
Chapter 12. On Line Diagnosis in Induction Motors and Load 

Chapter 12 
On Line Diagnosis in Induction Motors  
and Load 

Carlos Verucchi and Gerardo Acosta1 

12.1. Introduction 

Induction motors are essential components in the vast majority of industrial processes. 
The different faults on induction machines may yield drastic consequences for an 
industrial process. The main problems are related to the increasing costs, and the 
worsening of the process safety conditions and the final product quality. Many of these 
faults show themselves gradually. Then the detection of incipient faults allows avoiding 
unexpected factory stops and saving a great deal of money [1-3]. The kind of faults of 
these machines is varied. However the most frequent are [4]: 

 Opening or shorting of stator phase windings; 

 Broken rotor bar or cracked rotor end-rings; 

 Static or dynamic air-gap irregularities; 

  failures; 

 Magnetic wedges. 

These faults may be observed through some of the following symptoms [5]: 

 Unbalanced air-gap voltages and line currents; 

 Increased torque pulsations; 

 Decreased average torque; 

 Increased losses; 

 Excessive heating. 
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It should be noted that some minor faults, which do not endanger the life of a motor, 
could however lead to a decrease in its efficiency. Given that the efficiency levels of 
electric motors are constantly monitored and adjusted for the purpose of a worldwide 
energy consumption reduction [6-8], it is important to recognize incipient faults to avoid 
inadequate performances. 

The reason for such faults may reside in small errors during motor manufacturing, 
improper use, high level of requirements in motor start-up, ventilation deficiency, and 
others. Motors actuated by pulse width modulation (PWM) voltage source inverters, 
have greater probabilities to fail in their bearings [9] and in their stator windings’  
insulation [10]. 

Several diagnosis techniques for the identification and discrimination of the enumerated 
faults have been proposed. Temperature measurements, infrared recognition, radio 
frequency emissions, noise monitoring or chemical analysis are some of them [5]. 
References for coils to monitor the motor axial flux may be found in [11], vibration 
measurement, in [11, 12]. Spectrum analysis of machine line current (called motor 
current signature analysis or MCSA) is referred to in [13-18], Park’s Vector Currents 
(PVC) Monitoring, in [19, 20], artificial intelligence based techniques are used in [21-
23]. 

The diagnostic possibilities of some of these techniques are not limited only to the motor 
but also extend to the driven load and to the transmission elements between the motor 
and the load. In this sense, some of the faults that could be detected and diagnosed 
would be: 

 Misalignment in flexible coupling [25-27]; 

 Gear box fault [28-32]; 

 Unbalance mass; 

 Cavitation [33], etc. 

In these cases, the motor acts as a kind of sensor that monitors the behavior of the 
mechanical elements of the drive. 

The next section will show the evolution degree that the on-line diagnostic techniques 
have reached for electric drives. Special attention will be given to the analysis of the 
ability of these techniques for predictive maintenance in industrial applications. To that 
end, several examples of application in which the authors have experience will be 
presented. 

The section that follows presents the use of an expert system specifically applied to the 
detection of electrical faults in induction motors based on the measurement of one of the 
stator currents (MCSA) [15]. Subsequently, the article focuses on a case of 
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misalignment detection in flexible couplings [25]. Finally, we discuss a case of gear 
teeth wear detection in gear boxes [32]. 

