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Abstract: Colorectal cancer (CRC) is one of the main causes of cancer-related mortality in the developed world despite

recent developments in detection and treatment. Several epidemiological studies indicate that metformin, a widely

prescribed antidiabetic drug, exerts a protective effect on different cancers including CRC. Furthermore, a recent

double-blind placebo-controlled, randomized trial showed that metformin significantly decreased colorectal adenoma

recurrence. Studies exploring the mechanism of action of metformin in cells derived from different types of cancers

reported many effects including respiratory chain complex 1 inhibition, Akt phosphorylation inhibition, ATP

depletion, PKA activation and Wnt signaling inhibition. However, many of these results were obtained employing

metformin at concentrations several fold higher than those achieved in target tissues in diabetic patients receiving

therapeutic recommended doses of metformin. In contrast, recent studies obtained with metformin at concentrations

compatible with those detected in human intestines revealed that metformin elicit responses that target β-catenin,

PI3K/Akt, E-cadherin, p120-catenin and focal adhesion kinase which are key molecules and signaling pathways

associated to colorectal cancer development. This brief review revisit several know aspects as well as novel ones on the

effects of metformin on cancer cells.

Introduction

Cancer is a leading and growing cause of morbidity and
mortality worldwide (Bray et al., 2018). Risk factors
associated to cancer development include non-modifiable
factors such as age and genetic background along with
modifiable factors that include limited physical activity, poor
dietary habits, obesity, metabolic syndrome and type II
diabetes mellitus (T2DM) (Aleman et al., 2014; Gonzalez
et al., 2017). T2DM, a chronic disease that will affect by
2040 up to ≈ 642 million people worldwide (Unnikrishnan
et al., 2017), is distinguished by hyperglycemia,
hyperinsulinemia, insulin resistance and by an increase in
the bioavailability of insulin-like growth factor-1 (IGF-1)
and overexpression of the insulin receptor (IR). The binding
of insulin and IGF to their receptors, or hybrid IR/IGF
receptors, activate the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt)/mammalian target of rapamycin
(mTOR) and mitogen-activated protein kinase (MAPK)
signaling pathways promoting diverse cellular responses

including proliferation (Cohen and LeRoith, 2012; Gallagher
and LeRoith, 2011).

Metformin (1,1-dimethylbiguanide hydrochloride) is the
drug most commonly prescribed to treat hyperglycemia in
T2DM patients. After oral administration of therapeutic
doses (1,000–2,250 mg/day), metformin is absorbed by
intestinal enterocytes reaching the liver through the portal
vein. In the kidney, metformin is absorbed from the
circulation and excreted into the urine. The concentration of
metformin in portal vein can reach 40–70 µM whereas in
systemic plasma fluctuates between 10–40 µM (He and
Wondisford, 2015). In contrast, metformin can reach in
intestinal tissue concentrations up to 150 fold higher than in
plasma (Paleari et al., 2018).

