry invariant. The propagators on the sphere

admit an expansion in spherical harmonics. When continued back to dS, the IR2 behavior is

determined by the presence of poles in the complex L-plane (L being the angular momentum)

[14, 15]. Therefore, to compute the NTLO, we will solve the Schwinger-Dyson equation (SDE) on

the sphere, using as input the above mentioned relation between poles and IR behavior. Then we

will rotate back the propagators to dS to find the NTLO behavior.

2 SDE on the sphere

For the O(N) model, with Euclidean action

S =

∫

ddx
√
g

[

1

2
φa

(

−�+m2
dS

)

φa +
λ

8N
(φaφa)

2

]

, (2.1)

the SDE in Euclidean signature reads [11]

(

−�+m2
dS

)

G(x, x′) +

∫

z

Σ(x, z)G(z, x′) = δ(x, x′), (2.2)

where G(x, x′) is the full propagator of the theory. Here, all the O(N)-index structure has already

been simplified assuming Gab = δabG (i.e. symmetric phase), and boils down to the specific factors

of N found in the coming expressions. The self-energy at NTLO in 1/N is given by

Σ(x, x′) =
λ(N + 2)

2N
[G]δ(x, x′) +

λ

N
G(x, x′)I(x, x′). (2.3)

In this expression, I(x, x′) takes care of resumming all the diagrams that contribute at NTLO

in 1/N . Some such diagrams are shown in Fig. 1. Indeed, each time an extra bubble is added

there is a factor N from the trace over the loop, while there is also a 1/N factor coming from the

vertex, giving an overall contribution of the same order regardless the number of bubbles in the

chain. Therefore, we say that I(x, x′) corresponds to a resummed bubble-chain, which satisfies the

following self-consistent equation

I(x, x′) = Π(x, x′) +

∫

z

Π(x, z)I(z, x′), (2.4)

where Π(x, x′) is the single bubble,

Π(x, x′) = −λ

2
G(x, x′)2. (2.5)

+ + . . . + . . .

n

Figure 1. Diagrams contributing to I(x, x′) at the same order in 1/N .

2With IR we mean the leading behaviour, after analytical continuation, at large values of the isometry invariant.
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The analytical continuation of dS spacetime to Euclidean signature has the metric of a d-sphere

of radius H−1

ds2 = H−2
[

dθ2 + sin(θ)2dΩ2
]

, (2.6)

with θ = Hτ . Exploiting its symmetry and compactness, any function of two points F (x, x′) can

be expanded in the d-dimensional spherical harmonics,

F (x, x′) = Vd

∑

~L

FL Y~L(x)Y
∗
~L
(x′), (2.7)

such that the FL only depend on L ≡ |~L|. The Vd factor is conventional. Transforming the previous

equations swaps the convolutions for simple products (and viceversa). The “momentum”-space

SDE, now algebraic, reads:

[

L(L+ d− 1) +m2
dS

]

GL + Vd ΣLGL =
1

Vd
, (2.8)

where

ΣL =
λ(N + 2)

2NVd
[G] +

λ

N
Σ̄L, (2.9)

IL = ΠL + Vd ΠLIL, (2.10)

ΠL = −λ

2
ρL. (2.11)

Here we have defined Σ̄(x, x′) ≡ G(x, x′)I(x, x′) and ρ(x, x′) ≡ G(x, x′)2. These equations are

algebraic and easily solved once all objects are known. The tricky part is computing the coefficients

of the spherical harmonic expansions of ΣL and ρL.

