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6 Remarks on some positivity conditions beyond Rindler positivity 13

6.1 Infinite divisibility 13

7 Summary and open questions 14

1 Introduction

Entanglement entropy of a global state ρ reduced to a spatial region V is defined as the

von Neumann entropy of the reduced density matrix ρV :

S = − tr(ρV log ρV ) . (1.1)

This quantity is divergent in Quantum Field Theory (QFT), but it contains universal

information that can be extracted from it. For instance, mutual information between two

non-intersecting regions A and B,

I(A,B) = S(A) + S(B)− S(AB) , (1.2)

is a finite quantity that can be used to extract universal information from the entanglement

entropy [1]. Mutual information is positive and increases upon adjoining a region C to

B, i.e.,

I(A,BC) ≥ I(A,B) . (1.3)
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This property is called monotonicity and it is equivalent to the strong subadditivity prop-

erty of entanglement entropy

S(AB) + S(BC) ≥ S(B) + S(ABC) . (1.4)

Other interesting measures of entanglement are the Rényi entropies

Sα(V ) =
1

1− α
tr(ραV ) , (1.5)

where α 6= 1 is a positive real number. The entanglement entropy S(V ) can be obtained

from the Rényi entropies Sα(V ) by taking the limit α → 1. Rényi mutual information

(RMI) is just a generalization of equation (1.2) for the Rényi entropies:

Iα(A,B) = Sα(A) + Sα(B)− Sα(AB) . (1.6)

Unlike entanglement entropy, Rényi entropies do not necessarily fulfill the strong sub-

additivity property in equation [2]. This tell us that mutual Rényi information is not

necessarily a positive quantity and it does not satisfy the monotonicity property given by

equation (1.3).

In this paper we show that a general property of relativistic QFT, known as Rindler

positivity [3, 4], imposes several constraints on the Rényi mutual information In(A, Ā) as

a function of the distance between A and Ā when the global state ρ is the vacuum of the

QFT. Here, A is a fixed-time region and Ā is the region obtained by making a reflection

of one spatial coordinate.

Let us make a short summary of Rindler positivity: in [3, 4], using Tomita-Takesaki

theory, the following inequality was derived:〈
0|O(Ā)O(A)|0

〉
≥ 0 , (1.7)

where O is an observable associated to a spacetime region A in the right Rindler wedge

W (x1 > |t|), and Ā is the time and wedge reflection of A, i.e., the region obtained by

making the transformation (t, x1, x2, . . . , xd)→ −t,−x1, x2, . . . , xd. For simplicity, we will

restrict to the case in which A is a region at fixed time t = 0; in that case, we only need to

make a reflection with respect to the spatial coordinate x. For a collection of N spacetime

regions Ai ⊂ W equation (1.7) implies that the N ×N matrix of coefficients [3]

Mij = e(n−1)In(Ai,Āj) (1.8)

has to be positive definite for integer n 6= 1. This gives a set of inequalities coming from

the fact that all the minors of the matrix (Mij) have to be non-negative. These inequalities

are non-linear expressions of the mutual information, with the exceptional case in which

N = 2, where we get the linear relation In(A, Ā) + In(B, B̄) ≥ 2In(A, B̄). It is natural to

ask what information can be extracted in general from all these expressions.

The situation which will allow us to go further with the implications of the inequalities

is the following (for the sake of simplicity we momentarily think of the 1 + 1 case). Con-

sider the family of regions Ai in the positive semi axis x obtained by applying arbitrary
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Figure 1. The family of regions considered consists of intervals Ai that are obtained by mak-

ing arbitrary positive translations of the fundamental interval (0, L), and their wedge reflected

counterparts Āi. In the figure we see three different translations of the fundamental interval with

parameters u1, u2 and u3. The distance between the region Ai and Āj is just ui + uj .

translations of distance ui to a single region of a fixed length L with left extreme point

in the origin, see figure 1. Due to translation invariance, the RMI In(Ai, Āj) should be a

function of the distance η = ui − (−uj) = ui + uj between Ai and Āj , where ui and uj
are the distances from the origin to the beginning of Ai and Aj respectively. Then, the

coefficients Mij are just values of a single real variable function. We want to see what

information can be extracted about In(Ai, Āj) as a function of η from the positivity of the

matrix (Mij) (see [5] for a related study with different purposes).

