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Reliable processing of quantum information for developing quantum technologies requires pre-
cise control of out-of-equilibrium many-body systems. This is a highly challenging task as the
fragility of quantum states to external perturbations increases with the system-size. Here, we re-
port on a series of experimental quantum simulations that allow to quantify the sensitivity of a
controlled Hamiltonian evolution to perturbations that drive the system away from the targeted
evolution. Based on out-of-time order correlations, we demonstrate that the decay-rate of the pro-
cess fidelity increases with the effective number K of correlated qubits as Kα. As a function of the
perturbation strength, we observed a sharp decoherence scaling transition of the exponent α be-
tween two distinct dynamical regimes. In the limiting case below the critical perturbation strength,
there is not inherent limit to the number of qubits that can be controlled with high fidelity. This may
indicate that reliable control of large quantum systems might be possible if the perturbation can be
kept below this critical threshold.

The characterization and understanding of the complex
dynamics of interacting many-body quantum systems is an
outstanding problem in physics [1, 2]. They play a cru-
cial role in condensed matter physics, cosmology, quantum
information processing and nuclear physics [3, 4]. A par-
ticularly urgent issue is the reliable control of many-body
quantum systems, as it is perhaps the most important step
towards the development and deployment of quantum tech-
nologies [1, 5–7]. Their control is never perfect and the
fragility of quantum states to perturbations increases with
the system size [8–10]. Accordingly, information process-
ing with large quantum systems remains a challenging task.
It is therefore of paramount importance to reduce the sen-
sitivity to perturbations, particularly for large systems, to
minimize the loss of quantum information. As we show
here, achieving this goal may be more realistic than it is
currently assumed: we demonstrate for the first time that
the sensitivity of a quantum system to environmental noise
can become qualitatively smaller, if the control operations
applied to it surpass a certain threshold.

The degrading of quantum information due to environ-
mental noise is generally known as decoherence. Miti-
gating this effect has been the goal of numerous studies
to allow information storage by protecting quantum states
[10]. However, characterizing and controlling decoher-
ence effects during the dynamics of quantum information
remain challenging tasks, since out-of-equilibrium many-
body physics is involved [4, 5, 11, 12]. Theoretical and
experimental approaches were developed to reduce deco-
herence in few-body systems [10, 13]. Extending these
approaches to larger quantum systems is not a straightfor-
ward scaling operation, since the evolution in these sys-
tems generates high-order quantum correlations that are
spread over degrees of freedom of many qubits. Control-

ling and probing these correlations was tackled only re-
cently [12, 14–16]. Novel techniques are therefore required
to address this task, in particular with quantum simulations
[5, 6, 9, 17, 18].

The dynamics of the build-up of many-body quantum
superpositions was initially measured within nuclear mag-
netic resonance (NMR) by observing multiple quantum co-
herences (MQC) [19]. MQCs are relatively easy to char-
acterize and the order of the coherence provides a hard
lower bound on the number of correlated particles (spins)
[4, 9, 20, 21]. Combined with time-reversal of quantum
evolutions leading to a Loschmidt echo [22, 23], they are
useful tools to measure the sensitivity of controlled dynam-
ics to perturbations. Loschmidt echoes and MQC evidence
out-of-time order correlations (OTOC) [3, 4], as they mea-
sure the scrambling of the information over a large sys-
tem from an initially localized state [20, 21, 24]. They
are therefore promising tools for finding answers to open
questions related to quantum chaos [25–27], irreversibil-
ity [24, 28], thermalization [29] and entanglement [21].
Hence, these OTOCs trigger a broad interest in diverse
fields of physics, such as condensed matter and quantum
gravity, opening new avenues for understanding the dy-
namics of quantum information in complex systems [3, 4].

Here, we use the tools of solid-state NMR to assess the
sensitivity to perturbations of a controlled quantum dynam-
ics in a many-body system. We drive the system away
from equilibrium by suddenly imposing on it an experi-
mentally controllable Hamiltonian that does not commute
with the initial condition and that can be inverted, in or-
der to drive the system forward or backward in time. The
forward motion causes the quantum information to spread
over a large system (with thousands of particles), but in the
case where the inversion of the Hamiltonian is perfect, the
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system returns exactly to the initial state –this is known as
a Loschmidt Echo [22, 23].