Notice that the first term of the self-energy is local and thus can be absorbed in the mass,

M2 = m2
dS +

λ(N + 2)

2N
[G]

= m2
dS +m4

0

(

1 +
2

N

)

Vd[G], (2.12)

where in the second line we are expressing the coupling λ in terms of the quantity m2
0 =

√

λ/2Vd,

in anticipation to the LO result. All further instances of the coupling will be expressed in this

manner. Therefore the equations read

[

χL +M2
]

GL +
2m4

0V
2
d

N
Σ̄LGL =

1

Vd
, (2.13)

where it is explicit that the bubble-chain contributions (contained in Σ̄) are of NTLO in 1/N and we

also defined the shorthand χL ≡ H2L(L+ d− 1). Since Σ̄L depends on GL, this is a self-consistent

equation for GL. However, since we are looking for the NTLO corrections, we need only to know

the part of Σ̄L that is LO in 1/N , and therefore for its computation we can use the LO part of GL

as well, which is well known to be a free propagator with a dynamical mass mdyn (which has yet

to be determined), i.e. GL ≃ ∆
(mdyn)
L .

3 Solving the SDE in the IR

3.1 Poles and IR behaviour

A free propagator of mass m in dS has the following asymptotic behaviour in the IR,

∆(m)(x, x′) =
r−m2/(d−1)H2

Vdm2

[

1 +
m2

2r(d− 1)H2
+ . . .

]

, (3.1)
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where r(x, x′) is the dS invariant distance, which in Lorentzian signature it is free to grow bound-

lessly as x and x′ are separated. The corresponding Euclidean counterpart on the sphere in

“momentum”-space has the following representation

∆L =
1

Vd (χL +m2)
. (3.2)

The two can be shown to be related by analytical continuation, even for arbitrary distances, through

their exact expressions (see for example Ref. [16]). However, for general functions we must rely

on the connection between the leading IR behavior of any given two-point function F (x, x′) in

dS, and the pole structure in the region Re(L) ≤ 0 of the momentum-space transform FL of the

corresponding Euclidean function. Indeed, as shown in Refs. [14, 15], this behavior is r−|Re(L̄)|

with L̄ the position of the pole which lies closer to L = 0. The particular example of the free

propagator above is illuminating: ∆L has poles at L = −z± = − d−1
2 ± ν, with ν =

√

(d−1)2

4 − m2

H2 .

For m2 ≪ H2, these are

z+ ≃ m2

(d− 1)H2
≪ 1, (3.3)

z− ≃ d− 1− m2

(d− 1)H2
∼ O(1). (3.4)

The IR behaviour is then dominated by the residue at L = −z+, as shown by Eq.(3.1) (note that for

massless fields there is a pole at L = 0, that leads to a non-decaying behavior at large separations

that goes as log(r)).

We will use this property to study the IR behaviour in dS from the analytical continuation of a

two-point function F (x, x′) on the sphere, finding the poles of the corresponding FL that lie in the

region −1 ≪ Re(L) ≤ 0 in the complex L-plane. As long as there is no pole at L = 0, we expect a

decay at large separations of the points x and x′. Our goal is therefore to study the pole structure

of GL in the aforementioned region of the angular momentum complex plane.

3.2 An approximation for the self-energy

We will now estimate both ρL and Σ̄L in the IR. We remind that the coefficients ρL are those of the

square of the propagator. Consider the product of two free propagators in dS with masses m1 and

m2, in the same pair of spacetime points x and x′. The IR asymptotic behaviour of this product is

simply

∆(m1)(x, x′)∆(m2)(x, x′) =
r−(m2

1+m2
2)/(d−1)H2

V 2
d m

2
1m

2
2

[

1 +
(m2

1 +m2
2)

2r(d− 1)H2
+ . . .

]

≃ (m2
1 +m2

2)

Vdm2
1m

2
2

∆(
√

m2
1+m2

2)(x, x′), (3.5)

where in the second line we have conveniently expressed it in terms of a single propagator with a

squared-mass equal to the sum of the individual squared-masses, with an appropriate coefficient.