The characterization of a real function f of a single (real) variable such that the matrix

defined by Mij = f
(
xi+xj

2

)
(for xi in (a, b), i = 1, . . . , N , for all N) is positive definite

has been studied before [6–9]. In this paper we show that, when some of these results are

supplemented with the additional condition that In goes to zero when the distance between

the regions goes to infinity,1 more restrictive conditions emerge for In as a function of η.

Schematically, these new inequalities put bounds to the derivatives of order N of In in

terms of the lower order derivatives.

Organization of the paper. We start this manuscript with a brief revision of some

theorems on positive definite functions in section 2. These results combined with Rindler

positivity allow us to derive a set of inequalities for general QFTs, that are presented

in section 3. In section 4 we study the case of Conformal Field Theories (CFTs). In

subsection 4.1 we rewrite the inequalities in terms of a cross-ratio when the regions involved

are intervals in 1 + 1-CFTs and show that Rényi mutual information is monotonous, or

equivalently, that Rényi entropy is strong subadditive (for the special case of two intervals).

After that, we show in subsection 4.2 how conformal symmetry allows us to obtain more

restrictive inequalities. The inequalities obtained are checked in some known examples in

subsection 4.3 and we present an application of one of the relations derived in subsection 4.4.

1This can be seen by writing tr(ρn) as a correlation function of twist operators [10] and using the

clustering property of the vacuum. See also [11].
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In section 5 we briefly comment the inequalities for the Rényi entropy. Finally, in section 6,

we discuss the relation between the inequalities we obtained and infinite divisibility.

2 A brief review of results about positive definite functions

The characterization and properties of positive definite functions of a single variable have

been intensely studied in the early twentieth century, mainly by Schoenberg, Widder and

Bernstein. Several known properties of the vacuum correlation functions in relativistic

QFT are obtained by applications of some of these results. In this section, we give some

definitions and enunciate key theorems on positive definite functions that are relevant to

our paper. For a complete study of these topics we refer the readers to [6, 8, 9] (also see [7]

for a brief account of the main theorems).

There are two notions of positive definiteness for a function of a single variable. The

definition we use here is the following:

Definition 1. A real function f : (a, b) → R is positive definite (PD) if, for any natural

number N and for any choice of points {xi} (i = 1, . . . , N) with xi ∈ (a, b), the matrix M

of coefficients Mij ≡ f
(
xi+xj

2

)
is positive definite.2

Positive definiteness in this sense turns out to be a very restrictive condition. A

surprising consequence of this property is the following: if f : (a, b)→ R is positive definite

and continuous in (a, b), then it is C∞(a, b) (even more, it is real analytic there [8]).

Moreover, the derivatives fn(x) of order n satisfy an infinite set of inequalities valid

at any x ∈ (a, b): the N ×N matrices H(N,f) of coefficients
(
H(N,f)

)
m,n

= f (n+m) (n,m =

0, . . . , N − 1) are positive definite,

detH(N,f) =

∣∣∣∣∣∣∣∣∣
f f (0+1) f (0+2) . . . f (0+N−1)

f (1+0) f (1+1) . . . . .

. . . . . . . .

f (N−1+0) . . . f (N−1+N−1)

∣∣∣∣∣∣∣∣∣ ≥ 0 (2.1)

for all N ∈ N. Conversely, an analytic function satisfying this infinite set of inequalities

is PD. In fact, the inequalities (2.1) need only be satisfied at one point in (a, b) and then

they are automatically satisfied throughout the interval [7].

An obvious consequence of the definition of positive definiteness is that a PD function

is non-negative. A less obvious consequence is that the even derivatives of a PD function

are also PD (this follows easily from the inequalities (2.1)), and hence non-negative. Note

also from the definition that a linear combination of PD functions with positive coefficients

is also PD.

Simple examples of PD functions are f(t) = eλt for λ a real number. The positive

definiteness can be checked easily both from the definition and from the inequalities (2.1).

The definition of PD function requires that
∑

i,j=1...N cicjf
(
ti+tj

2

)
≥ 0. In this case,

2The other notion of positivity of a function arises when considering Mij = f(|xi − xj |) instead.
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∑
i,j=1...N cicjf

(
ti+tj

2

)
=
(∑

i=1...N cie
λti
2

)2
≥ 0. Therefore, f is PD. Checking the in-

equalities is trivial since all the determinants are just 0. Linear combinations of exponen-

tials with positive coefficients will also be PD. In particular, a constant function f(t) = c,

with c ≥ 0 is a PD function.