12.2. Internal Fault Detection in Induction Motors 

12.2.1. Motor Current Signature Analysis 

From all these approaches proposed in literature, those based on stator current 
monitoring are advantageous because of its non-invasive feature. One of these 
techniques is the MCSA, in which rotor faults become apparent by harmonic 
components around the supply frequency. The amplitude of these lateral bands allows 
dimensioning the failure degree [5]. Also, the Extended Park’s Vector Approach 
(EPVA), based on the observation of the Park’s complex vector module, allows the 
detection of inter-turn short circuits in the stator winding. This section presents the 
development of an on-line current monitoring system (CMS) to perform the diagnosis 
task in a supervisory system [24]. This last task employs both techniques (MCSA and 
EPVA) in an integrated way, for fault detection and diagnosis in the stator and in the 
rotor of an induction motor, respectively. The selection of both techniques is due to 
MCSA as well as EPVA shares the stator current sensing, and then the same information 
may be used as input for both methods. In this way, current spectral components convey 
information about the rotor state, while the EPVA is appropriate for the stator windings 
monitoring, as it will be shown. The proposed CMS uses a National data acquisition 
equipment and is programmed in LabView. From the acquired current data and the 
motor features, the CMS estimates the slip and load percentage. Based on experimental 
observations and on the knowledge of the electrical machine, a knowledge-based system 
(KBS) was constructed in order to carry out the diagnosis task from these estimated 
data. The results of each diagnosis are outcomes in the CMS screen in the form of fault 
modes index. If necessary, a warning is given to put the motor under new observations 
(i.e., to measure the rotor speed or to change the motor load), or even to verify the power 
distribution net balance. Experimental results are presented from an induction motor of 
380 V, 7.5 HP and 1000 rpm, especially designed for running under different failure 
circumstances. These results with a high degree of correct diagnosis show a right 
direction to explore. 

When there are broken or even fissured bars, the rotor’s impedance exhibits an 
unbalance. The immediate consequence of such unbalance is the existence of inverse 
sequence currents. These currents have a frequency that is equal to the product of the 
slip (s) and the supply frequency (f). They generate a magnetic field that turns counter 
motor  
rotation-wise. This magnetic field is called inverse magnetic field or IMF. The speed of 
this IMF is given by the expression (12.1): 

 . ,r
i ss    (12.1) 

where ri is the speed of IMF, s is the slip and s is the angular supply frequency. 



If translated to stationary co-ordinates, such a speed may be re-written as: 

 . (1 2. ). ,s
i s r ss s          (12.2) 

where r is the rotor speed. 

The amplitude of IMF depends on two features. The first is the unbalance degree in the 
rotor circuit (number of broken bars), and the second is the value of the current in the 
rotor bars. This last depends on the motor’s load state. In this way, the IMF originated in 
the rotor’s impedance unbalance produce harmonic currents of frequency (1-2.s).f in the 
stator windings. These currents interact with the main magnetic field and set a torque 
over the rotor, which oscillates with a frequency of 2.s.f [18]. This pulsating torque 
provokes an oscillation also in the rotor speed. The amplitude of this oscillation is a 
function of motor’s load inertia. As a reaction of such speed perturbation, new currents 
arise in the stator at a frequency (12.s).f. The new current component at frequency (1-
2.s).f is superimposed with the original, and then modifies its amplitude. In this way, it is 
concluded that rotor faults in an induction motor, can be determined from the 
observation of the sidebands in the stator current spectrum, in the neighbourhood of both 
frequencies given by equation (12.3). 

 (1 2. ). ,SBf s f    (12.3) 

An example of the current spectrum of a motor with this fault is shown in Fig. 12.1. 

 

Fig. 12.1. Frequency spectrum of one phase stator current of a motor with three broken bars  
and full load. 

As regards as the amplitude of these stator current sidebands, they depend on three 
factors: the motor load inertia, the motor load torque, and the severity of the fault. So, 
the first two factors must be suppressed in order to analyse, as independently as possible, 
the one of concern for the present application. 

The motor load inertia can be avoided if the sum of both sidebands component is 
considered, as proposed in [16]. As regards as the motor load torque, there is always a 
relationship between the amplitude of the sidebands and the amplitude of the 
fundamental component of the stator current at the supply frequency. Then, working 
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with normalised amplitude values as regards as this supply frequency component, allows 
to partially avoid the influence of this second factor. However, sidebands reveal faults 
more clearly with high values of slip. Then it is recommended that the diagnosis were 
done with the motor running near its nominal load. 