This translates easily to a corresponding representation on the sphere,

[

∆(m1)∆(m2)
]

L
=

(m2
1 +m2

2)

V 2
d m

2
1m

2
2

1

(χL +m2
1 +m2

2)
. (3.6)

What we are saying here is that the fact that two dS expressions are similar in the IR (i.e. first and

second lines of Eq. (3.5)) is equivalent to their Euclidean counterparts having similar pole structures

in L in the region −1 ≪ Re(L) ≤ 0. This is the sense in which we do an IR approximation of an

Euclidean expression that we intend to analytically continue to dS. Recalling that the propagators
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in the SDE are the exact propagators GL, which at LO in 1/N are just free propagators with a

dynamical mass mdyn, allows us to use this result to obtain

ρL ≃ 2

Vdm2
dyn

∆
(
√
2mdyn)

L . (3.7)

This in turn allows us to find the resummed bubble-chain by simply algebraically solving Eq. (2.10),

giving

IL =
ΠL

1− VdΠL
≃ − 2m4

0

m2
dyn

∆
(
√
2mdyn)

L
[

1 +
2Vdm

4
0

m2
dyn

∆
(
√
2mdyn)

L

] = − 2m4
0

m2
dyn

∆
(
√
2m̄dyn)

L , (3.8)

where we have defined the shorthand m̄2
dyn = m2

dyn+
m4

0

m2
dyn

. This result can be analytically continued

to dS by just exploiting the fact it looks like a free massive propagator,

I(x, x′) ≃ − 2m4
0

m2
dyn

∆(
√
2m̄dyn)(x, x′), (3.9)

which is already an interesting result.

Moving on with the SDE, in order to estimate Σ̄(LO)(x, x′) ≃ ∆(mdyn)(x, x′)I(x, x′) in the IR

we now perform again a step in dS by exploiting the fact that its expression is given by the product

of two free massive propagators,

Σ̄(LO)(x, x′) ≃ − 2m4
0

m2
dyn

∆(mdyn)(x, x′)∆(
√
2m̄dyn)(x, x′)

≃ −
m4

0(m
2
dyn + 2m̄2

dyn)

Vdm4
dynm̄

2
dyn

∆(
√

m2
dyn

+2m̄2
dyn

)(x, x′), (3.10)

which then can easily be taken back to the sphere,

Σ̄
(LO)
L ≃ −

m4
0(m

2
dyn + 2m̄2

dyn)

Vdm4
dynm̄

2
dyn

∆
(
√

m2
dyn

+2m̄2
dyn

)

L ≃ − 5

2V 2
d

1

(χL + 5m2
0)
. (3.11)

This is the main ingredient needed for solving the SDE on the sphere. Note that, since Σ̄L is

multiplied by 1/N in Eq.(2.13) as discussed before, in the last step of the above equation we made

the replacements m2
dyn ≃ m̄2

dyn/2 ≃ m2
0. Note that, when analytically continued, the self-energy

and the resummed bubble-chain decay as free propagators with squared masses 5m2
0 and 4m2

0

respectively.

3.3 The propagator up to NTLO in 1/N

With these ingredients we can finally solve the SDE for GL at NTLO in 1/N . From Eqs. (2.13)

and (3.11) we obtain

GL =
1

Vd

[

χL +M2 − 5m4
0

N
1

(χL+5m2
0)

] =
χL + 5m2

0

Vd

[

(χL +M2)(χL + 5m2
0)−

5m4
0

N

] , (3.12)

where we used the explicit expression for ∆L. We can rewrite this expression using a partial fraction

decomposition

GL =
c+

Vd(χL +m2
+)

+
c−

Vd(χL +m2
−)

, (3.13)

with a proper choice of coefficients c+ and c−, and masses m2
+ and m2

−, which must satisfy

c+ + c− = 1, (3.14a)

c+m
2
− + c−m

2
+ = 5m2

0. (3.14b)
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Here the masses are the roots of the denominator in Eq.(3.12) with their signs reversed.

