

Flour from fruits and vegetables waste with addition of a South-American pepper (Capsicum baccatum) proposed as food ingredient

Journal:	International Journal of Food Science and Technology
Manuscript ID	IJFST-2019-27577.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	de Sá Mendes, Nathânia; Federal University of State of Rio de Janeiro, UNIRIO Favre, Leonardo; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias y Departamento de Química Orgánica; CONICET - ITAPROQ Rolandelli, Guido; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias y Departamento de Química Orgánica; CONICET - ITAPROQ dos Santos Ferreira, Cristina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias y Departamento de Química Orgánica de A. Gonçalves, Édira; Federal University of State of Rio de Janeiro, UNIRIO Buera, Maria Pilar; Facultad de Ciencias Exactas UBA, Departamento De Industrias;
Keywords:	Pepper, Antioxidant Activity, powder stability, sorption isotherms, Encapsulation, Fruit and vegetables waste
	1

SCHOLARONE[™] Manuscripts

2		
3 4	1	Flour from fruits and vegetables waste with addition of a South-American pepper
5 6	2	(Capsicum baccatum) proposed as food ingredient
7 8	3	
9 10	4	Nathânia de Sá Mendes ^{a, 1} , Leonardo Cristian Favre ^{b, c, 1} , Guido Rolandelli ^{b,c} ,Cristina dos Santos
11 12	5	Ferreira ^b , Édira C. B. de A. Gonçalves ^a , María del Pilar Buera ^{b, c*}
13 14	6	
15 16 17	7	^a Laboratory of Bioactives, Federal University of State of Rio de Janeiro, UNIRIO. Av. Pasteur,
17 18 19	8	296, 22290-240 Rio de Janeiro, Brazil.
20 21	9	^b Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de
22 23	10	Industrias y Departamento de Química Orgánica. Intendente Güiraldes 2160, Ciudad
24 25	11	Universitaria, C1428EGA, Buenos Aires, Argentina.
26 27	12	° CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos
28 29	13	Químicos (ITAPROQ). Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos
30 31	14	Aires, Argentina.
32 33 24	15	
34 35 36	16	Corresponding author: María del Pilar Buera CONICET - Universidad de Buenos Aires, Instituto
37 38	17	de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Intendente Güiraldes 2160,
39 40	18	Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
41 42	19	* E-mail: pilar.buera@gmail.com
43 44	20	
45 46	21	¹ These authors have contributed equally to this work.
47 48	22	
49 50	23	
51 52 53	24	
55 55	25	
56 57	26	
58 59		

Institute of Food Science and Technology

27 Abstract

The objective of this work was to evaluate the physicochemical properties of previously characterized flours obtained by milling the solid waste from the manufacture of an isotonic drink produced with various fruits and vegetables (FVR) to which powdered pepper fruits (PF) were added. Aqueous extracts were also prepared and encapsulated for protecting their functional compounds and improving their solubility. The encapsulation yields of the spray-drying processes were 90% and 64% for PF and FVR-PF, respectively. The addition of PF to FVR improved antioxidant capacity, stability and appearance, providing reddish color. FT-IR spectra reflected the addition of PF by changes in the absorbances at wave-numbers typical of carotenoids, acylglycerols, chlorophylls and those related to antioxidant capacity. The encapsulated extracts could be applied when solubility is needed in hydrophilic media. The obtained flours with PF addition are suitably cheap, stable functional food ingredients for industrial uses, such as breading or seasoning ingredients.

Keywords: Pepper; beverage waste; encapsulation; isotherms; powder stability; antioxidant

42 activity

44 Highlights

- Addition of pepper increased bulk density, improving the stability of the MIX.
- The models that best fitted isotherms were GDW (raw) and GAB (encapsulated).
- The addition of pepper increased antioxidant capacity and provided reddish color
- The main differences in the FT-IR spectra reflected compositional aspects

1. Introduction

Agroindustrial activity generates a dramatic amount of waste and their disposal (landfilling, incineration) was defined as the worst environmental option. Agri-food waste prevention is a better option and its utilization to yield value-added products is considered an interesting waste minimization strategy (Galanakis et al., 2018).