In practice, the inversion of the Hamiltonian is never per-
fect, and the deviations result in imperfect return to the
initial condition and therefore to a reduction of the echo
signal, which is proportional to the overlap between the
initial and final state. Here, we study the effect of such
deviations from the ideal Hamiltonian by adding pertur-
bations with variable strength p and measuring their ef-
fect on the evolution. This sets a paradigmatic model sys-
tem where initial information stored on local states spreads
over a spin-network of about 5000 spins. This informa-
tion spreading process is called scrambling [3, 4, 25], to
indicate that the local initial condition can no longer be
accessed by local measurements. We experimentally de-
sign an OTOC measure to probe high order quantum cor-
relations and compare the scrambling of information from
the initial state by the ideal and the perturbed quantum dy-
namics. This is done by implementing a Loschmidt echo
with a forward evolution driven by the perturbed Hamilto-
nian and a backward evolution driven by the ideal one, so
as we quantify the difference between the scrambling dy-
namics. This OTOC defines an effective cluster size, the
number of correlated spins K over which the information
was spread by the ideal control Hamiltonian. We demon-
strate that the fidelity decay rate of the controlled dynamics
–measured with the Loschmidt Echo– increases with the
instantaneous cluster-size K, as a power law ∝ Kα, with
α depending on the perturbation strength p. Strikingly, our
results evidence two qualitatively different fidelity decay
regimes with different scaling laws associated with a sud-
den change of the exponentα. For perturbations larger than
a given threshold, the controlled dynamics is localized, as
manifested by a saturation of the cluster-size growth K(t).
This therefore imposes a limit on the number of qubits that
can be controlled during a quantum operation. However,
for perturbations lower than the threshold, the cluster-size
K grows indefinitely and the exponent α drops abruptly,
making the quantum dynamics of large systems qualita-
tively more robust against the perturbation. This sudden
sensitivity reduction to perturbations is a promising quan-
tum feature that may be used to implement reliable quan-
tum information processing with many-body systems for
novel quantum technologies.

We perform all quantum simulations on a Bruker Avance
III HD 9.4T WB NMR spectrometer with a 1H resonance
frequency of ωz = 400.15 MHz. We consider the spins of
the Hydrogen nuclei of polycrystalline adamantane, where
the strength of the average dipolar interaction can be deter-
mined from the full-width-half-maximum of the resonance
line 13 kHz. They constitute an interacting many-body sys-
tem of equivalent spins I = 1/2 in a strong magnetic field.
In the rotating frame of reference, the Hamiltonian reduces
to

Hdd =
∑
i<j

dij
[
2I izI

j
z − (I ixI

j
x + I iyI

j
y)
]
, (1)

where I ix, I
i
y and I iz are the spin operators and dij the spin-

spin coupling strengths that scale with the distance between
spins ∝ 1/r3

ij . The dipolar interaction Hdd is truncated to
the part that commutes with the stronger Zeeman interac-
tion (ωz � dij), as the effects of the non-commuting part
are negligible.

The quantum simulations start from the high-
temperature thermal equilibrium state ρ(0) ≈(
I + ~ωz

kBT
Iz
)
/tr {I}, where Iz =

∑
i I

i
z [30]. The

unity operator I does not contribute to an observable
signal, therefore ρ(0) ∝ Iz and it commutes with the
hamiltonian Hdd. In this state, the spins are uncorrelated
and form the ensemble of local states that we consider as
the initial local information.

To spread the local information, we drive the system out
of equilibrium with the evolution operatorU0(t) = e−itH0 ,
with the double-quantum Hamiltonian

H0 = −
∑
i<j

dij
[
I ixI

j
x − I iyIjy

]
(2)

as the ideal –non-perturbed– Hamiltonian. This Hamil-
tonian flips simultaneously two spins with the same ori-
entation. Accordingly, the z-component of the magne-
tization Mz changes by M = ∆Mz = ±2. At the
same time, the number of correlated spins K changes by
∆K = ±1. The coherence order M = Mz,j − Mz,i,
classifies the coherence |Mz,i〉〈Mz,j| of the density matrix,
where Iz |Mz,i〉 = Mz,i |Mz,i〉. The change of coherence
order allows to probe high-order spin correlations associ-
ated with the number of correlated spins that witness the
information spreading over the system from the initial en-
semble of localized states [19] (see Material and Methods).

To quantify the sensitivity to perturbations of the con-
trolled quantum dynamics, we control the deviation from
H0 with the dimensionless perturbation strength p of the
hamiltonian

H =(1− p)H0 + pΣ. (3)
Here Σ is a perturbation hamiltonian. The Hamiltonian H
is engineered with average Hamiltonian techniques using a
NMR pulse sequence [9] (see Material and Methods). We
consider the effect of two different perturbations: i) a two
spin operator perturbation given by the dipolar hamiltonian
Σ = Hdd and ii) a single spin operator perturbation given
by a longitudinal offset field Σ = Hz = ∆ωzIz . The first
case introduces a perturbation induced by spin-spin inter-
actions, and the second case a relative dephasing with re-
spect to the ideal evolution.