From Eq.(3.13) we already see that the corrected propagator can be approximated by a linear

combination of two free propagators, with masses m±. To determine these masses, as well as the

coefficients c±, M2 must be (self-consistently) computed. We note that

M2 = m2
dS +m4

0

(

1 +
2

N

)

Vd(G0 + [Ĝ]) , (3.15)

where [Ĝ] contains all contributions with L 6= 0, and it is a divergent quantity. The usual mass

renormalization leads to a finite expression

M2 = m2
dS |ren +m4

0

(

1 +
2

N

)

Vd(G0 + [Ĝ]ren) . (3.16)

In what follows we will work in the massless case m2
dS |ren = 0. Moreover, notice that as long as

m2
dyn ≪ H2, which is our working assumption, we can also neglect [Ĝ]ren ∼ H2 with respect to

G0 = 1/Vdm
2
dyn ≫ H2. Since all the masses in the problem (when m2

dS|ren = 0) end up being

proportional to m2
0 ∼

√
λH2, this statement can be made parametrically accurate by demanding

λ ≪ 1.

Let us focus on the L = 0 component of the SDE (3.12), which is a self-consistent equation for

G0 (or for the dynamical mass m2
dyn). We have

G0 ≡ 1

Vdm2
dyn

=
1

Vd

1
[

m4
0(1 +

2
N )VdG0 − m2

0

N

] , (3.17)

whose solution up to NTLO in 1/N is

m2
dyn = m2

0

(

1 +
1

2N

)

, (3.18)

a well known result.

Knowing the value of m2
dyn, we can determine M2. As already mentioned, the masses m2

±
are minus the roots of the second degree χL-polynomial in the denominator of Eq. (3.12). The

coefficients c± can then be found from Eqs. (3.14). Expanding in 1/N up to NTLO, after simple

algebra we arrive at the following results

c+ = 1− 5

16N
, (3.19a)

c− =
5

16N
, (3.19b)

m2
+ = m2

0

(

1 +
1

4N

)

, (3.19c)

m2
− = 5m2

0

(

1 +
1

4N

)

. (3.19d)

Going back to dS we obtain the final result for the two-point correlator at this order, that can be

written as the sum of two free, massive propagators,

G(x, x′) = c+ ∆(m+)(x, x′) + c− ∆(m−)(x, x′). (3.20)

In the massless case the coefficients and masses are given by Eqs. (3.19). This coincides with a

previous result obtained in Ref.[11] using a low-momentum expansion in dS.

All the way through this calculation we have neglected terms that decay faster than the leading

ones in the IR, essentially by appealing to the known behaviour for the free propagator ∆(x, x′).

– 6 –



When looking at the result for the full propagator G(x, x′) we have obtained at NTLO in 1/N ,

one would be tempted to drop the term involving the mass m− in the IR limit in the same vein,

as it would decay faster that the one with m+. Notice however that the size of the “mass” that

controls the decay of the terms we have dropped in ∆(x, x′) and subsequent expressions is given by

H , while both m+ and m− are of order λ1/4H . In other words, the ratio between m+ and m− is

fixed independently of λ and therefore both masses are parametrically smaller than H .

The importance of keeping the term with m− becomes evident when computing m2
dyn by eval-

uating Eq. (3.13) at L = 0. Both terms are needed already at the LO in
√
λ to be able to reproduce

Eq. (3.18), while clearly any term with the form of a free propagator with a squared mass of order

H2 would only give higher order corrections. This same situation arises when going to higher orders

in 1/N . Indeed, one of the contributions to the self-energy Σ at NNTLO will be given by the already

included diagrams evaluated using G(NTLO) instead of G(LO), where mantaining both terms with

m+ and m− will be necessary. Of course, there will also be contributions coming from new kinds

of diagrams.

In conclusion, the SDE on the sphere can be solved at NTLO in 1/N by properly approximating

the self-energy in the IR. The IR limit corresponds to the structure of the momentum coefficients

GL in the complex L-plane.