Recently, the residues from an isotonic beverage composed of fruits and vegetables (FVR), processed as flour, have been successfully used in the formulation of cereal bars and biscuits to increase microbiological stability, water retention capacity, mineral and fiber content (Neacsu et al., 2015). These novel ingredients demonstrated the ability to overcome constipation and can be used for the development of functional foods (Gonçalves et al., 2018; Andrade et. al, 2014).

Pepper fruits (from *Capsicum* genus), commercialized worldwide, may complement the flour from fruits and vegetables, providing flavor and color characteristics, improved nutritional value and antioxidant properties (Perla et al., 2016). A typical South-American pepper (*Capsicum baccatum*) is the most consumed in Brazil, and highly relevant in regional gastronomy as flavoring and colorant agent. Besides antioxidant properties, *C. baccatum* extracts display anti-inflammatory activities, may combat antibiotic-resistant bacteria, prevent bacterial adhesion and biofilm formation (von Borowski et al., 2019).

Although FVR composition, antioxidant capacity, colorimetric and rheological properties related to the film forming capacity was reported (Brito et al., 2019), the characterization of the product obtained by its combination with pepper has not been yet performed. Thus, the objective of this work was to evaluate the applicability of combined flours from fruits and vegetables waste (FVR) with pepper flour (PF), or of their spray-dried aqueous extracts, for the development of functional food ingredients.

2. Materials and Methods

2.1. Preparation of samples

2.1.1. Pepper Flour (PF) was obtained from fully ripe pepper fruits "dedo-de-moça" (*Capsicum baccatum L. var. Pendulum*) purchased at Hortifrutti, a local market in Rio de Janeiro, Brazil, in
May 2016. The peppers were authenticated by a Food Agricultural Engineers staff member, and
processed according to the methodology applied by Ferreira et al. (2015), consisting in convective
drying at 75 °C for 5 hours, then at 90 °C for 1 hour, milled, homogenized and stored at 25 °C.
One lot of 1000g fresh pepper was processed, from which 141g of PF were obtained.

2.1.2. Fruits and vegetables flour (FVR) was prepared with residues from the manufacture of an
isotonic beverage, as previously described by Ferreira et al. (2015). The beverage has been
formulated with a stablished composition and proposed as a potential functional product applied
in the improvement of gastrointestinal disorders (Andrade et al., 2014).

The beverage was composed of the following species: 11% of sweet orange (Citrus sinensis) 19% of passion fruit (Passiflora edulis), 22% of watermelon (Citrullus lanatus), 8.5% of cucumber (Cucumis sativus) and courgette (Cucurbita pepo), 2% of rocket (Eruca sativa) and mint (Mentha sp),13% of carrot (Daucus carota) and 5.5% of lettuce (Lactuca sativa), spinach (Spinacea oleracea) and taro (Colocasia esculenta), entirely processed for the drink preparation, including non-conventional edible parts such as pulp, stalks, peels, seeds and stems (Ferreira et al., 2015). The remaining solid residues were processed as flour and previously characterized, containing dietary fiber (48%, 80% of which was insoluble), carbohydrates (26%), proteins (9.5%) and lipids (5%). Analysis of different lots in different years allows standardization for assuring the composition constancy of the waste (Brito et al., 2019).

96 2.1.3. Mix of PF and FVR (MIX): PF and FVR flours were mixed in the proportion of 1:1 (w/w) and
 97 homogenized manually in a mortar, using liquid nitrogen to avoid the material stickiness due to
 98 exposure to ambient humidity.

