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a b s t r a c t

In this work it is shown that the Shannon entropy is an efficient dynamical indicator that provides a
direct measure of the diffusion rate and thus a time-scale for the instabilities arising when dealing with
chaos. Its computation just involves the solution of the Hamiltonian flow, the variational equations
are not required. After a review of the theory behind this approach, two particular applications are
presented; a 4D symplectic map and the exoplanetary system HD 181433, approximated by the Planar
Three Body Problem. Successful results are obtained for instability time-scales when compared with
direct long range integrations (N-body or just iterations). Comparative dynamical maps reveal that this
novel technique provides much more dynamical information than a classical chaos indicator.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos indicators are powerful tools to investigate the global
structure of phase space of dynamical systems. Most of them are
based on the evolution of the tangent vector of a given trajectory
as in case of the maximum Lyapunov Exponent (mLE).

Let ϕ(t) be a given solution of a Hamiltonian flow. The mLE of
ϕ is defined as

mLE(ϕ) = lim
t→∞

∥δ(0)∥→0

1
t
ln

∥δ(ϕ(t))∥
∥δ(0)∥

, (1)

where δ(ϕ(t)) is the tangent vector to ϕ(t) and it is the solution of
the first variational equations of the Hamiltonian flow evaluated
at ϕ(t), with initial condition δ(0). We refer to [1] for a theoretical
discussion about the mLE and its computation.

It is well known, as it was discussed and shown in for in-
stance [2,3] that in case of quasiperiodic motion, ϕq, after a
motion time t , the finite time mLE, mLEt, converges to 0 as
mLEt(ϕq) ≈ ln t/t , and for instance for t = 104, mLEt(ϕq) ≈

0−3. On the other hand for a given chaotic motion, ϕc(t), with
LE = µ > 0, ∥δ(ϕc(t))∥ ≈ ∥δ(0)∥eµt . Thus by means of (1), to
istinguish ϕc(t) with µ ≤ 10−3 from ϕq(t), the computational
ime should be t ≳ 105.

In the 90s, three techniques were widely used to investigate
dynamics in phase space (particularly in Dynamical Astronomy):
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167-2789/© 2020 Elsevier B.V. All rights reserved.
the mLE, the Frequency Map Analysis [4,5] and the Poincaré
Surface of Section [6]. Computers were not fast enough to cope
with the determination of the mLE for a large sample of orbits
over long motion times. Thus fast dynamical indicators appear:
the Fast Lyapunov Indicator, FLI [7–9]; the Mean Exponential
Growth factor of Nearby Orbits, MEGNO [2,3,10]; the Smaller
and the Generalized Alignment Indices, SALI–GALI [11–13]; the
Orthogonal Fast Lyapunov Indicator, OFLI [14–16], among others.

Fast dynamical indicators are then useful to display the global
dynamical structure of phase space unveiling the chaotic and
regular components as well as the resonance web. Moreover they
are able to show up invariant manifolds and provide a measure
of hyperbolicity of the chaotic regions.

Though they provide information about the mLE in a given
point of the phase space, it should be stressed that a positive
mLE does not necessarily imply chaotic diffusion, i.e. a significant
variation of the unperturbed actions or integrals of motion, the
well known stable chaos is a typical phenomenon where the
unstable motion is rather confined to small neighborhood of the
initial values of the integrals over motion times larger than mLE−1

(see for instance [17] for an example in the Solar System). In
many-body systems, some attempts to tackle this problem were
proposed by means of a numerical technique based on the prop-
erties and the distribution of the deviation vector as discussed
in [18,19].

Therefore chaos indicators are effective tools to conduct fur-
ther relevant dynamical studies, for instance how effective is
chaos to erase correlations among the phase space variables,
i.e. to obtain an estimate of the time-rate of the instabilities
 51
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rising in the chaotic components of a divided phase space, the
o-called chaotic diffusion.
Chaotic diffusion in high-dimensional Hamiltonian systems in

both limits of weak and strong chaos has been largely investi-
gated (see for instance the discussion given in [20] and references
therein) while for studies in low dimensional systems we refer
to [21–26].

In this work we take advantage of the Shannon entropy ap-
proach, already introduced in [27,28], to show that the entropy
besides being an effective dynamical indicator, it provides an
accurate measure of the diffusion rate. In the above mentioned
works the theoretical framework is provided when dealing with
the action space of high-dimensional systems. Moreover, success-
ful applications of this novel technique to measure diffusion in
two coupled rational standard maps [3], the Arnold Hamiltonian
[29] and the planar restricted Three Body Problem were carried
out.

On the other hand, in [25,26,30] it was shown analytically and
numerically that the Shannon entropy is also a very powerful
tool to measure correlations among the successive values of the
phases involved in highly chaotic, almost ergodic, low dimen-
sional maps as the whisker mapping and its generalization to
cope with diffusion in Arnold model [21], and the standard map
as well as the rational standard map, both for large values of the
perturbation parameters.

Herein we focus our effort in the derivation of a time-scale
for the chaotic instability in a 4D symplectic map that model
the dynamics around the junction of two resonances of different
order and in the HD 181433 exoplanetary system that could be
well represented by the planar Three Body Problem.

2. The Shannon entropy formulation

In this section we summarize the formulation given in [25,27,
28,31] regarding the Shannon entropy as a dynamical indicator
as well as a measure of the diffusion rate in action space of
high-dimensional Hamiltonian systems or symplectic maps. For a
general background on the Shannon entropy we refer to [32,33]
as well as [34].