PD functions are closely related to absolutely monotonic (AM) and completely mono-

tonic (CM) functions, whose definitions are the following:

Definition 2. A function f is said to be absolutely monotonic (AM) if f (n) ≥ 0 for all

n = 0, 1, . . . and completely monotonic (CM) if (−1)nf (n) ≥ 0 for all n = 0, 1, . . . .

Note that the exponential f(t) = eλt is AM for λ > 0 and CM for λ < 0. A PD

function can always be written as the sum of an AM function and a CM function. This

follows from a classical theorem, which states that a function f on (a, b) is PD if and only

if it admits the following integral representation:

f(t) =

∫ ∞
−∞

e−λtg(λ)dλ =

∫ 0

−∞
e−λtg(λ)dλ+

∫
0

∞
e−λtg(λ)dλ (2.2)

where g is non-negative (strictly speaking, g(λ)dλ has to be understood as a Borel measure).

Note that the first term on the right-hand side above is AM and the second term is CM.

Most important for this paper are the PD functions defined on (0,+∞) (or more

generally on any interval of the form (a,+∞)) which are bounded at infinity. From the

decomposition (2.2) it follows that such functions are necessarily CM. Roughly speaking,

this is because the first term in (2.2) diverges as t → ∞, so this term must be absent in

order for f to be bounded at infinity (for a technical proof of this see [6]). Conversely, it

can be shown [8] that any CM function on (0,+∞) admits the integral representation of

the second term in (2.2), and hence it is PD. In other words, the space of PD functions on

(0,+∞) which are bounded at infinity is equal to the space of CM functions on the same

interval.

This equivalence gives rise to additional inequalities to the ones given by equation (2.1),

which come from the obvious fact that, if f is CM, then −f ′ is also CM. Using this and the

above equivalence, we conclude that, for f PD on (0,+∞) and bounded at infinity, −f ′ is

also PD.

The additional inequalities arise from substituting f by −f ′ in (2.1):

detH(N,−f ′) = (−1)N

∣∣∣∣∣∣∣∣∣
f ′ f ′(0+1) f ′(0+2) . . . f ′(0+N−1)

f ′(1+0) f ′(1+1) . . . . .

. . . . . . . .

f ′(N−1+0) . . . f ′(N−1+N−1)

∣∣∣∣∣∣∣∣∣ ≥ 0 . (2.3)

Thus, PD functions on (0,+∞) which are bounded at infinity are characterized by two

equivalent sets of conditions: (i) (−1)nf (n) ≥ 0 and (ii) equations (2.1) and (2.3). The

first set of conditions appears to be much simpler than the second, but we will see that the

second is more useful in some cases.

– 5 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
8

3 Inequalities for relativistic QFT in d + 1 dimensions

3.1 Implications of Rindler positivity for 2 and 4-point functions

Before going to the case of the Rényi mutual information, let us first consider the implica-

tions of Rindler positivity for the two and four point functions of a real scalar field. Let us

consider a generic relativistic field theory corresponding to a scalar field φ. Let us define

the state vector Ψ =
∑N

i=1 ciφ(0, xi, y, z)Ω (ci real numbers for simplicity), where all the

xi are positive, xi > 0, and Ω is the vacuum. The wedge reflected state Ψ̄ is obtained by

just replacing xi with −xi. Rindler positivity in this case asserts that (Ψ̄,Ψ) ≥ 0, which

implies

(Ψ̄,Ψ) =
∑

i,j=1,...N

cicj(Ω, φ(0,−xj , y, z)φ(0, xi, y, z)Ω) ≥ 0 . (3.1)

Let us suppress in the notation the fixed value of the other coordinates.

Due to translation invariance, (Ω, φ(−xj)φ(xi)Ω) will depend only on xi − (−xj) =

xi + xj ,

(Ω, φ(−xj)φ(xi)Ω) = f(xi + xj) . (3.2)

Rindler positivity implies that f is PD. Moreover, using the cluster property (which

implies that f(x) goes to a constant when x→∞) we conclude that f is CM for any QFT.