Then, a severity factor can be defined as: 

 
(1 2. )

1

.100,s f
RF

I
S

I
   (12.4) 

where SRF is the severity rotor fault, I(1±2.s).f is the sum of amplitude of sidebands, and I1 
is the amplitude of the fundamental component of the stator current. 

12.2.2. Extended Park’s Vector Approach 

The Park’s transform [34], allows representing the variables of a three phases machine 
through a co-ordinates system with two perpendicular axes. The components of the 
stator currents in the direct and quadrature axes (D y Q) are computed by means of the 
following expressions: 

 2 1 1
. . . ,

3 6 6D A B Ci i i i    (12.5) 

 1 1
. . ,

2 2Q B Ci i i   (12.6) 

where iA, iB and iC are the stator currents. Under ideal conditions, that is, when a normal 
behaviour motor is fed with a sinusoidal, balanced and positive sequence three-phases 
current system, the Park’s components or Park’s Currents Vector (PVC) results in: 

 
max

6
. .sin( . ),

2D si I t  (12.7) 

 
max

6
. .sin( . / 2).

2Q si I t    (12.8) 

In this expression Imax is the maximum stator current value and t is the time variable. 
Equations (12.7) and (12.8) describe a perfect circle centered in the origin of the plane  

D-Q, with constant radius equal to ( 2/6 ). Fig. 12.2 presents the PCV from a Lab 
experiment of an induction motor under normal conditions. The small variations in the 
vector radius are due to small unbalanced voltages of distribution system. In the same 
way, the space and slot harmonics introduce small perturbation in the vector radius. 
They are negligible for the present analysis and then are filtered in the data acquisition 
stage. 
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Fig. 12.4. Harmonic analysis of the Park’s Vector module. 

It is important to take into account that this severity factor varies with motor load, 
decreasing as the motor approximates to its nominal load. 

12.2.3. Towards an Integrated Fault Diagnostic System 

One aim of the present work was to combine the previous techniques and, in some way, 
to take the better of them in a single, integrated diagnostic system. 

From the stator spectral analysis (MCSA) it is possible to detect rotor as well as stator 
winding faults, as presented in [35]. However, in this last case, the frequency 
characterising the fault must be computed considering the motor poles number, the slip, 
and the winding features. Also, another handicap of this approach is that it is not 
possible to relate the fault severity with the amplitude of these frequencies characterising 
the fault. In contrast, in EPVA the frequency to discriminate a fault is always fixed and 
twice the supply frequency. Also EPVA only uses the current fundamental component to 
draw the Park’s geometric locus. It is then possible to filter any higher frequency 
making the procedure more robust in front of noise and perturbations. This is the reason 
for selecting this last approach for fault detection and diagnosis in the stator. 

To obtain a useful diagnosis for the rotor of the induction motor, some authors describe 
the viability of detecting broken bars by means of the PVC [36]. It is not clear yet that 
one method is better than the other for this case. However, as the MCSA has been used 
for so long, giving enough proofs of utility at industrial environments [35], it is the 
approach selected in this work for detecting and diagnosing rotor electrical faults. 

In a normal running, the CMS set the state of the rotor and then the state of the stator 
winding. It is necessary to determine the frequencies at which harmonic components 
will appear, because a torque that oscillates may be confused with a fault mode [36]. In 
order to achieve this, a motor slip is estimated from the no-load current, assuming it is in 
quadrature with the load component. With both currents a phasorial diagram may be 
built (as shown in Fig. 12.5). From the measured stator current (IS) in Fig. 12.5, the load 
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criteria were: non-invasive technique, minimum number of measured variables, 
discrimination power, and prior motor information to yield a diagnosis. 

The obtained CMS gives general conclusions about the motor state, in a user friendly 
interface. It was easily developed in Lab with commercial products. The added feature 
of a knowledge base confers the possibility of considering sensors fault or even 
unbalances in the supply network, as well as a qualitative classification of faults in light, 
moderate and strong. In those cases of insufficient motor load, the system is able to 
recommend a warning for a better measure. 