Metformin reduces blood glucose levels by inhibiting
hepatic gluconeogenesis via activation of the serine–threonine
liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK),
a conserved regulator of the cellular response to low energy
that is activated when ATP concentrations decrease and 5’-
AMP concentrations increase in response to nutrient
deprivation, hypoxia and metformin administration (Cusi et al.,
1996; He et al., 2009; Hundal et al., 2000; Shaw et al., 2005;
Zhou et al., 2001). There are other proposed mechanisms by
which metformin suppresses gluconeogenesis independent of
AMPK like, for example, by decreasing ATP and increasing
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AMP levels which leads to adenylate cyclase inhibition (Foretz et
al., 2010; Johanns et al., 2016; Miller et al., 2013). Other studies
indicated that metformin inhibits the respiratory chain complex
1, proinflammatory responses, cellular proliferation and that
interferes with mechanisms associated to autoimmune diseases,
such as the T helper 17/regulatory T cell balance, germinal
centers formation, autoantibodies production, macrophage
polarization and cytokine synthesis (El-Mir et al., 2000; Isoda et
al., 2006; Park et al., 2019; Marcucci et al., 2020; Ursini et al.,
2018). Other effects of metformin include suppression of cancer
stem cells in some cancers, Akt phosphorylation and β-catenin-
mediated signaling (King et al., 2006; Melnik et al., 2018;
Takatani et al., 2011; Saini and Yang, 2018). Regarding the
effects of metformin upon β-catenin, several reports indicate
that metformin down-regulates its expression in different cell
types including endometrial cancer cells, osteoblast-like Saos-2
cells and colon carcinoma RKO cells as well as the
transcriptional activity of c-MYC and β-catenin/TCF-Lef
reporters in epithelial ovarian cancer cells (Conza et al., 2021;
Park et al., 2019; Takatani et al., 2011; Garrido et al., 2020).
Several studies also indicate that metformin halt the conversion
of oral premalignant lesions into head and neck squamous cell
carcinoma, inhibits pancreatic cancer induction, DNA damage
by the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone, that attenuates the increase in reactive oxygen species
(ROS) and that promotes anti- and pro-angiogenic effects in
different cell contexts (Algire et al., 2012; Dallaglio et al., 2014;
Memmott et al., 2010; Schneider et al., 2001; Vitale-Cross et al.,
2012; Zolali et al., 2019). Furthermore, epidemiological studies
suggest that metformin exerts a protective effect on different
types of cancer including sporadic colorectal cancer (CRC)
(Chang et al., 2018; Klil-Drori et al., 2017; Kobiela et al., 2018),
observations recently reinforced by a double-blind placebo-
controlled/randomized trial demonstrating that metformin
decreased up to 40% colorectal adenoma recurrence (Higurashi
et al., 2016). An important caveat regarding the implications of
many of the above mentioned in vitro studies is that the
employed metformin concentrations on some cases were up to
≈ 100–150 fold higher than those achieved in the target tissues
after oral administration of therapeutic doses of metformin
(Foretz et al., 2019; He and Wondisford, 2015). Nevertheless,
the growing interest in metformin is evident by the number of
worldwide ongoing clinical trials (337) examining its effects
upon several pathologies including different cancers, fragile X
syndrome, glaucoma, amyotrophic lateral sclerosis, cerebral
palsy and HIV/AIDS (for a list of ongoing clinical trials see:
https://clinicaltrials.gov/ct2/results?term=metformin&Search=
Apply&recrs=a&recrs=d&age_v=&gndr=&type=&rslt=).

β-Catenin and Metformin

CRC development is associated with the sequential
accumulation of mutations and/or deletions of tumor
suppressor and oncogenes along with alterations in genetic
stability. In the current model of sporadic colon cancer, the
initial event that sets the stage for intestinal adenoma
formation is the deregulation Wnt/β-catenin signaling, an
event that promotes the nuclear accumulation of β-catenin
and the constitutive activation of its target genes
(Cheah, 2009; Huels et al., 2015; Kinzler and Vogelstein, 1996;