A similar argument can be repeated for the 4-point function. A simple way to get a

similar result for a function of 1 variable is to start from Ψ =
∑N

i=1 ciφ(xi)φ(xi+L)Ω, with

a given positive L. In this way, using translation invariance, we will get that the function

fL of one variable defined by

fL(xi + xj) = (Ω, φ(−xj − L)φ(−xj)φ(xi)φ(xi + L)Ω)

= (Ω, φ(−L)φ(0)φ(xi + xj)φ(xi + xj + L)Ω) , (3.3)

should be CM.

Let us notice that this simple constraint applies to a particular class of 4-point functions

W (u1, u2, u3, u4), where u2 − u1 = u4 − u3 ≡ L ≥ 0. This and translation invariance tell

us that W is the function fL of the single parameter given by u3 − u2. Let us remember

that all the other coordinates are the same in each of the 4 points.

In order to show a use of these inequalities, let us show why e−r
2/λ

r cannot be a two

point function for equal time points separated by a distance r in any QFT. A simple check

of the inequalities (2.1) and (2.3) shows that (2.1) with N = 2 is violated. On the other

hand, the two point function of a massive scalar field in 2 + 1 dimensions, e−r/m

r , is the

product of two CM functions, e−r/m and 1/r, and hence it is CM as it should.

3.2 Inequalities for the Rényi mutual information in d + 1 dimensions

In this section we explore the implications of Rindler positivity for the RMI between two

regions. The main result of this section is a set of inequalities for the RMI between a

spacelike region and its reflection that holds in any QFT for any dimensions.

Rindler positivity applies to any family of regions in the right Rindler wedge with all

their reflections in the left Rindler wedge. But as we anticipated in section 1, to use the

– 6 –
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Figure 2. Some representatives of the family of regions located in the right Rindler wedge and

their reflections. Each region in the right Rindler wedge is obtained by a translation in x of the

same region. The RMI between Ai and Āj depends only on the distance ui + uj between these

regions.

results on positive definite functions of a single variable, the family of regions needs to be

further restricted. A simple example of the construction of an allowed family is the one

we illustrated before in figure 1. More generally, the family of regions should fulfill the

following two requirements:

1. The regions on the right Rindler wedge should be a one-parameter family of regions,

in such a way that a real number ui fixes the region Ai.

2. The RMI of a pair AiĀj should depend on ui and uj only via the sum ui + uj ,

In(AiĀj) = In(ui + uj).

Note that these requirements constrain both the family of regions and the parameter

used to label the regions. In figure 2 we can see an example of a family that fulfills these

requirements in 2+1 dimensions. Each individual region in the figure is obtained by making

an arbitrary positive translation in x of the fundamental region located at x = 0. In this

case In(Ai, Āj) depends only on ui and uj via η = ui + uj , i.e., the sum of the distances to

the origin of Ai and Aj respectively.

Rindler positivity applied to one of these families of regions implies that Fn=e(n−1)In(η)

is a PD function of η. By construction, the distance η covers the set (0,+∞); therefore, Fn
is a PD function in such interval. With the additional condition that In goes to zero when

the distance goes to infinity we can then conclude that Fn = e(n−1)In(η) is a CM function

(see the discussion around equation (2.2)). As we explained at the end of section 2, this

implies that it satisfies the set of inequalities given by equations (2.1) and (2.3). We have

thus derived a set of inequalities that the RMI between an arbitrary region and its reflection

must satisfy.3

Let us show some of the inequalities arising from equation (2.1) in the case N = 2 and

equation (2.3) for N = 1. The first and simpler ones are the following

det H(2,Fn) ≥ 0 → I ′′n ≥ 0 , (3.4)

detH(1,−F ′n) ≥ 0 → I ′n ≤ 0 . (3.5)

3Note that the inequalities are written in terms of In(Ai, Āj), but since Aj is a translation of Ai, Āj is

the reflection of Ai with respect to a plane located at the middle point between Ai and Āj .

– 7 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
8

Notice that, since we assumed that In vanishes in the long distance limit, equation (3.5)

tells us that In is positive. This is only warranted in a relativistic QFT and in the special

case in which we consider a region and its reflection, but it is not true for general systems

where In can take negative values (see [12] for instance).

The higher order inequalities are in general non-linear in the derivatives of In. For

instance, the first following ones are I
(4)
n I ′′n + 2(n − 1)(I ′′n)3 − (I ′′′n )2 ≥ 0 and (In)′(In)′′′ +

(n− 1)I ′′n(I ′n)2 − (I ′′n)2 ≥ 0.