12.3. Mechanical Faults Detection Beyond the Motor 

12.3.1. General Comments 

Progress in the implementation of non-invasive techniques has made possible to extend 
the diagnosis of faults to the kinematic chain between the motor and load, even to the 
load. In these cases, it is often necessary to monitor other electrical variables of the 
motor, such as the electric torque or the active power consumed [25]. To do this, it is 
necessary to measure not only the stator currents but also the voltages connected to the 
motor. In  
[28-30], different techniques for fault detection in gear box driven by induction motors 
are proposed. In such cases, it is possible to detect gear-teeth wear or breakage from the 
analysis of the frequency spectrum of the stator currents or the estimated electric torque. 

Regarding the driven load, literature presents background on the detection of anomalies 
from the analysis of electrical variables. For instance, the detection of anomalies in the 
table of a coal mill is presented in [30]; in [35], the detection of anomalies in an air 
compressor from the motor variables is shown, and, the detection of cavitation in 
hydraulic systems with identical strategy is studied in [33]. 

A study based on the tracking of the stator current and of the active power consumed by 
the motor to detect misalignment between the motor axes and load is presented in [26]. 
This paper presents a model that determines the frequencies associated with fault and 
through experimental tests the feasibility of the proposed method is demonstrated. These 
tests however are limited to elastic couplings (Rubber Tire-type Couplings) and 
misalignment on the coupling system may be of great consideration. Results show for 
example angular misalignment of about 1 to 3 degrees. Though these misalignment 
angles are within admissible values for elastic couplings, it is important to highlight the 
capability of the technique for detecting minor misalignments, as they can raise the level 
of vibration to dangerous levels. A comparison between the MCSA and the vibration 
analysis can be observed in [27]. This comparison demonstrates that the ability to detect 
misalignment of MCSA and traditional techniques based on vibration analysis is similar. 
In addition, [38] also proposes an algorithm able to diagnose faults due to misalignment 
and mass imbalance for different load conditions. This algorithm compares the fault 
frequencies of the stator currents with a predetermined admissible value. However, this 
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Mostly elastic couplings are used in these applications. These couplings allow 
dampening sudden load torque disturbances, avoiding knocks on the wheels of the gear 
boxes, and reducing vibrations during load transmission. All elastic couplings are able to 
bear small levels of misalignment. The main purpose of the flexible couplings is to 
allow misalignment due to the assembly of connected rotors and due to the changes of 
temperature and operation. In addition, the flexible couplings separate mechanically the 
rotors so that the rotodynamic design of individual rotors can be carried out separately. 
However, misalignments of any degree reduce couplings lifetime, increase losses [15], 
and generate mechanical vibrations and bending stress on axes, which may affect the 
bearing system severely. 

Fig. 12.13 shows the four different elastic couplings evaluated in this work, mostly used 
in industrial applications [39]. Jaw Couplings (Fig. 12.13a) are an inexpensive and easy 
to mount option for standard power applications. They are able to dampen  
moderate-impact low-vibration loads. Couplings of this type are not torsionally rigid and 
can bear some degree of radial and angular misalignment as well as axial movement on 
the shaft. Gear Couplings (Fig. 12.13b), on the other hand, show torque high density and 
are torsionally rigid. They can be either flexible or flexible-rigid couplings. Flexible 
couplings are able to bear radial and angular misalignment. Metal Ribbon Couplings  
(Fig. 12.13c) allow torsion as well as angular and radial misalignment. They require 
lubrication and have certain limitations of temperature and speed. Finally, Rubber-type 
Couplings, (Fig. 12.13d), are able to bear some degree of misalignment at all levels 
without imposing excessing loads on the bearing system. Their damping properties 
allow reducing torsion vibrations and oscillations. 