Let us consider an N-dimensional system defined by actions
(I1, . . . , IN ) and phases (ϑ1, . . . , ϑN ). For simplicity and due to
ormal aspects of this presentation we assume a 4D map with
I1, I2) ∈ R2, (ϑ1, ϑ2) ∈ T2 and a given section S = {(I1, I2) :

ϑ1 − ϑ0
1 | + |ϑ2 − ϑ0

2 | < δ ≪ 1} where ϑ0
1 , ϑ

0
2 are some fixed

alues of the phases that define S.
A given trajectory γ = {(I1(t), I2(t)), t = 1, . . . ,∞} ⊂ S

eads to a surface distribution density on S , ρ(I1, I2) assumed
ormalized, such that introducing a partition of S , α = {ak, k =

1, . . . , q}, q ≫ 1, the (disjoint) elements have a measure

µ(ak) =

∫
ak

ρ(I1, I2)dI1dI2. (2)

For finite but large motion times, t ≤ Ns, where Ns denotes the
number of intersections of γ with S that will be the scenario
hereafter, the above measure reads

µ(ak) =
nk

Ns
.

where nk is the number of action values (I1, I2) in the cell ak. Thus
he entropy of γ for the partition α is defined as

(γ , α) = −

q0∑
k=1

µ(ak) ln(µ(ak)) = lnNs −
1
Ns

q0∑
k=1

nk ln nk. (3)

where 1 ≪ q0 ≤ q denotes the non-empty elements of the
partition. It is simple to show that 0 ≤ S ≤ ln q0, the minimum
occurs when n = N , n = 0 ∀j ̸= k, i.e. a trajectory lying on
k s j

3

a torus that reduce to a single point in S , while the maximum
corresponds to ergodic motion, nk = Ns/q0 ∀k, all elements of the
partition having the same measure. Thus, as it was shown in for
instance [27], the entropy is in fact an effective indicator of the
stability of the motion, comparisons with other fast dynamical
indicators were given.

Let us focus first on nearly random motion. As it was discussed
in [25,30], if nk follows a Poissonian distribution with mean λ =

s/q0 ≫ 1, setting nk = λ + ξk with |ξk| ≪ λ, then up
o O((ξk/λ)2), the entropy (3) for uncorrelated motion, say γ r ,
educes to

(γ r , α) ≈ ln q0 −
1

2λ2
1
q0

q0∑
k=1

ξ 2k . (4)

Recalling that the Poissonian fluctuations obey a normal distribu-
tion with mean value 0 and standard deviation

√
λ,

then

1
q0

q0∑
k=1

ξ 2k = λ, (5)

and the entropy (4) reduces to

S(γ r , α) ≈ ln q0 −
1
2λ
. (6)

Therefore for random motion |S − ln q0| = O(λ−1) being λ ≫

, defining S0 = ln q0, the entropy can be well approximated by

(γ r , α) ≈ S0.

In case of a strong unstable, chaotic but non-random trajec-
ory, γ , we write nk = λ+ ξ̃k where we assume that |ξk| < |ξ̃k| ≪

. Then accordingly to (4)

(γ , α) ≈ ln q0 −
1

2λ2
1
q0

q0∑
k=1

ξ̃ 2k , (7)

recalling (5) and defining β such that
q0∑
k=1

ξ̃ 2k = β

q0∑
k=1

ξ 2k ,

it follows then

β =
⟨ξ̃ 2k ⟩

λ
, ⟨ξ̃ 2k ⟩ =

1
q0

q0∑
k=1

ξ̃ 2k . (8)

Thus, from (7)

|S(γ , α) − ln q0| ≈
β

2λ
. (9)

Thus defined, β ≥ 1 is the ratio between the variance of the
fluctuations of nk and the mean value λ for a non-Poissonian
distribution. Thus, also for γ , S(γ , α) ≈ S0 provided that β/λ ≪

1.
On the other hand, in case of a trajectory γ c confined to a small

domain of S , as it was discussed in [30,31], the distribution of the
nk approaches a delta, δ(nk − λ), and thus estimating |ξk| ≈ 1/2
(see [30]), it follows from (4) that

|S(γ c, α) − ln q0| ≈
1

8λ2
(10)

nd thus it is also true that S ≈ S0 even though λ ∼ 1.
Following [31], a local diffusion coefficient for γ in the interval

t, t+δt) can be estimated from the time derivative of S whenever
S/dt ≈ dS0/dt ,

DS(γ , t) :=
Σ

q0(t)
dS

(t) ≈
Σ δq0 (t), (11)
q dt q δt
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being the area of S where the partition is defined, so that Σ/q
rovides the size of the cells in action dimensions (see below for
n alternative definition of Σ). The estimate (11) rests on the
ssumption that locally the variation of S is due to changes in
he number of occupied cells, i.e. due to variations in the actions
n the interval (t, t + δt), in such a way that (see [27,31])

q0(t) ∝ ⟨δI21 (t) + δI22 (t)⟩ ≈ Dtδt,

here ⟨·⟩ denotes space average and Dt ≡ D(I1(t), I2(t)) is a local
iffusion coefficient in action space, when γ is restricted to the
egion (I1, I1+δI1)×(I2, I2+δI2). In other words, any other source
f changes in the entropy, for instance due to variations in the
easure µ(ak), is neglected.
Thus, a global diffusion coefficient for γ can be defined as

S(γ ) := lim
t→∞

1
t

∫ t

t0

DS(γ , t)dt ≈ ⟨DS(γ , t)⟩t≤Ns , (12)

where the last approximation applies in case of finite but large
enough motion times.

This formulation has a free parameter, the number of elements
of the partition q. In any case, the condition q0 ≪ q is required
so that q0(t) could increase with time. However its value mainly
depends on the nature of the motion. If σ denotes the area
covered by the diffusion in S , we consider two different limiting
situations, when (i) σ ≪ Σ and (ii) σ ≈ Σ . In case (i), the area
of the unit cell Σ/q, should be small with respect to σ in such a
way the non-empty elements of the partition would have nearly
the same invariant measure, so q ≫ Σ/σ ≫ 1. In other words,
very small cells are required in order to have enough resolution
such that the q0 cells properly cover σ . When (ii) applies, q ≫ 1
still holds. In [31] it was shown that the optimal choice of q in
order to (11) and (12) work is that Ns ≲ q < N1/ŜL

s , where ŜL is
some threshold value of Ŝ = S/ln q, such that ŜL < 1.