In general, the first set of inequalities state that the highest order derivative appearing

there (which is of order 2N) will be greater than certain non-linear combinations of lower

order derivatives. In the second set of inequalities, the highest derivative is I2N−1 (odd)

and the inequality also tells us that the 2N − 1 order derivative is bounded from above by

certain expression that involves lower order derivatives.

Looking at equations (3.4) and (3.5), one could think that the alternating signs of

these first derivatives are an indication that In is a CM function. This does not follow

from the previous inequalities, since the logarithm of a CM function is not a CM function

and therefore (n − 1)In = log(Fn) is not CM in principle. The inequalities obtained in

general put lower and upper bounds for I
(2N)
n and I

(N)
n but they do not enforce In to have

alternating signs in their derivatives.

4 Inequalities for CFTs

In this section we focus on the special case of a conformally invariant QFT, where we study

the obtained inequalities and we are also able to obtain more constraining relations using

conformal symmetry. We verify the validity of the inequalities obtained for several concrete

CFTs and we also show a simple application of the inequalities.

4.1 Inequalities for intervals in a 1 + 1 CFT

In this subsection we show how to rewrite the inequalities obtained in section 3.2 in terms

of a cross ratio, for the special case of intervals in 1 + 1 dimensions. We will also show here

that RMI exhibits a sort of monotonicity property when expressed in terms of the cross

ratio.

Consider a 1+1 CFT and the family of regions of figure 1, that consists of fixed-length

intervals. Due to conformal invariance, In(Ai, Āj) depends only on η̃ ≡ η
L , where η is the

distance between Ai and Āj . This quantity can be expressed in terms of the usual cross

ratio for the intervals (ui, vi) and (uj , vj)

x ≡ (vi − ui)(−uj − (−vj))
(ui − (−vj))(vi − (−uj))

. (4.1)

The relation between the cross ratio x and η̃ is the following

η̃ =
ui + uj
L

=
1√
x
− 1 . (4.2)

Note that, by conformal invariance, any pair of intervals (even if we allow intervals of

different lengths) that have the same cross ratio x will have the same mutual information.

– 8 –
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Ai

AjĀj

Āi

t

x

d

Li

Lj

Figure 3. Ai and Aj are intervals of respective lengths Li and Lj at t = 0 with the same left

starting point at x = d. The reflected regions Āi and Āj are also shown in the figure.

We can see how the inequalities obtained for In(η) are rewritten when considering In as a

function of x using equations (4.1) and (4.2). For instance, inequality (3.5) for the RMI in

terms of the usual cross ratio x is expressed as

I ′n(x) ≥ 0 . (4.3)

By simple algebraic manipulations we can see that the cross ratio x associated with two

disjoint intervals Ai and Aj increases when we replace Aj by a larger region Ãj ⊃ Aj .

Therefore, we see that I ′n(x) ≥ 0 expresses monotonicity of RMI, or equivalently, strong

subadditivity of Rényi entropy for this special configuration in which we have two intervals.

When rewriting equation (3.4) in terms of the cross ratio we get

2xI ′′n(x) + 3I ′n(x) ≥ 0 . (4.4)

This inequality puts a lower bound to the negativity of the second derivative, which in

principle does not enforce RMI to be a convex function of x.

4.2 A stronger inequality

Let us now consider the family of regions of figure 3. In contrast with the arrangement

of figure 1, in figure 3 the family comprises all the intervals starting at the same point

x = d ≥ 0 (arbitrarily chosen) having different arbitrary lengths Li, and their reflections.

The usual cross ratio x associated to the pair Ai, Āj is

x =
1

(2d/Li + 1)(2d/Lj + 1)
. (4.5)

Taking logarithms to both sides we get that

− log(x) = log(2d/Li + 1) + log(2d/Lj + 1) , (4.6)

is the sum of two arbitrary positive numbers covering the interval (0,+∞). Therefore, for

this family, Rindler positivity tells us that e(n−1)In is CM as function of the new variable

– 9 –
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ρ ≡ − log(x) since (as we said before) we assumed that the exponential of In is bounded

when ρ→∞.

We want to remark that using conformal transformations, any pair of disjoint inter-

vals with different lengths can be transformed into a pair of intervals with equal lengths.