Krausova and Korinek, 2014; Polakis, 2012; Sansom et al.,
2004; Walther et al., 2009). In most cases, the mechanism
mediating the aberrant nuclear accumulation of β-catenin
involves mutations in the Adenomatous Polyposis Coli
(APC) tumor suppressor gene and/or β-catenin (Bienz and
Clevers, 2000; Clevers, 2006; Iwao et al., 1998; Phelps et al.,
2009). In normal colonocytes, APC is part of a destruction
complex that includes axis inhibition protein (Axin),
glycogen synthase kinase 3 β (GSK3β and casein kinase 1a
(CK1α). The interaction of β-catenin with the destruction
complex leads to its sequential phosphorylation in Ser45 by
CK1 and Thr41/Ser37/Ser33 by GSK3β (Polakis, 2002).
Phosphorylated β-catenin is then targeted for ubiquitination
and later degradation by the proteasome (Clevers, 2006).
Wnt binding to its receptor Frizzled, and co-receptor low-
density lipoprotein receptor-related protein 5/6 (LRP 5/6),
leads to the disassembly of the destruction complex, β-
catenin Ser45/Thr41/Ser37/Ser33 phosphorylation inhibition
and nuclear entry. Once in the nuclei, β-catenin interacts
with the T-cell factor/lymphoid enhancer-binding factor
(LEF/TCF) promoting the transcription of genes
associated with proliferation, differentiation, adhesion and
cellular migration (Clevers and Nusse, 2012; Nusse and
Clevers, 2017; Valenta et al., 2012). In the case of
proliferation, CYCLIN D1, one of the first reported
transcriptional genes targeted in CRC by β-catenin
(Niehrs and Acebron, 2012), and cMYC promote G1
phase advancement whereas cMYC induces the S phase
(Lecarpentier et al., 2019). Accordingly, abnormal
nuclear accumulation of β-catenin promotes CyclinD1
and cMyc overexpression and hyper-proliferation. Lgr5
and Axin 2, which are components of the Wnt pathway,
are also stem cell specific genes targeted Wnt/β-catenin
(Nusse and Clevers, 2017). Other genes targeted by β-
catenin include Tcf1, PDK, fibronectin, MMP7, Claudin
and cJun between others (for a list of genes regulated by
β-catenin see: https://web.stanford.edu/group/nusselab/
cgi-bin/wnt/target_genes).

Wnt-independent phosphorylation cascades also play a
central role in the control of β-catenin stability, intracellular
distribution and transcriptional activity (Daugherty and
Gottardi, 2007; He et al., 2007; Kriz and Korinek, 2018). For
example, the phosphorylation of β-catenin at Ser552 and
Ser675 by Akt or protein kinase A (PKA) promotes its
nuclear translocation and transcriptional activity (Fang et
al., 2007; Rey et al., 2012; Taurin et al., 2006; Taurin et al.,
2008). Because T2DM is associated with chronic PI3K/Akt
signaling (Hopkins et al., 2020; Lien et al., 2017), Akt-
mediated chronic Ser552 β-catenin phosphorylation provides
a plausible mechanism by which T2DM could potentiate
CRC development. Within this framework, metformin, at
concentrations found in the colon (1.5–3.5 mM) after oral
administration of therapeutic doses (Paleari et al., 2018),
inhibited Akt Ser473 phosphorylation and catalytic activity in
CRC-derived cell lines challenged with insulin or IGF-1
(Amable et al., 2019).

Previous studies in other cancer cells demonstrated that
AMPK inhibits mTORC1 activation through a mechanism
that involves stimulation of TSC2 function, accumulation of
Rheb-GDP (the inactive form) and direct phosphorylation
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of Raptor, (Gwinn et al., 2008; Inoki et al., 2006; Rozengurt et al.,
2014). Because mTORC1 is involved in metabolism, growth and
differentiation of cancer cells, it has been proposed that its
inhibition by metformin is associated to metformin anticancer
properties. Furthermore, a few studies indicate that metformin-
mediated mTORC1 inhibition also promotes autophagy in cells
derived from different tumors including myeloma, pancreatic
ductal adenocarcinoma, T-cell acute lymphoblastic leukemia
and hepatocellular carcinoma (Candido et al., 2018; Gao et al.,
2020; Grimaldi et al., 2012; Ling et al., 2017; Wang et al.,
2018b). In contrast, there is little information concerning the
impact of metformin/AMPK on mTORC2, the molecular
complex responsible for the phosphorylation of Akt at Ser473

and Thr479, PKC classical and novel family members and
glucocorticoid-induced kinase 1 (Baffi et al., 2021; Fu and
Hall, 2020). Within this context, recent results revealed a
marked sensitivity of CRC cells to metformin-mediated
inhibition of Akt Ser473 phosphorylation (Amable et al.,
2019), an exploitable vulnerability in CRC cells that can
further explain the mechanisms by which metformin acts as a
chemopreventive agent in bowel cancer.