We quantify the deviation between the actual driven state
ρ(t) = Iz(t) = U(t)IzU

†(t) and the ideally driven state
ρ0(t) = I0

z (t) = U0(t)IzU
†
0 (t), where U(t) = e−itH

is the perturbed operation and U0(t) = e−itH0 the ideal
control operation. The instantaneous state fidelity after a
proper normalization is

f(t) = 〈ρ(t)ρ0(t)〉 =
〈
Iz(t)I

0
z (t)

〉
, (4)
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where 〈·〉 = tr [·] (see Material and Methods). This fidelity
is the projection between ρ(t) and ρ0(t) and it is identical
to the Loschmidt Echo [22, 23].

By choosing the observable Iz equal to the initial con-
dition ρ(0) = Iz, we first evolve the system with the
perturbed evolution operator U(t) and then we time-
reverse the evolution with the unperturbed evolution op-
erator U †0 (t) (see Material and Methods). This leads to the

many-body Loschmidt-Echo f(t) =
〈
U †0UIzU

†U0 · Iz
〉

that is equal to the fidelity after considering cyclic permu-
tations.

We perform a partial tomography of the density matrix
fidelity by applying a rotation operation φz = eiφIz be-
tween the forward U(t) and backward evolution U †0 (t).
The global fidelity becomes

fφ(t) =
〈
U †0φzUIzU

†φ†zU0 · Iz
〉

=
〈
Iz(t)φ

†
zI

0
z (t)φz

〉
=
∑

Me
iφMfM(t), (5)

where we decompose it into the partial MQC-fidelities
fM(t) = 〈ρM(t)ρ0,M(t)〉 of different coherence orders
M , after a proper normalization (see Material and Meth-
ods).

If the perturbation strength p = 0, Equation (5) gives
a conventional OTOC f0

φ(t) =
〈
I0
z (t)φ†zI

0
z (t)φz

〉
=〈

φz(t)Izφ
†
z(t)Iz

〉
, with φz(t) = U †0 (t)φzU

†(t). Here
〈·〉 is a expectation value if the system is assumed at in-
finite temperature (see Material and Methods). It quan-
tifies the scrambling into the system of the initial infor-
mation stored in the initial state Iz [4, 20]. The com-
ponents f0

M(t) = 〈ρ0,M(t)ρ0,M(t)〉 are the amplitudes
of the MQC spectrum representing the distribution of
coherences (non-diagonal terms in the eigenbasis of Iz)
of the density matrix built-up by the control Hamilto-
nian H0 [9, 19]. The second-moment of f0

M(t) provides
the average cluster-size of correlated spins K0(t)/2 =∑

M M2f0
M (t)∑

M f0
M (t)

=
〈
[I0
z (t), Iz]

†[I0
z (t), Iz]

〉
/ 〈I0

z (t)I0
z (t)〉 at

the evolution time t [9, 19–21] (see Material and Meth-
ods). The expression

〈
[I0
z (t), Iz]

†[I0
z (t), Iz]

〉
is a commu-

tator OTOC quantifying the degree by which the initially
commuting operators I0

z (t) and Iz fail to commute at time
t due to the scrambling of information induced by the spin-
spin interactions ofH0 [20, 21].

Considering the perturbed evolution (p 6= 0), the fidelity
fφ(t) is a more general OTOC that quantifies the deviation
of the scrambling induced by H with respect to the one
driven by H0. This is seen from the second moment of
fM(t),

K(t)

2
=

∑
M M2fM (t)∑

M
fM (t)

=
〈[Iz(t),Iz ]†[I0

z (t),Iz ]〉
〈Iz(t)I0

z (t)〉 , (6)

that based on the scalar product 〈·〉 metric gives the degree
of non-commutation shared by the evolved states I0

z (t) and
Iz(t) with respect to Iz (see Material and Methods). As
Hdd and Hz do not generate MQC by themselves, this

OTOC provides the scrambling of information by the spin-
spin interactions of H0 that survived the perturbation ef-
fects. Based on the second moment of fM(t),K(t) defines
a “coherence length” between the two scrambling dynam-
ics of information in terms of an average hamming weight
[27, 29] for the fidelity of the density matrix. Therefore
K(t) quantifies how comparable the perturbed and unper-
turbed density matrix dynamics are as a function of the co-
herence order M . This coherence length K(t) defines the
effective cluster-size of correlated spins on which the den-
sity matrices are comparable based on the MQC fidelity
fM(t) = 〈ρM(t)ρ0,M(t)〉 in Eq. (6).