Let us discuss in more detail the above condition. At first sight,
the statistical approach would require that Ns/q ≫ 1. However,
as discussed above, the average λ involves q0 not q, such that
q0(t) ≪ q∀t , so the condition Ns/q ≫ 1 can be relaxed allowing
Ns/q ≲ 1 but Ns/q0 ≫ 1.

For the upper limit, being σ the area covered by the diffusion,
then the mean (discrete) density is ρ0 = Ns/σ . Therefore the
mean distance between the iterates is d ≈

√
σ/Ns. On the other

hand the linear size of the unit cell is ∆ =
√
Σ/q. If the diffusion

is confined to a small region of S , σ ≪ Σ , we can assume
that the nk follows a nearly δ distribution, the density ρ(I1, I2) ≈

ρ0 ∀(I1, I2) ∈ σ , is large and therefore q can be taken in such a way
that d < ∆. This condition leads to q < (Σ/σ )Ns, with Σ/σ ≫ 1.

In this case of a nearly uniform distribution, the factor Σ/σ
can be estimated as q/q0 ≈ q1−Ŝ , with Ŝ ≤ ŜL < 1 and therefore
the above condition reduces to q < N1/ŜL

s . Thus, this upper bound
for q implies that no empty cells appear in σ due to discrete
character of ρ. Therefore whenever ρ(I1, I2) ≈ ρ0 and Σ/q ≪ 1,
DS is almost invariant under a partition change while S increases
with q (see [31] for numerical examples).

On the other hand, if the extension of the diffusion region
in S is large, σ ≈ Σ , a nearly Poissonian distribution applies.
The density now is smaller (for the same number of iterates), the
fluctuations are large (∼

√
Ns/q0) and thus in general d > ∆

xcept if q is small enough, but small values of q are not allowed
n this formulation since we require that q0 grows with time. The
stimate Σ/σ ≈ q/q0 is no longer true and thus no additional

restriction appear to q. In this scenario DS is not invariant under
change of the partition.
In the next sections we present applications of this approach

o two different dynamical systems. We refer to [27,28,31] for
articular examples concerning the time evolution of S,D for
S r

4

everal initial conditions and different sets of parameters such
s q,Ns on high-dimensional systems. In particular, an extensive
nvestigation concerning the dependence of this approach on the
arameters involved in its computation is addressed in [31].

. Applications

In this section we present applications of the Shannon entropy
pproach to measure the diffusion rate in quite different models:
system of discrete time consistent in a 4D map and a system
f continuous time, the Three Body Problem for a particular
lanetary system.

.1. I. A system of discrete time

Following [35], we consider the 4-D symplectic map M:
(I1, I2, ϑ1, ϑ2) → (I ′1, I

′

2, ϑ
′

1, ϑ
′

2), Ij ∈ R, ϑj ∈ S1 defined as

I ′1 = I1 + η sinϑ1,

I ′2 = I2 + ηε sinϑ2,

ϑ ′

1 = ϑ1 + η(I ′1 + a2I ′2), (13)
ϑ ′

2 = ϑ2 + η(a2I ′1 + a3I ′2);

where |ε| ≪ 1, η ≲ 2 are real parameters and a2, a3 ∈ Q.
Actually, this map can be thought as a 4D generalization of the
well known 2D standard map.

The application M can be regarded as the time-η map associ-
ated to the flow of the Hamiltonian

H(I1, I2, ϑ1, ϑ2) =
I21
2

+ a3
I22
2

+ a2I1I2 + cosϑ1 + ε cosϑ2. (14)

Actually, the map M not only provides the successive values
f (Ij(tl), ϑj(tl)) at tl = lη, l = 0, 1, . . . ,N generated by the
amiltonian (14) but also the evolution of the actions and angles
ue to H plus a periodic time-dependent perturbation. Indeed,
he discrete system derives from the differential equations

İ1 = cosϑ1 × 2πδ2π (τ ),
İ2 = ε cosϑ2 × 2πδ2π (τ ),

1̇ = I1 + a2I2,

2̇ = a2I1 + a3I2,

here τ = 2πη−1t and δ2π is the 2π-periodic delta function
efined through its Fourier expansion. The above set of equations
orresponds to the flow of the Hamiltonian (see [26] for details
oncerning the numerical equivalence between the map and the
amiltonian flow)

H(I1, I2, ϑ1, ϑ2, τ ) =
I21
2

+ a3
I22
2

+ a2I1I2

+

∞∑
k,k′=−∞

[cos(ϑ1 − kτ ) + ε cos(ϑ2 − k′τ )].

(15)

hus H reduces to H when keeping only the terms in the sum
ith k, k′

= 0. The frequencies of the system being

1(I1, I2) = I1+a2I2, ω2(I1, I2) = a3I2+a2I1, 2πη−1. (16)

he parameter η, besides being the time step of the flow, defines
he frequency of the external perturbation and thus it plays an
mportant role in the dynamics of the system as we discuss below.

Both, the Hamiltonian (14) and the map (13) were introduced
n [35] to investigate the dynamics near the intersection of two

esonances of different order. In fact, H is a truncated normal 109
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orm around the intersection of the resonances I1 + a2I2 = 0 and
a2I1 + a3I2 = 0.

As it was shown in [35], the map M has four fixed points
located at p1 = (0, 0, 0, 0), p2 = (0, 0, π, 0), p3 = (0, 0, 0, π ), p4

(0, 0, π, π ); in particular if c = a3 − a22 then for εc > 0 and
η ≲ 2, p1 is unstable while p4 is stable.