Amable et al. (2019) studie also revealed that
PI3K/Akt signaling suppression was mediated by AMPK and
occurred upstream of Akt, very likely due to a defect in
phosphatidylinositol 3,4,5-triphosphate generation. Regarding
the possible mechanisms by which metformin can interfere
with PI3K/Akt signaling, previous studies suggest that AMPK
activity can promote a displacement of PI3K from its site of
action. For example, AMPK-mediated Ser794 phosphorylation
of the insulin receptor substrate 1 (IRS-1) inhibited the
binding and activation of PI3K (Tzatsos and Tsichlis, 2007)
while AMPK signaling shifted PI3K from its site of action at
the neurite tip (Amato et al., 2011). Whether the defect
observed in CRC-derived cells in response to metformin
treatment was due to a block in PI3K plasma membrane
translocation, inhibition of its catalytic activity or enhanced
phosphatases activity needs further scrutiny.

Amable et al. (2019), studies also showed that metformin-
associated PI3K/Akt signaling inhibition prevented β-catenin
Ser552 phosphorylation and β-catenin-mediated transcription
while promoting its plasma membrane localization. Although
β-catenin does not contain nuclear localization or export
signals, it shuttles between the cytoplasm and the nucleus by
interacting with a variety of partners including Chibby, Axin,
APC, Mucin 1, LEF-1 and BCL9 (Anthony et al., 2020;
Jamieson et al., 2014; Sharma et al., 2014). Additional
studies are required to elucidate how Ser552 phosphorylation
inhibition affects β-catenin nucleo-cytoplasmic distribution and
shuttling. Nevertheless, it is tempting to speculate that Ser552

phosphorylation enhances the interaction of β-catenin with a
binding partner that favors its nuclear import and/or anchor.

Metformin E-Cadherin, Fak and Metformin

E-cadherin, a tumor suppressor, is a core component of the
epithelial adherens junctions (AJ) that interacts via its
cytoplasmic tail with catenin family members α, β, and p120
while its extracellular domain interacts with E-cadherin
present in neighboring cells (Daulagala et al., 2019). In
contrast to the continuous degradation of cytoplasmic

β-catenin, AJs-associated β-catenin is highly stable and
associated to the regulation of E-cadherin availability at the
cell surface (Ishiyama and Ikura, 2012; Mendonsa et al.,
2018; Pokutta and Weis, 2007), a function shared with
p120-catenin which regulates E-cadherin endocytosis
(Cadwell et al., 2016; Kowalczyk and Nanes, 2012; Nanes et
al., 2012). E-cadherin expression or surface localization is
frequently lost or its function disrupted in many epithelial-
derived cancer cells including CRC (Kourtidis et al., 2017;
Petrova et al., 2016). The loss of E-cadherin diminish cell-
cell adhesion and deregulates Wnt signaling (Heuberger and
Birchmeier, 2010; Valenta et al., 2012).

N-cadherin, another member of the cadherin family of
proteins, is expressed in mesenchymal cells which are
characterized by displaying a major motility and a less
polarized phenotype than normal epithelial cells. N-cadherin is
also found in some epithelia-derived cancer cells, a factor that
contributes to their enhanced motility and invasive phenotype
(Gul et al., 2017). Within this context, the transdifferentiation
of epithelial cells into motile mesenchymal cells, a process
known as epithelial-mesenchymal transition (EMT), play a
central role in several normal and pathological processes
including development, wound healing, stem cell behavior and
cancer progression (Lamouille et al., 2014). Hallmarks of the
EMT include destabilization of adherens junctions, tight
junctions and desmosomes, critical structures necessary to
maintain epithelial integrity, as well as up regulation of
vimentin and α-smooth muscle actin (Lamouille et al., 2014).
Recent studies indicated that metformin inhibits EMT in cells
derived from different types of cancer including gastric, colon,
thyroid, breast, oral and prostate (Esparza-Lopez et al., 2019;
Han et al., 2015; Valaee et al., 2017; Wang et al., 2018a; Yin et
al., 2021; Zhang and Wang, 2019; Zhang et al., 2014). Several
mechanisms had been proposed to explain the inhibitory effect
of metformin upon EMT such as down-regulation of
transcription factors (SNAIL, TWIST and ZEB), inhibition of
PI3K/AKT/mTOR, MAPK, TGFβ, IL-6 and IL-8 signaling and
up regulation of miR-381 and miR-200c (Chen et al., 2020).
Such variety of mechanisms could be related to the distinct
origin of the cancer cells or to off-target effects since most
experimental models use concentrations of metformin that
exceed the levels reached in target tissues with the doses
recommended to treat T2DM patients.