Therefore, for any pair of intervals both inequalities apply: those arising from complete

monotonicity in ρ as well as complete monotonicity as function of η̃.

Using results on compositions of CM functions, we can actually see that the complete

monotonicity as a function of ρ is stronger than the one as a function of η̃. η̃ is related to ρ

by ρ = h(η̃) = 2 log(η̃ + 1). h is a positive function whose first derivative is CM. It is easy

to see that for such function, f ◦ h is CM if f is CM, i.e., In(η) will be CM if In(ρ) is CM.

The converse is not true, so complete monotonicity in ρ will impose stronger conditions.4

For instance, this condition enforces

xI ′′n(x) + I ′n(x) ≥ 0 , (4.7)

which is stronger than equation (4.4). Writing these conditions in terms of η̃, we see that

the stronger condition implies:

I ′′n(η̃) ≥ −I ′n(η̃)
1

η̃ + 1
. (4.8)

This inequality can be written as −(I ′n(η̃)(1 + η̃))′ ≤ 0, saying that −I ′n(η̃) should go

as 1
1+η̃h(η̃) (for any distance), h being a decreasing function of the distance.

The results of this subsection remain true in d + 1 dimensions for the RMI of two

arbitrary balls, because the latter depends only on the cross-ratio x of the 4 points at which

the boundaries of the balls intersect the line that joins their centers. That is, Fn = e(n−1)In

is a CM function of − log(x) for an arbitrary pair of balls in a CFT in d+ 1 dimensions.

4.3 Check of the inequalities in some CFT models

We have checked the set of inequalities (−1)nf (n) ≥ 0, f = Fn = e(n−1)In (where the

derivatives are respect to ρ = − log(x) in the following 1 + 1 CFTs: the massless free Dirac

and scalar fields, the compactified free scalar and the critical Ising model. Let us next

illustrate how simple the check of the inequalities turns out to be.

We start with the RMI between two intervals for the free fermion, which can be com-

puted using the results for the Rényi entropy of an arbitrary set of intervals in [13]. In

terms of the cross ratio x given by equation (4.1), the RMI reads

I free fermion
n (x) = −n+ 1

12n
log(1− x) . (4.9)

This is an AM function since all its derivatives are positive. Therefore, the composition

with e−ρ is automatically a CM funcion (since if g is AM, and h es CM then g ◦ h is CM

4CM in ρ does not follow from CM of f as function of η̃. It is enough to see a single example of a CM

function g in (0,+∞) such that g ◦h is not CM. For instance, take g(t) = e−
1
2
(t+1) and check that (g ◦h)(ρ)

has negative second derivative for ρ < 2 log 2.
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— the converse is not true). Then, In itself will be a CM function of ρ implying that Fn
is a CM function.

In the case of the chiral scalar field [14] the mutual information exhibit the same

behaviour of being itself an AM function of x (we checked this property numerically). In

that case the check of the inequalities is then straightforward.

A perhaps more interesting situation is the case of the compactified free scalar, for

which I2(x) is not an AM function (see equation (4.30) of [15])

I2(x) = ln

(
θ3(il/R2)θ3(ilR2)

θ3(il)θ4(il)

)
. (4.10)

where R is the radius of compactification and x is related to l by x =
θ42(il)

θ43(il)
. Since the

behaviour for small x is I2 ∼ Ax1/(R2), where A is a positive number, for R 6= 1 the second

derivative becomes negative, while I2(x) and I ′2(x) are positive. This means that I2(x) is

not an AM function. Nevertheless, we checked that once we express I2 as a function of ρ

it turns out to be a CM function and then the exponential of RMI fulfills the inequalities.

Another interesting model is the critical Ising model. For two disjoint blocks, the Rényi

entropies have been computed in [16]. A closed expression for our function F2 in that case

is given by

F2(x) =
1

(1−x)
1
8

1√
2

{[
(1+
√
x)(1+

√
1−x)

2

]1/2

+x1/4+[(1−x)x]1/4+(1−x)1/4

}1/2

=

=
1

2(1−x)
1
8

[
1+x

1
4 +(1−x)

1
4

]
. (4.11)

Replacing x = e−ρ in the last expression, it can be checked that F2 is a CM function

of ρ, though in this case I2 itself is not CM.

RMI is also computed in holography and in those cases a phase transition occurs due

to the large c limit (see for example [15]). The discontinuity in the derivative of RMI would

immediately lead us to conclude that RMI is not a PD function in the holographic case.