As it is shown in [26], misalignment modifies the motor torque according to the 
following equation: 

 
2 21 sin sin

cos2 ,
cos 2cos 2cosk l lT T

  
  

  
    

  
 (12.10) 

where α is the misalignment angle (Fig. 12.12a), θl is the angular position of the load 
with regards to its own rotation axis and Tl is the load torque. Equation (12.10) shows 
that, when α takes a value other than 0, the level of torque the motor must overcome 
increases progressively its mean value and also incorporates a frequency component 
2.θl. This component amplitude increases with misalignment. As for the motor stator 
current, misalignment occurs through the sidebands around the fundamental component 
at the frequencies given by: 

 ,s rf f nf   (12.11) 

where fr is the rotational frequency and n are integers greater than 0. Thus, the fault 
under study will become evident both on the electrical torque as on the stator current. 
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Fig. 12.16. Estimated Torque Frequency Spectrum, Jaw Coupling, 75 % of load, aligned Shafts. 

 

Fig. 12.17. Estimated Torque Frequency Spectrum, Jaw Coupling, 75 % of Load, 1.5 mm,  
Radial Misalignment. 

 

Fig. 12.18. Stator Current Frequency Spectrum, Jaw Coupling, 75 % of Load, Aligned Shafts. 
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Fig. 12.19. Stator Current Frequency Spectrum, Jaw Coupling, 75 % of Load, 1.5 mm  
Radial Misalignment. 

Then, from this first study, it is possible to check both the analysis of the stator currents 
and the torque estimation to demonstrate radial misalignment. Similar tests allow to 
extend these conclusions to angular misalignment cases. 

Results from Figs. 12.16 to 12.19 are obtained with 75 % of the nominal load. However, 
as it can be observed in [38], the amplitude of the components associated to the fault 
under analysis may vary significantly with the motor load. With the objective of 
evaluating the motor behavior for different load levels, several tests were carried out for 
different degrees of misalignment and for variable load values ranged between 25 and 
100 % of the nominal power. All the tests were performed with different coupling, 
starting with the same alignment condition and then varying radial and angular 
misalignment. The remaining variables for the experiments were kept unchanged. Figs. 
12.20 and 12.21 show the amplitude of the component at 2fr, expressed in Nm and p.u., 
respect to the mean torque, respectively. These figures allow comparing the obtained 
components for alignment and for two different levels of radial misalignment, both in a 
Jaw Coupling. It can be deduced from the curves in the same figures that the fault 
indicators, expressed in both Nm. and p.u., show a tendency to decrease as the motor 
load increases. Moreover, it can be clearly observed that this relationship between 
indicators and load is nonlinear. Also, these fault indicators increase with the fault 
severity (0.75 mm and 1.5 mm misalignments, respectively). 

Figs. 12.22 and 12.23 show the results for radial misalignment at the component at 3fr. 
Conclusions are similar to those for the component at 2fr. The values of the component 
at 3fr show a strong dependence on load, to such an extent that for certain load levels, 
the most severe fault appears less noticeable than the least one. This observation allows 
concluding that the indicator that best suits misalignment is the component at 2fr. 
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Fig. 12.20. Components at twice the rotation 
frequency. Values in p.u. Green: Alignment, 
Blue: 0.75 mm Radial Misalignment, Red: 1.5 
mm. Radial Misalignment. 

Fig. 12.21. Components at twice the rotation 
frequency. Values in N.m. Green: Alignment, 
Blue: 0.75 mm Radial Misalignment, Red: 1.5 
mm. Radial Misalignment. 

 
 

Fig. 12.22. Components at three times the 
rotation frequency. Values in p.u. Green: 
Alignment, Blue: 0.75 mm Radial 
Misalignment, Red: 1.5 mm Radial 
Misalignment. 

Fig. 12.23. Components at three times the 
rotation frequency. Values in N.m. Green: 
Alignment, Blue: 0.75 mm Radial 
Misalignment, Red: 1.5 mm Radial 
Misalignment. 

 

Figs. 12.24 and 12.25 present results for angular misalignment. Misalignment levels are 
ranged from 0.5° to 1°. The Jaw Coupling used for this test is the same used in previous 
tests. Conclusions are similar to those obtained for radial misalignment, i.e., a decrease 
in the fault indicator, in p.u. and Nm, with a decrease in load and erratic variation of the 
component 3fr. 
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It is important to notice that the misalignment levels used for the comparison, as for 
radial as for angular misalignment, are low as the couplings under study are also able to 
bear high misalignment degrees. 