From (15) and (16), the full set of first order resonances is

R = {(I1, I2) : I1+a2I2 = 2πk/η, a3I2+a2I1 = 2πk′/η, k, k′
∈ Z},

(17)

where the double resonance model H given by (14) corresponds
to the resonances with k = k′

= 0.
The map is invariant under the transformation I1 → I1 +

Im1 , I2 → I2 + Im2 , with Im1 = 2πp/(ηa2), Im2 = 2πp′/(ηa3), where
p, p′ are integer numbers such that p/a2 ∈ Z, p′a2 = ra3 with r
an integer number. Thus we can restrict the action space to D =

(−Im1 , I
m
1 )× (−Im2 , I

m
2 ) with opposite sides identified and therefore

Σ = 4Im1 Im2 . In what follows we take a2 = 1/2, a3 = 5/4, so
p = 1, p′

= 5 (r = 2), and thus the model corresponds to the
crossings of resonances of order 3 and 7.

The separation between resonances depends on η, a2 and a3,
being the latter

dk =
2π

η

√
1 + a22

, dk′ =
2π

η

√
a23 + a22

,

or the lower and higher order resonances respectively. Large
alues of η would lead to a highly chaotic map due to the strong
esonance interaction.

After the canonical transformations, (I1, I2, ϑ1, ϑ2) → (J1, J2,
1, ϕ2) defined by

1 = ϑ1, ϕ2 = ϑ2 − a2ϑ1, J1 = I1 + a2I2, J2 = I2

r (I1, I2, ϑ1, ϑ2) → (P1, P2, ψ1, ψ2) such that

1 = ϑ1 − a2ϑ2/a3, ψ2 = ϑ2, P1 = I1, P2 = I2 + a2I1/a3

he Hamiltonian (15) can be written in terms of the resonant
amiltonian corresponding to the resonances I1 + a2I2 = 0 or
2I1 + a3I2 = 0,1 as

¯ (J1, J2, ϕ1, ϕ2, τ ) =
J21
2

+
bJ22
2

+ cosϕ1 + ε cos(ϕ2 + a2ϕ1),

r

˜ (P1, P2, ψ1, ψ2) =
a3P2

2

2
+

bP2
1

2a3
+ ε cosψ2 + cos(ψ1 + a2ψ2/a3),

revealing that the resonance half-widths are 2 and 2
√
ε/a3 re-

pectively. A massive overlap of the low order primary resonances
akes place when their separation is of the order of two times
heir half width, that is when η > ηc = 0.5π (1+ a22)

−1/2, that for
he a2 value here considered (a2 = 0.25), leads to ηc ≈ 1.52.
n the other hand, the overlap of the high order resonances
akes place when (η2ε)c = 0.25π2a3(a22 + a23)

−1. For instance,
etting η = 1(η < ηc), εc ≈ 1.7 Therefore under the condition
< ηc, ε < εc and away from resonance crossings, the motion

round the center of the resonances should be stable. Moreover,
ince we consider values of a2, a3 and ε such that bε > 0, around
he resonance intersection the dynamics is also stable since the
ixed point p4 is stable.

Considering the reduced map M, i.e., (I1, I2) ∈ D with opposite
sides identified and adopting comparatively small values of the
parameters just to show the action space structure, say η =

0.6, ε = 0.3, the resonance web is shown in Fig. 1, where a

1 All the resonances with k, k′
̸= 0 are identical to those with k, k′

= 0.
 {

5

Fig. 1. Contour plot of the MEGNO for the map (13) for a2 = 0.5, a3 = 1.25 for
= 0.3 and η = 0.6 after N = 600 iterates. The initial values of the phases are

ixed to ϑ1 = ϑ2 = π such that the stable fixed point at (I1, I2) = (0, 0) belongs
o the section. The red line corresponds to the resonance I1 + a2I2 = 0 while
he green one to a2I1 + a3I2 = 0. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

ast dynamical indicator (the MEGNO, see [2,3,10]) was used for
eparate stable, regular motion from the chaotic regime (see [31]
or different sets of parameters).

The center of the lower order resonance is drawn in red (I1 +

2I2 = 0) while the one for the higher order resonance appears
n green (a2I1 + a3I2 = 0). The figure is a contour plot of the final
alues of the MEGNO after N = 600 iterates for an equispaced
rid of 2000 × 2000 pixels for (I1, I2) ∈ D, with ϑ1(0) = ϑ2(0) =

such that the stable fixed point at (I1, I2) = (0, 0) lies on this
ection, since εc > 0 for the considered values of a2 and a3.
The final values of the MEGNO, ⟨Y ⟩, are displayed such that

ight colors represent regular, periodic or quasiperiodic trajecto-
ies, ⟨Y ⟩ ≤ 2, while dark colors indicate unstable chaotic motion
Y ⟩ ≈ µN/2 ≫ 2, where µ is the mLE of the corresponding tra-
ectory. The actual resonance web is quite similar to the expected
heoretical one. Besides the intersection at the origin between
he low order resonance and the higher order one, several other
esonances are present, those with k, k′

̸= 0 that show up parallel
o the latter. Note that all the crossings between these primary
esonances are identical, their dynamical properties around each
unction being the same as the one at the origin. Many other
esonances, which are linear combinations of the three involved
requencies,

1ω1(I1, I2) + m2ω2(I1, I2) + 2πm3η
−1

= 0, mi ∈ Z

an also be identified as very narrow channels.
A relevant aspect of this map is that diffusion along resonances

ccurs and thus it turns out interesting to investigate the time
ates of the instabilities in M, particularly along the primary
esonances.