This in turn means that positive definiteness of (1.8) is violated for the family of regions

considered (see section 6). This is not a problem because holography involves taking a

limit c → ∞ and in this limit the PD character of Fn may be lost. We can illustrate

this phenomenon with the following example. Consider that I (ρ) = log
[
ec(1−ρ) + 1

]
. The

exponential of I (ρ) can easily be seen to be a CM function for any value of c. However, if

we keep the leading order in the limit of large c, we can see that

eI(ρ) =

{
ec(1−ρ) if ρ < 1,

1 otherwise.
(4.12)

which is not differentiable at ρ = 1 and therefore cannot be a PD function.

4.4 Constraining OPE coefficients with the inequalities

In a 1 + 1 CFT, the RMI between a pair of intervals can be written in terms of twist

operators using the replica trick. It is known that, for two disjoint intervals, e(n−1)In(x) is a
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4-point function of twist operators evaluated at 0, x, 1,+∞, and as function of x, it admits

the following convergent expansion (see for example equation (4.7) in [15]):

e(n−1)In(x) = x
c
6(n− 1

n) 〈σ1(0)σ−1(x)σ1(1)σ′−1(∞)
〉

=
∑
m

cσ1σ1mc
m
σ1σ−1

xdm (4.13)

where the non-negative numbers dm are the conformal dimensions of the untwisted opera-

tors. For our discussion it is useful to collect all the terms with a given power d of x, writing

this expansion as
∑

dCdx
d. The expansion starts with the identity operator (d = 0) with

coefficient 1 (in such a way that In(0) = log(1) = 0).

We want to see the constraints that CM as a function of ρ imposes on the coefficients

of the expansion. Replacing x = e−ρ we get

Fn = e−(n−1)In =
∑
d

Cd x
d =

∑
d

Cde
−dρ . (4.14)

One can show that
∑N

i=1 cie
−λit (with λi > 0) is CM if and only if every ci is non

negative. Therefore, formally, the inequalities that we have derived imply that every Cd
should be non-negative. To best of our knowledge, this constraint on the coefficients Cd had

not been noticed before. Note that if all coefficients Cd are positive, the above expression

written in terms of η̃, Fn =
∑

dCd(1 + η̃)−2d, is also CM as it should.

In all the CFT models we studied the coefficients Cd (obtained from adding up quadrat-

ic combinations of OPE coefficients) are actually non-negative. This can be seen by making

a series expansion of Fn in terms of x and checking that each coefficient is in fact positive.

5 Inequalities for Rényi entropy

In [3, 4] Rindler positivity was applied directly to the exponential of the Rényi entropy −Sn
of two disjoint regions and then, by simple algebraic manipulations, it was shown that it also

applies to the RMI. Our analysis implies that g(d) = e−(n−1)Sn(d) is a CM function of the

distance d, between a pair of intervals of equal lengths (since −Sn(AĀ) = In(A, Ā)−2Sn(A)

and Sn(A) is a constant). Notice that in this exponential appears the Rényi entropy of the

union AĀ.

It would be interesting to derive inequalities for Sn of a single region, considering Sn
as function of a parameter characterizing their size. In the case of intervals, for example,

we can try to find inequalities for Sn as a function of the length L. As usual, we need to

choose a suitable family of regions. In this case, the relevant family is the one consisting

of segments of different lengths, all of them starting at the origin (see figure 4). In that

case, Ai ∪ Āj is again a single interval of length equal to Li + Lj .

We cannot get complete monotonicity of g(L) = e−(n−1)Sn(L) as function of L since

we cannot impose that Sn(L) goes to a finite value when L goes to infinity. Therefore,

we can only derive half of the inequalities, the ones given by equation (3.4). Among other

relations, we have that S′′n(L) < 0. This comes just from positive definiteness of g.
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Ai

AjĀj

Āi

t

x

Li

Lj

Figure 4. Two intervals Ai and Aj of different lengths starting at x = 0 and their reflections. The

union of Ai with Āj is also an interval and its length is L = Li + Lj .

6 Remarks on some positivity conditions beyond Rindler positivity

In the previous sections we obtained inequalities coming from a general theorem valid in

any QFT (Rindler positivity). It is curious that, though these inequalities are not expected

to hold for the entanglement entropy/mutual information, there are many cases in which

the exponential of (minus) the entropy is a PD function. The standard example is the

massless Dirac fermion in 1 + 1 dimensions, in which e−6S is in fact a correlator [3].