  

Fig. 12.24. Components at twice the rotation 
frequency. Values in p.u. Jaw Coupling. 
Green: Alignment, Blue: 0.5° Angular 
Misalignment, Red: 1° Angular Misalignment. 

Fig. 12.25. Components at twice the rotation 
frequency. Values in N.m. Green: Alignment, 
Blue: 0.5° Angular Misalignment, Red: 
1°Angular Misalignment. 

 

The results obtained using a Jaw Coupling presented in Figs. 12.20 to 12.25 allow 
validating the conclusions drawn in [26, 38]. The only difference is that it considers 
lower levels of misalignment to demonstrate the capability to detect incipient faults. The 
same experiments carried out using the Jaw Coupling are repeated but using the other 
couplings shown in Fig. 12.13. Tables 12.2 and 12.3 display the values of the estimated 
torque components for 1° angular misalignment (Table 12.2) and 1.5 mm radial 
misalignment (Table 12.3), for each four couplings under study. 

Similarly, Tables 12.4 and 12.5, present the results obtained for the stator currents 
(MCSA). In this case, the values presented in the tables correspond to the RMS obtained 
from both sidebands components. 

Table 12.2. Torque at 2fr for 1°angular misalignment. Values expressed in % of the mean T. 

Load 
(%) 

Rubber 
Tire-type 
Coupling 

Jaw 
Coupling 

Gear 
Coupling 

Metal 
Ribbon 

Coupling 
25 0.22 1.13 0.67 0.51 
50 0.16 0.17 0.55 0.15 
75 0.09 0.14 0.45 0.09 
100 0.05 0.07 0.29 0.07 
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Table 12.3. Torque at 2fr for 1.5 mm radial misalignment. Values expressed in % of the mean T. 

Load 
(%) 

Rubber 
Tire-type 
Coupling 

Jaw 
Coupling 

Gear 
Coupling 

Metal 
Ribbon 

Coupling 
25 0.24 13 2.6 4.1 
50 0.14 10 3.7 2.8 
75 0.06 4.1 0.66 2.7 
100 0.07 2.1 0.13 1.6 

 

Table 12.4. Stator current (RMS) for 1°angular misalignment – Values expressed  
in % of the fundamental component. 

Load 
(%) 

Rubber 
Tire-type 
Coupling 

Jaw 
Coupling 

Gear 
Coupling 

Metal 
Ribbon 

Coupling 
25 0.14 0.15 0.31 0.18 
50 0.09 0.11 0.34 0.11 
75 0.06 0.09 0.30 0.06 
100 0.04 0.06 0.25 0.05 

 

Table 12.5. Stator current (RMS) for 1.5 mm radial misalignment – Values expressed  
in % of the fundamental component. 

Load 
(%) 

Rubber 
Tire-type 
Coupling 

Jaw 
Coupling 

Gear 
Coupling 

Metal 
Ribbon 

Coupling 
25 0.14 5.7 1.1 2.7 
50 0.07 7.3 2.9 1.5 
75 0.05 3 0.48 2.2 
100 0.04 2 0.13 1.9 

 

The results obtained using the Jaw Coupling and the other couplings show similar 
tendency. That is, they show a decrease in the indicators as the motor load increases. In 
addition, it becomes clear that the obtained values, as for the estimated torque as for the 
stator current, are significantly different for the different couplings. In fact, for identical 
misalignment and load conditions, the results obtained for the different couplings show 
variations as for angular as for radial misalignment. 

Figs. 12.26 and 12.27 show the results for the estimated torque and stator current for 
angular misalignment. Regarding both variables, it can be observed an important 
difference between the indicators associated to the Gear Coupling and those of the other 
couplings. The Gear Coupling shows a really low tolerance to angular misalignment due 
to the torque high-harmonic components of these couplings. As for the rest of the 
couplings under study, they all show similar behavior for angular misalignment. 