4 The four-point correlation functions

Here we apply some of the results obtained so far in this paper to analyze the four-point correlation

functions in the IR. In dS spacetime, the four-point correlation functions can be written in terms

of the four-point vertex functions, Γ
(4)
abcd({x′

i}), as

G
(4)
abcd({xi}) =

∫

{x′

i
}
G(x1, x

′
1)G(x2, x

′
2)G(x3, x

′
3)G(x4, x

′
4)Γ

(4)
abcd({x′

i}) (4.1)

where ({xi}) stands for (x1, x2, x3, x4).

As emphasized in [17] in dS, the four-point vertex functions in the large N limit can be written

in terms of the two-point function of the composite field χ = λφaφb

2N , namely D(x, x′), as

Γ
(4)
abcd({xi}) = δabδcdδ

(d)(x1, x2)δ
(d)(x3, x4)D(x1, x3) + cperm, (4.2)

where “cperm” stands for the two cyclic permutations needed to make Γ
(4)
abcd symmetric (recall

that our coupling constant λ should be divided by 3 to match the one used in [17]). The two-point

function D(x1, x2) is given by a local contribution (which corresponds to the tree-level contribution,

but with full propagators) plus a nonlocal part that involves the resummed bubble-chain I(x, x′),

D(x, x′) = − λ

N
[δ(d)(x, x′) + I(x, x′)]. (4.3)

Inserting this into Eq.(4.1) we decompose the four-point function as

G
(4)
abcd({xi}) = G

(4,tree)
abcd ({xi}) +G

(4,loop)
abcd ({xi}) . (4.4)

Our goal is to analyze the four-point functions (4.1) in the IR limit, meaning the case when the

four points are far apart one from the other, and at leading order in 1/N . Recall that at leading

order in 1/N , the propagator G(x, x′) is given by a free massive propagator with mass m0, which

we are writing as ∆(m0)(x, x′). Therefore, to understand the IR behaviour we can use the results

obtained in [14, 18] for the case of interacting massive fields. There it is shown that for generic

n-point correlators involving loops, when two or several points are far apart from each other, the

– 7 –



correlator decays at least as fast as r
− m2

0
(d−1)H2 +O(ǫ)

, where ǫ is an infinitesimal positive constant and

r is the maximum distance between a pair of points.

The resummed bubble-chain I(x, x′) decays, in the IR limit, as a massive propagator with mass

2m0 (see Eq.(3.9)). This suggests that the loop corrections might decay faster than the tree level

contribution. Indeed, the fully Lorentzian calculation performed in [19] shows that there is a scaling

behaviour in the loop contributions to the four-point functions that is different from the tree level

part. To show this explicitly, we work in conformal coordinates (ds2 = (Hη)−2[−dη2 + δijdx
idxj ])

with d = 4, and compute the Fourier transform of their results in momentum space to compute the

corresponding correlators at equal times. Using that

G
(4)
abcd(η, {~ki})(2π)3(−Hη)−3δ

(

∑

i

~ki

)

=

∫

{~xi}
exp{i

∑

i

~ki · ~xi}G(4)
abcd(η, {~xi}), (4.5)

where
∫

~x ≡
∫

(−Hη)−3d3x, and

(−Hη)−3

|~x|w =
Γ
[

3−w
2

]

2wπ
3
2Γ
[

w
2

]

∫

~k

exp{i~k · ~x}|~k|w−3, (4.6)

it is immediate to see that the tree level contribution behaves as

G
(4,tree)
abcd ({xi}) ∼ δabδcd

λ(η2)
3m2

0
(d−1)H2

Nm8
0V

3
d

[

x
− 2m2

0
(d−1)H2

21 x
− 2m2

0
(d−1)H2

31 x
− 2m2

0
(d−1)H2

41 + permutations

]

, (4.7)

decaying as a product of free propagators with mass m0. On the other hand, the loop contribution

has two pieces: one scales as the tree level one, while the other behaves as the product of two

propagators of mass m0 and one of mass 2m0,

G
(4,loop)
abcd ({xi}) ∼ δabδcd

λ(η2)
3m2

0
(d−1)H2

Nm8
0V

3
d

[

x
− 2m2

0
(d−1)H2

21 x
− 2m2

0
(d−1)H2

43 x
− 8m2

0
(d−1)H2

13 + permutations

]

. (4.8)

This is related to the IR behavior of I(x, x′).