Even in some cases where the function is not PD, it happens to be PD by pieces.

For instance, we know that the phase transition appearing for the holographic mutual

information between intervals in a 1 + 1 assures that the exponential of I cannot be PD

since it is not an analytic function. However, it turns out that the exponential of I is

piecewise PD. Let us show this. The expression for the mutual information between two

intervals is given by

I(x) =

{
0 , x ≤ 1/2

(c/3) ln(x/(1− x)) , x ≥ 1/2
, (6.1)

Although this is not an AM function in the whole interval (0, 1) (since it is not differ-

entiable at x = 1/2), it is AM in (0, 1
2) and (1

2 , 1) separately. Therefore, expressing x in

terms of ρ, the exponential of λI is

eλI(ρ) =


(

e−ρ

1−e−ρ

)− c
3
λ

when ρ ≤ log(2)

1 when ρ ≥ log(2)
(6.2)

which is PD and CM by pieces, and this happens for any value of λ. This leads us to

consider the issue of infinite divisibility.

6.1 Infinite divisibility

As we already noted before, our derivation of the CM character of Fn = e(n−1)In does not

imply that In itself is a CM function. If this was the case, then Fn
α = eα(n−1)In would be

a PD function for every real positive α. This last property is called infinite divisibility.
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Infinite divisibility is not a consequence of Rindler positivity, but in many of the

examples discussed in section 4.3 infinite divisibility occurs. In the cases where In is itself

an AM function of x (as in the case of the free Dirac field in 1 + 1, see equation (4.9)),

then it becomes a CM function of ρ or η after composition. In such cases, the exponential

eα(n−1)In is PD and CM for any α > 0, i.e., infinitely divisible.

In many examples, the first derivative of the entropy of a single interval is CM as a

function of the length of the interval (see for instance [5]). This is exactly the necessary and

sufficient condition for e−αS to be a PD function for any α positive,5 due to a well-known

theorem [6] which establishes that given a function ψ : (0,+∞) → (0,+∞), f = e−αψ is

PD for any α > 0 if and only if ψ′ is CM. A function ψ : (0,+∞) → (0,+∞) with a CM

first derivative is called a Bernstein function. For instance, the entropy of the vacuum

reduced to an interval in a CFT is a Bernstein function.

7 Summary and open questions

In this paper, we studied how Rindler positivity together with the clustering property

constrain the Rényi mutual information of certain pairs of regions. The inequalities we

derived become more stringent when conformal symmetry is present. Let us summarize

the main results obtained in this paper:

1. For general QFTs in arbitrary dimensions e(n−1)In(A,Ā) is a CM function of the dis-

tance η between a region A and its reflection Ā with respect to some plane. In

particular, I ′n(η) ≤ 0 and I ′′n(η) ≥ 0, that is, Rényi mutual information should be a

decreasing convex function of η.

2. For CFTs in arbitrary dimensions, e(n−1)In is a CM function of − log(x) for an arbi-

trary pair of balls with cross-ratio x.

3. We verified that the inequalities derived are satisfied in many examples where an

explicit expression for the Rényi mutual information is known.

4. We showed how the inequalities obtained can be used to impose non-trivial con-

straints on the coefficients appearing in the OPE of a 4-point function of certain

twist operators.

In this last spirit, we suspect that the inequalities derived here can be used to obtain

more information about the structure of CFTs. We leave the study of this interesting topic

for a future work.

As a final comment, we want to remark that the inequalities we derived come from

Rindler positivity applied to particular families of regions (like the ones of figure 1 and

5In [5] (in a different context, related to the implications of the conjectured condition by Fursaev of a

path integral representation for the exponential of the entropy [17]) it was shown that infinite divisibility

is equivalent to the condition that −S′′ should be PD. One can see that this condition together with the

fact that S is positive implies that all the odd derivatives of S have to be positive. Then it follows that S

is a Bernstein function, which implies that both −S′′ and S′ are PD.
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figure 3). We have not explored yet the implications for more general regions, that will

surely lead to stronger inequalities. In order to extract information of Rindler positivity

for families depending on more than one parameter we will need results from positive

definiteness of functions of several variables.
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