2.1.4. Microencapsulated extracts: PF or FVR were suspended in aqueous solutions of 30% (w/w)
 maltodextrin (MD, DE 15) from Saporiti S.A. (Buenos Aires, Argentina) to obtain a final
 concentration of 6.4%. For the microencapsulated mix (MPVR), PF and FVR were added in order

2		
3 4	102	to obtain 3.2% of each one. The suspensions were homogenized at 500 rpm for 10 min with Ultra
5 6	103	Turrax T18 (IKA, Konigswinter, Germany) and 15,000 rpm for 2 min. Subsequently the systems
7 8	104	were submitted to the Ultrasonic Processor UP 100H (Ultrasound Technology) for 5 min. After
9 10	105	centrifugation at 10,000 rpm for 15 min at 10 °C, the supernatant was collected and filtered twice
11 12	106	in a Buchner system using paper filters (Whatman 1.20- μ pore). The filtrate was spray dried (in a
13 14	107	Buchi B290, Flawil, Switzerland drier) at a flow rate 8 mL/min, air pressure 3.2 kPa, nozzle
15 16	108	diameter 1.5 mm, inlet temperature 174 °C and outlet temperature 95 °C. The product yields of
17 18	109	samples after spray drying were calculated according to the following formula:
19 20	110	
21 22 23 24	111	% Yield = $\frac{Mass of powder obtained after the spray - drying process}{Mass of initial soluble solids (form flour + maltodextrin)} \times 100$
25 26	112	
27 28	113	2.2. Physicochemical characterization
29 30	114	2.2.1. Bulk density
31 32	115	Bulk density (g/mL) was determined according to Santhalakshmy et al. (2015) by measuring the
33 34 25	116	volume of 1.00 g of powder gently introduced into a 10.00 mL graduated cylinder, at 25°C.
35 36	117	
37 38	118	2.2.2. Water activity (a _w)
39 40	119	a_w values were measured using an electronic a_w meter Aqualab Series 3 (Decagon Devices,
41 42	120	Pullman, WA, USA), based on the dew point determination by water condensation on a mirror as
43 44 45	121	temperature decreased.
45 46	122	
47 48	123	2.2.3. Hygroscopicity
49 50	124	Hygroscopicity evaluation was performed as described by Santhalakshmy et al. (2015) with
51 52	125	modifications. One gram of the sample was placed in a container at 25 $^\circ$ C with a saturated NaCl
53 54 55 56	126	solution (75% RH). Samples were weighed every 30 min for 285 min and during 2 days until
57 58		
59 60		Institute of Food Science and Technology

1 2		
3 4	127	constant weight. Hygroscopicity was expressed in grams of water adsorbed per 100 grams of dry
5 6	128	matter (g/100 g d.b.).
7	129	
8 9 10	130	2.2.4. Solubility
10 11 12	131	Solubility was determined according to the procedure described by Cano-Chauca et al. (2005)
13 14	132	with modifications. Briefly, 1 g of dry powder was carefully added to 50 mL of distilled water into
15 16	133	a plastic tube, and stirred at high velocity for 5 min. The solution was centrifuged at 3000g during
17 18	134	5 min. An aliquot of 20 mL of the supernatant was transferred to pre-weighed Petri dishes and
19 20	135	immediately oven-dried at 105 °C for 5 h. Then the solubility (%) was calculated by weight
21 22	136	difference.
23 24	137	
25 26	138	2.2.5. Colorimetric determinations
27 28	139	A Minolta CM-508-d tristimulus photocolorimeter (Minolta Corp., Ramsey, NJ, USA), with
29 30	140	integrating sphere was employed to analyze the color attributes of the samples. Transparent
31 32	141	recipients of 2 cm diameter and 0.5 cm height were employed. The chromatic coordinates in the
33 34	142	CIELAB space were obtained, which represent the color attributes: L* (lightness, representing the
35 36	143	psychophysical quality of clarity with values 0 for black up to 100 for white), a^* (red-green axis)
37 38	144	and b^* (yellow-blue axis). The color coordinates were calculated for the CIE D65 illuminant and 2°
39 40	145	observer angle.
41 42 42	146	
43 44 45	147	2.2.6. Water adsorption isotherms
46 47	148	The isopiestic method was employed for obtaining adsorption isotherms, by exposing the samples
48 49	149	at saturated salt solutions at water activities (a_w) values 0.22, 0.43, 0.53, 0.75 and 0.84 at 25 ± 1
50 51	150	°C (Greenspan, 1977). The adsorption isotherms were adjusted with BET, GAB and GDW (D'Arcy
52 53	151	-Watt) models, using GraphPad Prism 6 software. The coefficient of determination (R ²), relative
54 55 56	152	mean deviation (%E), equation (1) and mean square error (RMS), equation (2), were calculated