.2. Diffusion

In this section we focus on the diffusion that takes place in the
ap (13) along the homoclinic tangle of the primary resonances,
fter adopting a section that includes the unstable fixed point p4
nd values of the parameter such that η < ηc, ε < εc .
Thus in what follows we adopt a section defined as S =
(I1, I2) ∈ D : ϑ1 = ϑ2 = 0} and in order to avoid quite restricted 88
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diffusion we consider somewhat larger values of the parameters,
ε = 0.6, η = 0.7, and take 40 initial conditions along the two
main resonances. Fig. 2 (left) presents a MEGNO contour plot of
M on S for the adopted values of the parameters as well as the
selection of the initial conditions.

The considered values of η, ε are somewhat larger than the
ones in Fig. 1 and the numerical experiments show that the
diffusion spreads beyond the region Σ = 4Im1 Im2 but mostly
confined to the homoclinic tangles of the main resonances as
Fig. 2 (right) shows for an ensemble of size 10−7 located on the
resonance a2I1 + a3I2 = 0 centered at the largest value of I1(0).
The iterates are depicted in green since the diffusion corresponds
to an initial condition also plotted in green in Fig. 2 (left). In this
example |I1| > Im1 , so the normalization constant Σ/q should be
modified in such a way that it takes into account that σ could
exceed Σ .

The spread of the diffusion for small ensembles located on
both main resonances as well as the time evolution of S,DS for
this model and different values of the parameters are discussed
in [31].

Let us proceed with a series of numerical experiments. First
we iterate each of the initial conditions, (I1(0), I2(0)), on both
resonances up to N ≤ 109 and compute the time (or number
of iterates) after which |I1| ≥ Im1 or |I2| ≥ Im2 on the section S =

{I1(k), I2(k) : |ϑ1| + |ϑ2| < 0.02}. In other words, we determine
he actual escape time, tesc, as the time when the trajectory leaves

= (−Im1 , I
m
1 ) × (−Im2 , I

m
2 ).

Later, we compute the average escape time ⟨tesc⟩ over small
nsembles, typically ∼ 10−7, of np = 100 initial conditions
entered around (I1(0), I2(0)) for N ≤ 5 × 108. The use of an
nsemble to determine an average time would reduce stickiness
ffects and should provide a smooth dependence of ⟨tesc⟩ on the
nitial conditions.

Afterwards we compute DS by means of (11) considering an
nsemble of np = 1000 initial conditions around each of the 80
alues of (I1(0), I2(0)) and after N = 5×106, with q = 2000×2000
sing Ij(t) mod(Imj ) but also keeping the values of Ij(t) ∈ R in
rder to modify the normalization constant. For the numerical
omputation of the entropy and its time derivative, we take a
ample interval δt = 5 × 103

≪ N and thus (dS/dt)num =

S(t + δt) − S(t))/δt . As mentioned since |Ij| could exceed Imj ,
e replace Σ = 4Im1 Im2 → Σe ≈ σ , that we estimate by means
f the maximum and minimum values attained by the actions,

max min max min

≈ (I1 − I1 )(I2 − I2 ). Indeed, whenever σ > Σ , the t

6

normalization constant in (12) should be modified in such a way
that σ/q (instead of Σ/q) provides the effective area of the unit
cell.

Thus, an escape time can be estimated as

tSesc = K
(Im1 − I1(0))2 + (Im2 − I2(0))2

DS
, (18)

here the factor K ∼ 1 takes into account the fact that tSesc
epends on the escape route in action space on the section S.
ndeed, if for instance the escape occurs only along the resonance
2I1 + a3I2 in such a way that only |I1| > Im1 , the numerator in
18) should be modified as Im2 → −a2Im1 /a3 < Im2 and therefore
he above definition of tSesc with K = 1 would overestimate the
ctual escape time. It is clear that this factor mainly depends on
he dynamics of the system for the given values of the parameters
hat define the spread of the diffusion on the action space.

Finally, we also compute the ensemble variance over the np =

000 initial conditions after N = 5×106 iterates and numerically
etermine both, the exponent b and the coefficient D by recourse
o a mean square fit on a power law Var(If ) = Dtb, where If
s a fast action, in this case I2f = I21 + I22 . The fit was done in
n(Var(If )) = ln(D)+ b ln t , in a similar fashion as in [26] and [20]
here both coefficients were derived in different systems. When-
ver b ≈ 1, D would lead to the expected diffusion coefficient
rovided that correlations among the phases are negligible. Thus
n escape time can also be derived from the estimate of D, tVesc =

((Im1 − I1(0))2 + (Im2 − I2(0))2)/D, for initial conditions on both
esonances.

The linear fit was performed for each of the 80 ensembles
f initial conditions and thus we expect a non-smooth behavior
f D or tVesc and this would be mostly determined by the fit of
, the smaller b leads to the larger D. In any case we found
.71 < b < 0.88, as Fig. 3 reveals, so the diffusion is not normal,
t least for the considered motion times. Therefore the diffusion
oefficient D obtained by a numerical fit on the variance evolution
ould not provide a good measure of the actual diffusion rate
rovided by tesc or ⟨tesc⟩. Maybe for much longer motion times the
iffusion approaches a nearly normal regime as it was discussed
n for instance [36].