  

Fig. 12.26. Estimated Torque vs. percentage of 
load at angular misalignment of 1°. Red: Gear 
Coupling. Blue: Jaw Coupling. Green: Metal 
Ribbon Coupling. Black: Rubber  
Tire-type Coupling. 

Fig. 12.27. Current components, f±fr (rms) vs. 
percentage of load at angular misalignment of 
1°. Red: Gear Coupling. Blue: Jaw Coupling. 
Green: Metal Ribbon Coupling. Black: Rubber 
Tire-type Coupling. 

 

Figs. 12.28 and 12.29 show results for radial misalignment. In this case, significant 
differences for different types of coupling are observed. The jaw coupling is the one that 
most clearly reflect misalignment on the fault indicators, which means low tolerance to 
radial misalignment. On the other hand, the Rubber Tire-type Coupling shows low fault 
indicators, which indicates high tolerance to radial misalignment. 

  

Fig. 12.28. Estimated Torque vs. percentage of 
load at radial misalignment of 1°. Red: Gear 
Coupling. Blue: Jaw Coupling. Green: Metal 
Ribbon Coupling. Black: Rubber  
Tire-type Coupling. 

Fig. 12.29. Current components, f±fr (rms) vs. 
percentage of load at radial misalignment  
of 1°. Red: Gear Coupling. Blue: Jaw 
Coupling. Green: Metal Ribbon Coupling. 
Black: Rubber Tire-type Coupling. 
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From the experimental results presented in the previous section, it is concluded that 
both, the frequency components of the stator current (MCSA) and the estimated 
electrical torque (LTSA), allow identifying radial and angular misalignment when 
coupling induction motors and loads through flexible couplings. 

Such a characteristic can be demonstrated for angular and radial misalignment and for 
small levels of misalignment, i.e., for incipient faults. The components of the estimated 
torque at 2fr and 3fr frequencies are suitable for detecting misalignment. The latter, 
however, is heavily dependent on the motor load conditions and its amplitude does not 
maintain, in all the cases studied, a proportional relationship with the fault levels. 
Therefore, it is considered a more suitable fault indicator than that of the component  
at 2fr frequency. 

Fault indicators, as for the MCSA as for the LTSA, show high dependence on the 
characteristic of the used coupling. This makes it difficult to associate fault indicators 
with a certain degree of misalignment, without considering the specific features of the 
coupling. Moreover, it is important to note that the coupling to more easily detect 
angular misalignment is the one with the lowest tolerance of angular misalignment (Gear 
Coupling), according to its manufacturer. Similarly, the lower radial misalignment 
tolerance given by the coupling manufacturer (Jaw Coupling) is more susceptible to 
radial misalignment detection. While it is not possible to draw definitive conclusions on 
this point, the relationship between the permissible misalignment of a coupling, given by 
its manufacturer, and the amplitude of fault indicators will be a subject of future studies. 

Finally, the experimental study presented allows to state that the sensitivity of fault 
indicators strongly depends on the coupling features. Hence, in the case of automatic on-
line fault detection algorithms, as the one proposed by [27], the thresholds above which 
alarm signals appear should be set depending on the type of coupling. 

12.4. Gear Box Fault Detection 

Faults in gear boxes can have several causes: lubrication system deficiencies, overload, 
fatigue, misalignment between pinion and crown wheel, and sudden blows to the gear 
teeth due to inconvenience in the load, among others. The consequences are the wear of 
gear teeth flanks, cracks in one or more teeth, fissures, teeth geometry deformation, etc. 
The main frequency components associated with gear failure are obtained through 
vibration studies. Vibrations are the result of disturbances in the torque transmitted by a 
gear box; therefore, the characteristic components of a fault will be reflected on the 
machine vibrations and on the electromagnetic torque transmitted by the motor. The 
main components are the rotation frequency of each gear wheel fr, the coupling 
frequencies fe, given by the result between the wheel rotation speed and the number of 
teeth Z (fe = Z fr), the sidebands around the gear frequencies given by (fe ± fr), and the 
sidebands around the natural frequency of vibration fres, or the resonance frequency of 
the rotating system that result in (fres ± fr) [32]. 
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80 % of the nominal load. Fig. 12.36, therefore, shows the absence of the component at 
the gear frequency. 