We measure the time evolution of the MQC-fidelities
fM(t) for different perturbations to determine the global
fidelity f(t) and the effective cluster-size K(t). Both are
shown in Fig. 1A and B, respectively, for a weak (p =
0.0009) and a strong perturbation strength (p = 0.108)
when Σ = Hdd. The fidelity decays faster as a func-
tion of time with increasing perturbation strength. The
cluster-size K(t) initially grows exponentially as a func-
tion of time and then slows down to a power law whose
growth-rate reduces with increasing perturbation strength.
For strong perturbations K(t) saturates to a value inde-
pendent of time that decreases with increasing perturbation
strength [9]. We call this effect localization of the “coher-
ence length” of the MQC-fidelity that quantifies the “local-
ization” of the shared scrambling of information between
the perturbed and ideal dynamics based on the OTOC of
Eq. (6). The fidelity f(t) reaches an exponential decay
regimen with a constant rate when the dynamics of K(t)
is localized (Fig. 1A). Analogous results are observed for
Σ = Hz.

The fidelity decay f(p, t) = e−χ(p,t) is determined by
the instantaneous decoherence rate χ′(p, t) = dχ

dt
(p, t)

(Fig. 1C). For strong perturbations, the decoherence rate
χ′(t) reaches a plateau –a constant value– that depends
on the perturbation strength when the dynamics of K(t) is
localized. However, for weak perturbations when the dy-
namics ofK(t) does not evidence localization, this plateau
is not manifested. Consistently when localization effects
are observed, χ′(K) evidences an accumulation of points
as shown in Fig. 1D. This demonstrates that the satura-
tion of χ′(t) and K(t) occurs at the same time. Moreover,
the experimental results shows that χ′(K) ∝ Kα for long
times, indicating that the fidelity decay rate is determined
by a scrambling rate defined by the instantaneous effective
cluster-size K of correlated spins.

Figure 2 shows χ′ as a function of K, now for both per-
turbation Hamiltonians Σ = Hdd and Σ = Hz and dif-
ferent perturbation strengths. The power law functional
form χ′(K) ∼ Kα holds for all the considered cases.
The exponents α are shown in Fig. 2C. They give qual-
itative different limiting values for the localized (strong
perturbation) and delocalized curves (weak perturbation).
For the strongest perturbations, the asymptotic behavior
at long times shows a power law χ′(K) ∼ Kα∞ , where
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Figure 1. Time evolution of the controlled-dynamics’ fidelity and the corresponding effective cluster-size of correlated spins as
a measure of the scrambling of information. (A) The fidelity decay f(t) =

〈
Iz(t)I0

z (t)
〉

is shown for two perturbation strengths,
for the perturbation hamiltonian Σ = Hdd. The strongest perturbation shows an exponential decay law for times > 0.3 ms. (inset) A
MQC-fidelity fM (t) between the perturbed dynamic Iz(t) and the ideal –non-perturbed– dynamics I0

z (t) as a function of the coherence
order M . The enclosed area gives the global fidelity f(t). (B) Evolution of the cluster-size of correlated spins K(t) determined from
the second moment of the MQC-fidelity (inset). The number of correlated spins K(t) defines the “coherence length” on which the
density matrices are comparable. For the weakest perturbations, the cluster size grows indefinitely, while for the strongest ones, K(t)

reaches a stationary value –an effect we call localization–. (C) The instantaneous decoherence rate χ′(p, t) = dχ
dt (p, t) of the fidelity

f(t) as a function of time t. The exponential decay regimen of f(t) is manifested here when the decoherence rate χ′(t) achieves a
constant value. (D) The instantaneous decoherence rate χ′ as a function of the cluster-size K. The plateau of χ′(t) that appears when
the cluster size K(t) localizes in (C), here is manifested by the accumulation of points at the end of the curve χ′(K).

α∞ = 0.96 ± 0.02 for the perturbation Hdd and α∞ =
0.79 ± 0.03 for Hz, both near to a linear scaling. How-
ever, the exponents drop for the weakest perturbations as
p → 0. In the limit we obtain α0 = 0.48 ± 0.04 for
Hdd and α0 = 0.47 ± 0.02 for Hz with the asymptotic
behavior χ′(K) ∼ Kα0 . This exponent is determined by
the intrinsic decoherence effects that were not accounted in
the quantum simulations (see Material and Methods).