Fig. 4 shows the results for tesc, ⟨tesc⟩, tSesc, t
V
esc. We set K = 1/4

n such a way that in (18), (Imj − Ij(0))/2 is the average distance
raveled by the trajectories before the particles escape from D.
e observe that tSesc provides a good and smooth estimate of

S
he actual escape time in comparison with tesc . The values of tesc 86
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Fig. 3. Exponents obtained after a linear fit of Var(If ) = Dtb with I2f = I21 + I22
for the selected initial conditions, in magenta on the resonance R1 : I1 +a2I2 = 0
nd in green on R2 : a2I1+a3I2 = 0. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

or initial conditions on both resonances are nearly the same,
onsistent with the periodicity of the map and the fact that the
iffusion spreads over the same resonances.
The dispersion in the values of tesc is due to stickiness; they

strongly depend on the selected initial condition while ⟨tesc⟩ is
smooth and nearly constant, it does not present significant oscil-
lations and in any case tSesc is quite close to ⟨tesc⟩. The fluctuations
in tVesc are similar to that observed in the exponent b and con-
sequently opposite to D. Notice should be taken that the values
tVesc underestimate the expected values ⟨tesc⟩, in some cases in
about two orders of magnitude. When adopting different values
of the parameters and initial conditions located away from the
primary resonances, the estimates of tSesc completely agree with
those obtained from ⟨tesc⟩ also for K = 1/4 as shown in [31].

3.3. II. A system of continuous time: The planar 3BP

Herein we present a stability analysis of the exoplanetary sys-
tem HD 181433 [37–39], in the context of the planar three-body
problem (3BP). We follow some considerations already presented
in [31], but now focus on the relationship between a computed
diffusion coefficient DS and a global instability time-scale associ-
ated to specific initial conditions (ICs) in the phase space of the
system.

A preliminary architecture for HD 181433 was firstly pro-
posed in [37], a three-planetary system with minimum masses

of 0.02MJup, 0.64MJup and 0.54MJup, where MJup denotes Jupiter’s

7

Table 1
Three-planet solution for HD 181433 given in [39].
Parameter Unit HD 181433 b HD 181433 c HD 181433 d

m [MJup] 0.0223 ± 0.0003 0.674 ± 0.003 0.612 ± 0.004
a [AU] 0.0801 ± 0.0001 1.819 ± 0.001 6.60 ± 0.22
e 0.336 ± 0.014 0.235 ± 0.003 0.469 ± 0.013
P [day] 9.37452 ± 0.0002 1014.5 ± 0.6 7012 ±276
ω [deg] 210.4 ± 2.5 8.6 ± 0.7 241.4 ± 2.4
T0 [day] 52939.16 ± 0.06 52184.3 ± 1.9 46915 ±239

mass. These planets are orbiting a K-type star with a mass of
0.86M⊙ [37], close to the Solar mass M⊙. However, the obtained
values for the eccentricities locate the two outer planets in tra-
jectories of rather unstable character. Later on, new nominal
solutions for the system were derived in [39] revealing an almost
7/1 mean motion resonance (MMR) between the two massive
planets. According to [38] instead, such planets are placed near
a 5/2 MMR.

In the present work, we adopt the solution given in [39] that
takes into account further data from recent observations. The
concomitant orbital parameters are displayed in Table 1, which
includes the masses (m), the semi-major axes (a), the eccentric-
ities (e), the orbital periods (P), the arguments of pericenter (ω)
and the time of passages at periastron (T0). The mean anomalies
Mi (i = 1, 2, 3) being obtained from the indicated values of T0.

The proposed dynamical architecture of this system, with a
small inner planet very close to the host star and two giant
planets in wider orbits, may be approximated to a simpler model
where the inner body is neglected; in fact, it is possible to verify,
through numerical integrations, that the presence of the lighter
body does not globally disturb the motion of the two external
ones in long-term time-scales. Indeed, notice that the mass of
planet b barely amounts ∼ 3% of the remaining masses and, as
a consequence, its presence has almost no perturbation effect on
the heavier bodies, which is specially true on taking into account
the distance ratio between the inner planet and the external ones.
This is a standard procedure in many exoplanetary systems with
a similar structure, see for instance [40] for GJ 876. Anyway for
illustrative purposes, Fig. 5 presents the evolution of the orbital
parameters of the massive bodies when considering the 3 or 4
body problem, where the numerical integrations were carried
out with a Bulirsh–Stoer integrator with a precision ll = 12. It
becomes clear that the presence of the less massive body does
not alter the global dynamics of planets c and d. Therefrom, the
HD 181433 system can be studied in the framework of the 3BP,
the host star with two orbiting bodies namely HD 181433 c and
d (hereafter, we will use the subscripts 1 and 2 to indicate each
one, respectively).
Fig. 4. Escape times in the map M for ε = 0.6, η = 0.7 and 40 initial conditions on the homoclinic tangle of the resonances I1 + a2I2 = 0 and a2I1 + a3I2 = 0 after
etting K = 1/4.
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.4. ICs in a line segment of a2

Firstly, we took a set of ICs on a segment of the outer planet
emi-major axis, being 4AU ≤ a2 ≤ 6.5AU, and fixed all the
ther orbital parameters to their nominal values given in Table 1).
hough the interval excludes the nominal position of the system
a20 = 6.6 AU), there is no loss of meaning in regard to our
llustrative purpose.

Using the Ncorp code [28] developed by our group, we in-
egrated a set of 600 ICs inside the defined range of the outer
lanet semi-major axis for a total integration time T = 109 years
nd a sampling step h = 102 years, in order to monitoring the
nstability time-scales of the system in the considered region of
he phase space. Fig. 6 presents the results of such integrations,
here the vertical axis shows the corresponding escape times2 of
ach IC in the considered interval with the upper limit 109 years.
Notice the prominent structures indicating a fast increase in

he predicted lifetime of the system which coincide with the
ominal positions of high-order MMRs, namely the 4/1, 5/1 and
/1 MMR, highlighted with red lines in Fig. 6. Such resonances
eem to provide a protective mechanism for those initial condi-
ions lying inside them from the quick instabilities arising in their
urroundings. With a lighter red tone, we have also indicated
n the figure the nominal position of the weaker 9/2 and 11/2
MRs. Furthermore, a considerable dispersion between adjacent
oints can be observed, e.g. the region separating the nominal
esonances (4.5 AU < a2 < 5.5 AU) or ICs with a2 ≳ 5.5
AU. Recall that there are lifetime values separated by less than
0.1 AU that differ up to almost two orders of magnitude. Even
considering the intrinsic numerical errors due to the integration,
such a dispersion points out the intrinsic chaoticity associated to
the dynamics of the system around this region.