Matrix metalloproteinases (MMPs), a family of
endopeptidases that promote the degradation of proteins in
the extracellular matrix, are associated to cell proliferation,
migration, and differentiation (Cui et al., 2017). In the
tumor microenvironment, MMPs facilitate invasion and
metastasis, two key processes associated to EMT transition.
Indeed, MMPs are involved in the process that lead to the
spread of metastatic cancers such as bladder, breast, colon,
kidney, melanoma and sarcoma as well as various cancers
including hepatocellular carcinoma, pancreatic ductal
adenocarcinoma and bone (Paolillo and Schinelli, 2019;
Scheau et al., 2019). Several studies indicate that MMP-2
and MMP-9, two key MMPs that promote tumor cell
invasion and metastasis, are down-regulated in their
expression and activity by metformin in cells derived from
breast cancer, renal carcinoma, esophageal squamous cancer
and human ovarian granulosa cancer (Chen et al., 2019;
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Fang et al., 2014; Jang et al., 2014; Liang et al., 2018). In several
cases the down-regulation of these MMP2/9, as a results of
metformin treatment, coincided with the inhibition of cell
growth and migration.

Recent studies employing metformin concentrations
compatible with the ones in the colon after oral
administration of therapeutic doses of this drug indicate
that metformin not only promoted the plasma membrane
localization of β-catenin and E-cadherin but also their
colocalization to de novo formed puncta along the length of
CRC-derived cells contacting membranes (Amable et al.,
2020). The plasma membrane redistribution of E-cadherin
in response to metformin treatment was accompanied by its
phosphorylation at Ser838/840, modifications associated to
E-cadherin/β-catenin binding and increased interaction
stability between both proteins (McEwen et al., 2014).
E-cadherin Ser838/840 conforms to a GSK3β recognition site,
a kinase activated in CRC-derived cells in response to
metformin (Amable et al., 2019). Metformin treatment was
also associated with an increase in the intracellular levels of
p120-catenin, a result consistent with the observation that
β-catenin drives the transcription of forkhead/winged-helix
transcription factors (Savage et al., 2010), which in turn
down-regulate p120-catenin transcription (Mortazavi et al.,
2010; Pham et al., 2017). In addition, metformin promoted
the redistribution of p120-catenin to the plasma membrane
where co-localized with E-cadherin/β-catenin, suggesting
that metformin promotes the novo formation of AJs
(Amable et al., 2020). Nevertheless, Amable et al. (2020),
did not examine whether N-cadherin, which is expressed in
the cell lines SW-480 and HT-29 employed in those studies
(Yan et al., 2015; Ye et al., 2017) was down regulated in
response to metformin.

AJs, desmosomes and tight junctions (TJs) form the
apical junction complex that regulates epithelial barrier
function and signaling (Mehta et al., 2015; Shigetomi and
Ikenouchi, 2019). Previous studies showed that AMPK
exerts a protective effect on the intestinal barrier function by
stimulating the formation of TJs (Chen et al., 2018; Peng et
al., 2009; Wu et al., 2018; Zhang et al., 2006). Because TJs
assembly is coupled to AJs formation (Campbell et al.,
2017), it is plausible that AJs formation in response to
metformin contributes to TJs assembly and intestinal barrier
recovery after injury.