To quantitatively analyze the different scaling laws de-
termined by the exponent α on the different dynami-
cal regimes for K(t), we implement finite-time scal-
ing techniques typically used to describe localization-
delocalization transitions from finite-time experimental
data [9, 31]. We consider the evolution time dependence
implicit on the cluster-size K(t). We use the single-
parameter Ansatz for the scaling behavior at long times

χ′(K, p) ∼ Kk1Φ
[
ζ(pc − p)K−k2ν

]
, (7)

consistently with previous experimental findings for the
scaling law of the cluster-size growth K(t) [9]. The con-
stants k1 and k2 are determined to reproduce the asymp-
totic behavior at weak and strong perturbations. This as-
sumption leads to the functional regimes χ′ ∼ (pc −
p)sKα0 for p < pc and χ′ ∼ (p − pc)

−2νKα∞ , for
p > pc at long times (see Material and Methods). We de-
termined the critical exponents from the asymptotic exper-
imental data, obtaining s = −0.986±0.002 for Σ = Hdd,
s = −0.46±0.02 for Σ = Hz and ν = −0.56±0.01 for
both Σ. We then find the scaling factor ζ(p) that produces
an universal scaling. Rescaled curves of χ′ as a function of
K that collapse into the universal scaling curve are shown
in Fig. 3A,B. The two branches of the functional behavior,
evidence two dynamical phases for the decoherence effect
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Figure 2. Instantaneous decoherence rate χ′ as a function
of the effective cluster-size K. The two perturbation Hamil-
tonians are considered (A) Σ = Hdd and (B) Σ = Hz . At
long times, the fidelity decay rate is driven by the scrambling
rate χ′(K) ∼ Kα given by the instantaneous cluster-size, with
a power-law exponent that depends on the perturbation strength
p. (C) The power law exponent α decreases with decreasing the
perturbations strength, showing two plateau values at the weakest
(α0) and at strongest perturbation (α∞).

on the controlled quantum operation characterized by the
scrambling dynamics given by K(t).

The scaling factors ζ(p) that lead to the universal scal-
ings for both perturbations are consistent with the single
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scaling analysis. Scalings for both perturbation Hamiltonians (A) Σ = Hdd and (B) Σ = Hz are shown. (C) The corresponding
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pc = (0.034 ± 0.01), and the critical exponents are ν = (−0.56 ± 0.01) and s = (−0.46 ± 0.02). The curves of ζ(p) are normalized
to satisfy ζ(p∞) =

√
χ′(K)/Kα∞ , where p∞ = 0.108 for Σ = Hdd and p∞ = 0.24 for Σ = Hz are the largest perturbation strength

used in the experiments.

parameter ansatz of Eq. (7) that predicts a functional form
ζ(p) ∼ (p − pc)

−ν (Fig. 3C). The critical perturbation
pc = (0.024 ± 0.004) for Σ = Hdd is in agreement with
previous experimental values that evidenced a localization-
delocalization transition in the dynamics of the cluster-size
K(t) on the same system [9].

In summary, analyzing many-body Loschmidt Echoes
we designed an experiment to measure an OTOC that quan-
tifies the deviation of a perturbed dynamics from the ideal
one based on monitoring the scrambling of information
with MQC. We demonstrated that the fidelity decay rate
of the ideal quantum information processing operation is
driven by the instantaneous cluster-size K(t) of correlated
spins, which quantifies the information spreading induced
by the control operation. The fidelity decay shows a transi-
tion between two different scaling laws that depends on the
scrambling rate Kα, whose power law exponent changes
suddenly as a function of the perturbation strength. By re-
ducing the perturbation strength below a threshold, the ex-
ponent α drops abruptly below 1. This is encouraging as
the dynamical decoherence rate does not scale linearly with
the system size. Although the transition from one regime to
another is smooth in the experimental data, due to the finite
evolution time that is experimentally accessible, the finite-
time scaling indicates the existence of the two dynamical
regimes. The fact that the critical perturbation pc is finite
is also a promising feature for allowing reliable quantum
control of large quantum systems if imperfections are be-
low that threshold. The presented methods provide new
avenues for controlling and characterizing many-body sys-
tems out-of-equilibrium for designing novel quantum tech-
nologies.
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MATERIALS AND METHODS