For the same set of ICs both, S and DS were computed. Our
routine operates a rescaling of the system time–space dimensions

2 In the present work, we call ‘‘escape time’’ the instant at which the system
s destroyed as a consequence of the dynamical features of the trajectories:
ither both orbits approach each other to distances with high probability of
ollision, or the system is driven into planetary scattering processes, causing
he ejection of the outer body or the inner one to ‘‘fall onto’’ the central star.
8

Fig. 6. Distribution of 600 ICs integrated in the range [4.0, 6.5] AU of the
outer semi-major axis a2 , with their corresponding system lifetime. The straight
lines indicate the nominal position of some resonances present in the region.
Our numerical solutions show with reasonable resolution the changes in the
instability time-scales of the system as one approaches the resonances’ locations.

such that the initial outer semi-major axis is taken as a∗

2 = 1
AU (the ‘‘∗’’ symbol indicates a rescaled quantity): let η > 0
be a factor that either can expand or compress the system’s real
architecture, i.e a∗

i = ηai and such that the code admits that η =

1AU/a2. It is easy to verify that the intrinsic time-scales of the
system (orbital periods and therefore, the secular and resonant
periods) are also rescaled by a factor that goes as ∼ η3/2.

We introduce a partition box based on the concepts of a
macroscopic orbital stability (in the Hill’s criteria) [41]. For each
planet, the partition box can be thought as a rectangular area
in the system’s phase space, with extensions [−∆ai,∆ai] ×

[−∆ei,∆ei], and where the center is occupied by the specific
pair (a , e ) of the IC that is being evaluated. The subindex i =
i i 46
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, 2 corresponds to the inner and outer planets respectively.
otice that a global diffusion coefficient DS is estimated for the
rajectories described by each orbiting body. We took ∆a1 =

a2 = ∆h, where

h = 2
√
3RH; RH =

[
(m1 + m2)

3m0

]1/3 (a1 + a2)
2

, (19)

H being the mutual Hill’s radius of the planets and where m0 is
the star mass. In regard to the eccentricities, we set ∆e1 = ∆e2 =

0.5 (the singular cases ei−∆ei < 0 or ei+∆ei > 1 are ‘‘naturally’’
avoided through internal conditions of the routine). Afterwards,
we used these values of ∆ai and ∆ei to reconstruct the box in
terms of Delaunay-like variables Li and Gi, such that besides the
respective mass factors and gravitational constant, Li = ai and
Gi = ai(1 − e2i ), i = 1, 2. Thus defined, L,G are the square of
the classical Delaunay variables (factors aside). In fact it proved
to be more adequate to deal with a diffusion coefficient in terms
of variables sharing the same dimensions.

We used a partition of q = 1600 × 1600 cells and the total
integration time T was defined as the minimum value between
forty times the (rescaled) secular period of the system, Tsec, and
105 yrs. The sampling rate h is such that the total number of
orbital points, N = T/h, be ten times the value of q and hence
N/q0 = 10q/q0 ≫ 1.

In this particular application the time derivative of the en-
tropy was computed by means of a least square fit over the full
evolution of S(t). Indeed, the entropy requires the values of the
variables (Li(t),Gi(t)) and to get a confident value of dS/dt , it
should be T ≫ Tsec, i.e. the system should run for a sufficient
long time in order to avoid periodicities introduced by the secular
terms. If the motion time is less than the secular period, then
the values of S,DS are not accurate and this fact restricts the
computations to a2 > 4.5 UA (see Fig. 6).

Finally, each IC was integrated together with an ensemble of
ten other ‘‘ghost-systems’’ surrounding the central IC with in-
finitesimally close displacements (∼ 10−3 around both variables
ai and ei).

Fig. 7 shows a comparison between the escape time estimated
via the Shannon approach τesc(S) (red squares) and the values
outcoming from the crude numerical integration of the equations
of motion (as the ones in Fig. 6) (black dots). The value of τesc(S)

corresponding to a given IC was obtained as follows: For each

9

planet, a coefficient DS,i and an escape time τesc,i are derived in
the fashion

DS,i =
σ (Li,Gi)

q
q0,i(t)Ṡi(t); τesc,i = K

(∆Li)2 + (∆Gi)2

DS,i
, (20)

here σ (Li,Gi) = (Lmax,i − Lmin,i)(Gmax,i − Gmin,i) is the maximum
area reached out by the phase variables (Li,Gi) of each trajectory
during the elapsed time, while the numerator in the expression of
τesc,i is given by a quarter of the extent of the partition box in the
action-variables (Li,Gi) centered in the IC. Then the final estimate
for the global escape time of the system was acquired as the
minimum of the individual escape times, τesc = min{τesc,1, τesc,2}.

We tested two different values for the K factor, whose mag-
nitude may be attached to the dynamics of the system, more
precisely to the direction in which diffusion proceeds. In Fig. 7, we
observe that K = 1 shows a very reasonable agreement with the
results coming from the long term integrations of the Ncorp code.
Notwithstanding, it is noticeable the sharply structures outlined
by the red squares in both panels, coincident with the nominal
positions of the MMRs highlighted in Fig. 6.

3.5. Dynamical maps: MEGNO vs escape-time

In this section we focus on the comparison of dynamical maps
for the system HD 181433 obtained by two different approaches,
one using a classical chaos indicator, the MEGNO, and another one
by means of τesc.