Focal adhesions (FAs) are integrin-containing structures
that connect the cell to the extracellular matrix. These highly
dynamic multiprotein complexes include focal adhesion
kinase (FAK), a tyrosine kinase that regulates several
signaling pathways associated with cell adhesion, spreading
and migration (Berrier and Yamada, 2007) as well as tumor
growth and metastasis (Canel et al., 2010; Sulzmaier et al.,
2014; Tai et al., 2015). For example, FAK null mice
fibroblasts showed a reduced rate of migration associated
with FAs reorganization (Ilic et al., 1995) while FAK deficient
cancer cells display large FAs and reduced motility (Chan et
al., 2009; Hsia et al., 2003; Huttenlocher and Horwitz, 2011;
Webb et al., 2004). Former reports indicated that metformin
inhibited FAK phosphorylation in ovarian (Erices et al., 2017)
and prostatic cancer cells (Yu et al., 2017) whereas a more
recent study showed that, in CRC-derived cells, metformin

inhibited FAK catalytic activity and ERK-dependent FAK
Ser910 phosphorylation (Hunger-Glaser et al., 2003; Hunger-
Glaser et al., 2004; Jiang et al., 2007), a modification
associated with paxillin/FAK interaction, cell spreading and
migration (Chu et al., 2011; Luo et al., 2019; Vincent and
Settleman, 1997). Metformin-mediated inhibition of FAK led
to FAs structural changes including a reduction in their
numbers and increase in their size (Amable et al., 2020), very
likely through a modification of FAs turnover (Ilic et al.,
1995; Iwanicki et al., 2008; Kim and Wirtz, 2013; Plotnikov et
al., 2012), changes that were followed by cellular migration
inhibition (Amable et al., 2020).

Concluding Remarks

In summary (Fig. 1), the most recent studies described here
(Amable et al., 2019, Amable et al., 2020), indicate that
metformin, at concentrations within the range of those
found in human intestines after administration of
therapeutic doses of this drug, targets key molecules and

FIGURE 1. Simplified model of novel metformin targets associated to
CRC development and progression. The binding of insulin and IGF-1
to their receptors triggers the activity of phosphoinositide-3 kinase
(PI3K) that catalyzes the phosphorylation of PtdIns (4,5) P2 (PIP2)
to produce PtdIns (3,4,5) P3 (PIP3), a second messenger that binds
and recruits proteins containing a pleckstrin-homology (PH)
domain such as Akt, PDK1-that phosphorylates Akt at Thr308- and
mSIN1 -a component of mTORC2 (Fu and Hall, 2020), a complex
that mediates Akt Ser473 phosphorylation. Activated Akt
phosphorylates β-catenin at Ser552 promoting its nuclear localization
and transcription of its target genes. Metformin-mediated AMPK
signaling inhibits mTORC1 activation by stimulating TSC2 -which
leads to the accumulation of the inactive form Rheb-GDP- and by
direct phosphorylation of Raptor -which promotes the dissociation
of the mTORC1 complex. AMPK also interferes with the plasma
membrane accumulation of PIP3, which leads to Akt Ser473

phosphorylation inhibition. Inhibition of Akt prevents β-catenin
Ser552 phosphorylation inhibition promoting its plasma membrane
localization. Akt inhibition also mediates the activation of GSK3β
the phosphorylation of E-cadherin at Ser838/840 and its plasma
membrane recruitment where co-localizes with β and p120 catenins
in the novo formed AJs. Metformin treatment also inhibited ERK
and FAK catalytic activities, results that were accompanied by a
reduction in the number and increase in the size of FAs along with
cellular migration inhibition. Red Lines: inhibitory effects; blue
arrows: phosphorylation/signaling cascades; black arrows: effects like
redistribution of proteins/transcription/proliferation; dotted blue line:
putative phosphorylation.
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signaling pathways associated with CRC development and
progression. Further studies are needed in order to refine
our understanding of the underlying mechanisms.
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