Hamiltonian engineering. The effective Hamiltonian
of Eq. (3) is generated by concatenating short evolution
periods e−iτ0H0 and e−iτΣΣ of duration τ0 and τΣ respec-
tively. If the cycle time τc = τ0 + τΣ � d−1, where
d ≈ 13kHz is the full-width-half-maximum of the res-
onance line determined by the homogeneous broadening
induced by the dipolar coupling between the spins, we
get e−iτ0H0e−τΣΣ = e−iτc[(1−p)H0+pΣ]+O[(τcd)2]. Here
p = τΣ/τc is controlled by adjusting τΣ. Then based on the
Suzuki-Trotter expansion, the evolution operator U(t) is
achieved by applying repetitively N cycles e−iτ0H0e−τΣΣ

of duration τc,

U(Nτc) = e−i[(1−p)H0+pΣ]Nτc , (8)

where the evolution time t = Nτc.
To engineer the double quantum hamiltonian H0, we

use the 8-pulse sequence developed in Refs. [19, 32].
We applied π/2 RF pulses in the x direction of duration
τp = 3.24µs, with delays ∆ = 2µs and ∆′ = 2∆ + τp.
The evolution operator of one cycle is

U(τ0) = e−i∆/2HddX−1e−i∆
′HddX−1e−i∆HddX−1×

× e−i∆
′HddX−1e−i∆HddXe−i∆

′HddXe−i∆Hdd×
×Xe−i∆

′HddXe−i∆/2Hdd ,

where X is the π/2-pulse in the x direction. The duration
of the pulse-sequence’s cycle in our experiments was τ0 =
62.88µs. Again if τ0d� 1, U(τ0) approximates to

U(τ0) ∼ e−τ0H0 . (9)

The perturbation Σ = Hdd was prepared by a free-
evolution period of duration τΣ following the cycle of H0

of duration τ0 [9, 33]. The perturbation Σ = Hz = ∆ωzIz
is produced by phase-shifts of the pulses that generate the
H0 Hamiltonian by following the protocol proposed in Ref.
[29]. The n-th cycle of the 8-pulse sequence that generates
H0 is shifted by an angle (n − 1)ϕ. Then, the evolution
operator for the n-th cycle is

Un(τ0) = e−iIz(n−1)ϕ e−iH0τ0 eiIz(n−1)ϕ, (10)

and the concatenation of N cycles is then

U(N τ0) = UN ... U1 (11)

= e−iNϕIz
[
e−iτ0H0eiϕIz

]N
= e−iNϕIz

[
e−iτ0H0eiτΣdIz

]N
(12)

' e−iNϕIze−iτcN [(1−p)H0+p∆ωzIz ], (13)

where we have defined τΣ = ϕ/d and ∆ωz = −d. As in
the case Σ = Hdd, p = τΣ/τc. The extra phase e−iNϕIz

is corrected by increasing the codification phase φ for de-
termining the MQC spectrum in an angle Nϕ [29]. The
resulting effective Hamiltonian is then

H ' (1− p)H0 + pHz. (14)

Fidelity. We implement a Loschmidt Echo as a mea-
sure of the fidelity between the ideal density matrix evolv-
ing with U0(t) = e−itH0 and the perturbed one evolv-
ing with U(t) = e−itH. The resulting NMR sig-

nal is therefore S(t) ∝ tr
[
U †0Uρ(0)U †U0 · Iz

]
=

tr
[
UIzU

†U0IzU
†
0

]
= tr [Iz(t)I

0
z (t)]. We normalized

the experimental data in Fig. 1A to obtain the fidelity

f(t) = S(t)/S(0) =
tr(Iz(t)I0

z (t))
tr(I2

z )
. To simplify notation

we do not write the normalization factor.
Determination of the MQC-spectrum and the MQC-

fidelity. The spin density matrix after evolving with the
evolution operator U(t) can be decomposed on coherence
orders as

ρ(t) =
∑
M

∑
mj−mi=M

ρij(t) |mi〉 〈mj| =
∑
M

ρM(t),

(15)
where the operator ρM(t) =

∑
mj−mi=M

ρij(t) contains
all the elements of the density operator involving the co-
herences of order M . Then a rotation φz = e−iφIz of a
phase φ around the z-axis, changes the density operator to

ρ (φ, t) = φzρ(t)φ−1
z =

∑
M

eiMφρM(t). (16)

The fidelity fφ(t) with the proper normalization results
then

fφ(t) = tr
[
φzUρ(0)U †φzU0 · IzU †0

]
(17)

= tr [ρ(φ, t)ρ0(t)] (18)

=
∑
M ′

eiMφtr [ρM(t)Mρ0,M(t)] (19)

=
∑
M

eiMφfM , (20)

where fM(t) = tr [ρ0M(t)ρM(t)] is the MQC fidelity.
The MQC-fidelity is therefore determined by performing
a Fourier transform on φ of the echo signal fφ(t). Simi-
larly, when p = 0, f0

M(t) = tr [ρ0M(t)ρ0M(t)] gives the
MQC-spectrum [19].