Fig. 8 displays such dynamical maps constructed in a given
(a2, e2) domain of the HD 181433 system’s phase space. The left-
hand panel shows a map parameterized by the MEGNO indicator,
⟨Y ⟩, computed over a 105 yrs time-span and considering a grid
of 100 × 100 initial values of (a2, e2), with 4.5 AU ≤ a2 ≤

10AU and e2 ∈ [0.0, 0.8]. The computation of the MEGNO was
performed by the Ncorp routine [28], applying the same Bulirsh–
Stoer integrator but with precision ll = 13 and a sampling rate
of h = 1 year. Those ICs leading to collisions or escapes before
105 yrs are depicted in white.

The right-hand panel of Fig. 8 presents a dynamical map for
the diffusion estimates in the same region of the phase plane,
(a2, e2), i.e. a τesc-map. We adopted the same grid of 100 × 100
ICs as in the MEGNO map that were integrated also for a 105 yrs
time-span and h such that the total number of orbital points
N = 5q for n = 5 ‘‘ghost-systems’’. We took the same partition as
e
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efore, q = 1600×1600 cells onto the boxes in the (ai, ei)-planes,
ith ∆ai = ∆h and ∆ei = 0.5 (i = 1, 2) and afterwards both
he boxes and the cells were redefined in terms of Delaunay-like
ariables to perform the computations.
From the estimate of the diffusion coefficients DS,i, i = 1, 2

or each ensemble, we derived the corresponding escape time,
esc, that provides a measure of the instability time-scales of the
D 181433 system. Notice the qualitative agreement between
oth maps. Indeed, in general, the Shannon estimates of the
ystem’s lifetime shows a correspondence with the indications
f regularity/irregularity provided by the MEGNO-map. Also, the
esc-map shows that regions of almost stability (large lifetimes)
re coincident with the presence of several MMRs, besides the
/1, 5/1 and 6/1 already discussed, for values of a2 > 7AU
he 7/1, 8/1, 9/1, 10/1 and 12/1 commensurabilities also appear.
he nominal position of the system lies in a region with escape
ime τesc ∼ 1010 years, very close to unstable solutions of high
ccentricities (e2 > 0.5) and more stable solutions for e2 < 0.4,
orroborating then the results given in [39].
Furthermore, we should highlight the quantitative informa-

ion revealed by the τesc-map against a more qualitative picture
rovided by the MEGNO-map. Notice the gradient of the system
ife-time observed in the right-hand panel in the transient region
etween unstable ICs and long-term stable solutions (107 ≲ τesc ≲
09) in comparison with the MEGNO-map where such a region
s revealed just as chaotic with values ⟨Y ⟩ ≫ 2. Recall that the
EGNO-map was performed considering a single IC while the

esc-map involves ensembles around the given IC, thus some quite
nstable solutions accordingly to their MEGNO values appear as
ollisions/escapes in the τesc-map, as expected.

. Conclusions

The Shannon entropy proves to be a very efficient tool to dis-
lay the global and local dynamics of a high-dimensional system
s well as to provide accurate estimates of the diffusion rate.
ts computation is rather simple, it just requires a counting box
cheme after solving the equations of motion of the system for a
iven ensemble of initial conditions and the computation of the
ean time derivative of the entropy evolution.
Herein an improvement of the best choice of the partition is

iven, the size of the unit cell depends on the character of the
10
iffusion, i.e. rather confined or extended in action space, that
eads to a larger or smaller surface density of iterates on the
dopted section.
The application to a 4D map reveals its efficiency to estimate

ime-scales for chaotic instabilities in relatively short motion
imes in comparison with the ones derived from the diffusion
oefficient obtained from the variance evolution. Indeed, dealing
ith np = 1000 nearby initial conditions iterated up to 5 × 106,

.e, 5 × 109 iterates, the exponent b is far from the expected
alue for nearly normal diffusion (b ≈ 1) and thus, the obtained
umerical value of the diffusion coefficient is quite inaccurate. As
iscussed, maybe for larger motion times it would approximate
ts actual value. On the other hand, for similar values of np and
otal number of iterates, the Shannon entropy approach provides
value of the escape time quite close to the actual one obtained

rom direct numerical simulations (see [27] for more details about
he required computational effort in simple models).

Particularly interesting is the implementation of this tech-
ique to a real physical problem as the 3BP. As a main difference
ith respect to any dynamical indicator based on the evolution of
he tangent vector, the computation of DS or τesc does not require
the solution of the first variational equations. Moreover, the es-
cape time for each planet in the system can be derived, while in
general this cannot be done when the variational equations are
involved in the computation.

The computational effort to derive τesc, for a given time-span,
s nearly the same as the one required to compute the MEGNO
hen considering 10 ‘‘ghost-systems’’ in the entropy code for
he HD 181433 system. While the actual escape-time should
e obtained from N-body simulations over a time-span of the
rder of the life-time of the host star, the one derived by means
f the present approach requires much shorter integrations but
rovides information about the stability of the system over large
imes-scale as Fig. 7 reveals.

The MEGNO as well as all chaos indicators is useful to separate
egular and chaotic components of phase space but they do not
urnish any information about the speed of chaotic diffusion. In
his direction the escape-time map provides, besides the same
ynamical information as a MEGNO-map (for instance the MMR
esonance structure), the actual time-scale of stability of the
ystem as shown in Fig. 8.
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Therefore a combination of different techniques would furnish
a very efficient way to investigate the global dynamics in any
high-dimensional system. A general picture of the structure of
the phase space would be revealed by any fast indicator, which
should supply information on the location of invariant manifolds,
resonances, quasiperiodic and chaotic regions. Since chaos indica-
tors could not distinguish between stable and unstable chaos, the
entropy approach should be included in order to get a measure of
the time-rate of the instabilities arising in those chaotic domains
of physical interest.
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