 

Fig. 12.35. Electromagnetic torque frequency spectrum estimated for fault 2 condition.  
Motor at 80 % load. 

 
Fig. 12.36. Gear frequency proximities of crown wheel 2 for fault 2. 

The resonance frequency of the system had been estimated at a value given by  
fres = 512 Hz. Fig. 12.37 shows that in the proximity of this value, an important 
component is observed at 575.4 Hz. It is assumed, therefore, that the resonance 
frequency corresponds to that value. In addition, Fig. 12.37 shows the sidebands at fres ± 
fr3. The red curve corresponds to "fault 2" and the blue to the "without faults" condition. 
The displacement observed between one curve and another is due to a small variation in 
the motor’s load state and consequently in the speeds of rotation reached in each test. 

The tests were repeated for the three possible fault states (without faults, fault 1 and fault 
2) and for different load states. Fig. 12.38 shows the results obtained for the component 
at fr3. Both fault states can be recognized for any motor state load. Figs. 12.39 and 12.40 
show the rotation frequency multiple harmonic components, namely: 2fr3 and 3fr3. Both 
components have a growth proportional to the failure degree of the gearwheel and, 
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therefore, should be considered as possible failure indicators. Finally, Fig. 12.41 shows 
the RMS value around the resonance frequency. This indicator, like the previous ones, 
allows to detect a failure situation for any of the load states tested. 

 

Fig. 12.37. Estimated electromagnetic torque frequency spectrum. Motor at 80 % load.  
Blue: without faults. Red: fault 2. 

 

Fig. 12.38. Fault indicator (fr3) depending on the load state. Green: without faults;  
yellow: fault 1; red: fault 2. 
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Fig. 12.39. Fault indicator (2fr3) depending on the load state. Green: without faults;  
yellow: fault 1; red: fault 2. 

 

Fig. 12.40. Fault indicator (3fr3) depending on the load state. Green: without faults;  
yellow: fault 1; red: fault 2. 

 

Fig. 12.41. Global fault indicator in the proximities of de fres depending on the load state.  
Green: without faults; yellow: fault 1; red: fault 2. 
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Faults of different severity in a gear box were studied through the frequency analysis of 
the estimated electromagnetic torque. The indicator linked to the rotation frequency of 
the faulted wheel (fr3) is the most susceptible to failure. However, its ability to identify 
failure situations decreases with increased motor load. The indicator at 2fr3 offers similar 
results but has the advantage of being less susceptible to changes in the motor load. The 
indicator related to 3fr3, on the other hand, follows a behavior similar to indicator fr3 as 
well as the sidebands around the resonance frequency, although in this case there is the 
additional difficulty of determining a priori the resonance frequency of the system. 
Finally, the component at the gear frequency did not show significant changes for any of 
the studied faults nor for any load state tested. 

Since the fault indicators present significant values even without the presence of a 
failure, the detection method studied is only adequate when evaluating the evolution of 
each of the components over time. Thus, a periodic monitoring of fault indicators could 
lead to the detection of abnormal situations. 

12.5. Conclusions 

On-line fault detection techniques in electric drives have become very important in 
recent years. Some of them are already used at industrial level as a complement to the 
traditional techniques of predicvitive maintenance of electric machines. 

As shown in this chapter, the ability to detect faults automatically and on-line is not 
limited to faults in the motor itself but can be expanded to the entire motor-driven 
system. Thus, electrical and mechanical faults in electrical drives can be detected and 
diagnosed through the techniques presented here. 

As a research area, far from being exhausted, these and other diagnostic techniques 
continue to develop and increase its scope and reliability. 
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