OTOCs and the effective cluster-size K(t). At
p = 0, the fidelity f0

φ(t) = tr
[
φz(t)Izφ

†
z(t)Iz

]
=〈

φz(t)Izφ
†
z(t)Iz

〉
β=0

is a conventional OTOC, where
〈·〉β = tr(e−βH...)/tr(e−βH) is the expectation value at
the inverse temperature β [21, 25, 29, 34]. In our case the
OTOC provides information of the system at infinite tem-
perature with β = 0. In the main text we omit β to reduce
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notation. The fidelity f0
φ(t) quantifies the degree of non-

commutation of φz(t) and Iz according to the relation〈
[φz(t), Iz]

†[φz(t), Iz]
〉
β=0

= 2− 2f0
φ(t). (21)

Performing a Taylor expansion of f0
φ(t) for small φ, we get

the second moment of the MQC-spectrum [21, 35]

m0
2(t) =

∑
M

M2f0
M(t) =

〈
[Iz(t), Iz]

†[Iz(t), Iz]
〉
β=0

.

(22)
At p = 0, there are intrinsic decoherence effects that atten-
uates globally the f0

M(t) distribution (see “Intrinsic Deco-
herence effects” in Materials and Methods) as f0(t) decays
as a function of time. Therefore the second moment of the
MQC-spectrum m0

2(t) is normalized to the global fidelity
f0
φ=0(t) to remove the intrinsic decoherence effects allow-

ing to quantify the width of the MQC-spectrum. This width
is related to the number of correlated spins K0(t) [19, 36].
The exact value of K0 will depend on the assumed model
[35]. We use K0(t) = 2m0

2(t)/f0
φ=0(t) assuming a Gaus-

sian distribution for f0
M [19]. K0(t) is determined from

the width of a gaussian fit to obtain a more robust result
compared to the one obtained directly using Eq. (22).

When p 6= 0, fφ(t) =
〈
Iz(t)φ

†
zI

0
z (t)φz

〉
β=0

is a more
general OTOC [34] that satisfies

〈
[Iz(t), φz]

†[I0
z (t), φz]

〉
β=0

= 2
〈
Iz(t)I

0
z (t)

〉
β=0
− 2fφ(t)

(23)

= 2fφ=0(t)− 2fφ(t), (24)

or expanding fφ(t) in powers of φ, equivalently as done to
obtain Eq. (22), we obtain the second moment

m2(t) =
∑
M

M2fM(t) =
〈
[Iz(t), Iz][I

0
z (t), Iz]

†〉
β=0

.

(25)
The second moment m2(t) quantifies the overlap between
the scrambling of the ideal evolution I0

z (t) and the per-
turbed evolution Iz(t). In analogy with the case p = 0, we
normalize m2 with the fidelity fφ=0(t) to obtain an effec-
tive number of correlated spins K(t) = 2m2(t)/fφ=0(t).

Intrinsic Decoherence effects. The ideal form of the
effective Hamiltonian H0 of Eq. (2) is based on an 0-
th order approximation from average Hamiltonian theory
[37]. It can only be achieved if the dipolar couplings dij
are time independent, all pulses of the NMR sequences are
ideal and the condition τc = τ0 + τΣ � d−1 is good
enough. However, typically these couplings are time de-
pendent due to thermal fluctuations, and the pulses are not
ideal. In addition, there are non-secular terms neglected
in Eq. (1), and they might also contribute to the quantum
dynamics. All these effects introduce extra terms in the ef-
fective HamiltonianH of Eq. (3) andH0 of Eq. (2). These
extra terms produce decoherence effects on ms time scales
during the quantum simulations, even for p = 0. These de-
coherence effects reduce the detected signal and the overall

fidelity f(t). Then also the MQC-spectrum is attenuated
with an overall global factor. However, on this study, this
decoherence effects do not cause localization of the scram-
bling dynamics on the time scale of our experiments when
p→ 0 (see Fig. 2, black squares). When p 6= 0, we quan-
tify the scrambling rate K from the second moment of Eq.
(6) generated by H0 after a time-reversed evolution under
−H0. This means that these clusters have survived the de-
coherence effects. Therefore, the non-equilibrium many-
body dynamics observed by the OTOC of Eq. (6), thus
reflects the coherent quantum dynamics generated by the
engineered Hamiltonians. We notice that, the experimen-
tally observed quantum dynamics occurs over times scales
much shorter than the spin-lattice relaxation time, T1 ≈ 1
sec, so we also neglect the effect of thermalization with the
lattice.