5 Conclusions

In this paper we presented a novel approach to compute the NTLO corrections to the two-point

functions of quantum fields in dS spacetime, in the deep IR limit. Our approach is based on the

fact that the IR behavior of the two-point functions in dS spacetime is related with the poles of the

analytically continued two-point functions on the sphere. The SDE that determines the two-point

functions on the sphere involves the self-energy, that can be computed knowing the product of two

massive propagators. In the deep IR, this product can be approximated by a single propagator

with a mass given by the sum of the masses. Going to the sphere, solving there the SDE, and

coming back to dS we have been able to obtain the NTLO corrections in 1/N to the two-point

functions. As pointed out earlier in Ref. [11], this corresponds to a linear combination of massive

propagators with masses given by m±. In the present approach, it is clear that the fact that the

corrected propagator is a linear combination of propagators with different masses comes from the

IR behavior of the self-energy, which decays with a squared mass 5m2
0.

It is worth noticing that the 1/N expansion provides a reorganization of perturbation theory,

by collecting an infinite subset of diagrams which individually grow secularly at large distances.
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This can be explicitly seen by comparing the different bubble diagrams in Fig. 1. For example the

single bubble diagram is given by Eq. (2.5), which in the IR can be approximated using Eq. (3.5),

giving

Π(x, x′) ≃ −2m2
0∆

(
√
2m0)(x, x′). (5.1)

Using this result, the two-bubble diagram instead goes as

∫

z

Π(x, z)Π(z, x′) ≃ 4m4
0

∫

z

∆(
√
2m0)(x, z)∆(

√
2m0)(z, x′) = −(2m2

0)
2 ∂∆(m)(x, x′)

∂m2

∣

∣

∣

∣

∣

m=
√
2m0

, (5.2)

and the one of the n-bubble diagram as

∫

z1,...,zn−1

Π(x, z1) . . .Π(zn−1, x
′) ≃ − (2m2

0)
n

n!

∂n−1∆(m)(x, x′)

∂(m2)n−1

∣

∣

∣

∣

∣

m=
√
2m0

. (5.3)

Here the last equalities follow from a generic property of the massive propagator (see Ref. [8]).

When explicitly computing the m2-derivative of the free massive propagator using Eq. (3.1), it is

easy to see that at large r, the n-bubble diagram (5.3) grows with a factor (log r)n−1 with respect

to the single-bubble one (5.1).

In our approach, we were able to perform the resummation of all these secularly growing

corrections at NTLO, obtaining a correction that remains subleading at large separations, Eq.

(3.9). The IR behaviour cannot be made evident on a compact space, before analytic continuation.

The crucial point is the observation that the IR limit of the Lorentzian propagators is determined

by the pole structure of the Euclidean propagators around L = 0 in the complex L-plane. This

property simplifies drastically the study of the large distance behaviour of the analitycally continued

propagators. It would we worth to generalize to higher order in the 1/N expansion. Iterating the

procedure, we expect additional poles at the NNTLO coming from the IR behavior of the self-energy

computed with the corrected propagators.

As a straightforward application of our results, we have discussed the IR behaviour of the

(equal-time) four-point correlation functions. We used the fact that, in the large N limit, the four-

point correlators can be written in terms of integrals of free massive propagators. This allowed us

to use previously obtained IR bounds for n-point correlators for massive fields [14, 18].
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