Finite-time scaling procedure. To implement the finite-
time scaling technique [9, 31, 38], we used the asymptotic
experimental data for p → 0, that shows that χ′(p →
0,K) ∝ Kα0 for long times. Then we assume that
χ′(p∞,K) ∝ Kα∞ is satisfied also for long times, using
the data for the largest perturbation strengths p∞ = 0.108
for Σ = Hdd and p∞ = 0.24 for Σ = Hz. If there is a
transition from these two regimes at a perturbation pc, then
close to the transition one expects a power law dependence
on (p − pc) for the decoherence rate [9, 31, 38]. We then
consider the following asymptotic functional dependence
at long times

χ′(p,K) ∼
{

(pc − p)sKα0 p < pc
(p− pc)−2νKα∞ p > pc,

(26)

where the time dependence is implicit on K.
We use the single-parameter Ansatz for the scaling be-

havior at long times in order to find the scaling of the curves
of Fig. 2, consistently with previous experimental findings
[9]

χ′(K, p) ∼ Kk1F
[
(pc − p)Kk2

]
. (27)

Here F (x) is an arbitrary function. Based on the asymp-
totic behavior of the experimental data, if p < pc, then
χ′ ∼ (pc − p)sKα0 , implying that F (x) ∼ xs and

k1 + sk2 = α0. (28)

Then for p > pc, χ′ ∼ (pc − p)−2νKα∞ implies F (x) ∼
(−x)−2ν and

k1 − 2k2ν = α∞. (29)

We estimate pc from Fig. 2C and we found that the exper-
imental data satisfy these asymptotic limits for p ≤ 0.009
and p ≥ 0.05 for Hdd, and for p ≤ 0.02 and p ≥ 0.12
for Hz . We obtain s = (−0.986 ± 0.002) for Hdd,



9

s = (−0.46 ± 0.02) for Hz and ν = (−0.56 ± 0.01)
for both perturbations.

The scaling hypothesis is then generalized to

χ′(K, p) ∼ Kk1Φ
[
ζ(p)K−k2ν

]
(30)

for accounting for the intermediate time regimes, where
Φ(x) and ζ(p) again are arbitrary functions. This equa-
tion is less restrictive than Eq. (27) but includes it. Us-
ing the obtained critical exponents, and the values of α0

and α∞ obtained from the asymptotic limits in Fig. 2C,
we get k1 = 0.70 ± 0.05 and k2ν = −0.13 ± 0.02 for
Σ = Hdd and k1 = 0.57±0.07 and k2ν = −0.10±0.02
for Σ = Hz from Eqs. (28) and (29). The scaling behavior
is then found by a proper determination of ζ(p).

To find the scaling factor ζ(p), we plot the curves of
χ′

Kk1
as a function of K−k2ν , and shift them by with ζ(p)

to overlap with each other for different values of p in such a
way that they generate a single curve as in Fig. 3. A single

curve is only obtained if the experimental data is consistent
with the scaling assumptions. To assure the consistency of
the scaling determination, according to Eqs. (7) and (30),
then the scaling factor must satisfy

ζ(p) ∼ (p− pc)−ν . (31)

The curves of ζ(p) are normalized to satisfy ζ(p∞) =√
χ′(K)/Kα∞ , for the largest perturbation strength used

in the experiments p∞ = 0.108 for Σ = Hdd and
p∞ = 0.24 for Σ = Hz . We then fit the experimental
data with the function ζ(p) = A|p−pc|−ν +B, where the
parameter B accounts for the external decoherence pro-
cess that smooth the transition [9, 31, 38]. We observed
the consistency of the fitted curves and the extracted crit-
ical exponents with the assumed single-parameter Ansatz.
The critical perturbations from these fittings are then pc =
(0.024±0.04) and (0.034±0.01) forHdd andHz respec-
tively. These values are consistent with the ones estimated
from Fig. 2C.


	Decoherence scaling transition in the dynamics of quantum information scrambling
	Abstract
	Acknowledgments
	References
	References
	Materials and methods