153 to verify the degree of fit of the studied models (Téllez-Pérez et al., 2014).

$$\%E = \frac{1}{N} \sum_{i=1}^{N} \frac{|\mathbf{m}_{i} - \mathbf{m}_{pi}|}{\mathbf{m}_{i}} \quad (1) \qquad \qquad \%RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\mathbf{m}_{i} - \mathbf{m}_{pi}}{\mathbf{m}_{i}}\right)^{2}} \quad (2)$$

where m_i and m_{pi} are the actual and predicted moisture content values, respectively, and N is the number of observations.

160 2.2.7. FT-IR spectroscopy

The analysis of compositional aspects and component interactions in the samples was performed by FT-IR spectra obtained with a Spectrum 400 spectrometer (Perkin Elmer, Inc., Shelton, CT, USA) with an attenuated total reflection (ATR) device, by averaging 96 scans over the spectral range of 600 to 4000 cm⁻¹. Data analysis of each sample was performed with OriginPro 2017 program (OriginLab, Northampton, MA, U.S.A.). The average of triplicates for each system was reported. Baseline was corrected and the spectra were normalized.

2.3. Antioxidant activity

The extracts were obtained from 5% of dry solids in water or in 1:1 ethanol:water solution, vortexed for 30 min and centrifuged during 10 minutes at 10.000 rpm. The supernatant was recovered for analysis of total phenolic compounds and antioxidant activity.

44 172

173 2.3.1. Total polyphenols contents by Folin-Ciocalteu method

Total phenolic contents (TPC) of the extracts were determined by the Folin–Ciocalteu method, with some modifications (Busch et al., 2017). Briefly, 125 mL of a solution of Na₂CO₃ (20% w/w), 800 mL of distilled water and 50 µL of sample were added to 125 µL of the Folin-Ciocalteau reagent (Biopack[®], Zarate, Buenos Aires, Argentina). The absorbance at 765 nm was measured

2		
3 4	178	in a UV-Vis spectrophotometer (JASCO Inc., Maryland, USA) after 30 min at 25 °C in the dark.
5 6	179	Total polyphenols (TP) were expressed as mg gallic acid per 100 g of dry matter (mg GAE/100 g
7 8	180	of d.b.), through a calibration curve.
9 10	181	
10 11 12	182	2.3.2. Free radical scavenging by DPPH•
12 13 14	183	The radical scavenging activity (RSA) was calculated as a percentage of the free radical DPPH•
14 15 16	184	(2,2-diphenyl-1-picryl-hydrazyl) discoloration in 30 minutes, using Equation (3):
17 18 19	185	$\% RSA = \frac{(A_{DPPH\bullet} - A_{EXT})}{A_{DPPH\bullet}} x \ 100 $ (3)
20 21 22	186	where A_{DPPH} is the absorbance value of the DPPH test solution and A_{EXT} is the difference
22 23 24	187	between the absorbance values of the test solution with the extract and of its blank at 30 min
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	188	(Busch et al., 2017).
	189	
	190	3. Results and Discussion
	191	3.1. Physicochemical characterization
	192	The parameters color coordinates, bulk density, hygroscopicity and solubility, as so as the a_w
	193	values of the samples, are shown in Table 1.
	194	All the samples were of intermediate lightness, since L^* values (representing luminosity) were
	195	close to 50. The visual appearance of FVR was of a greenish-brown coloration, and reflected in
41 42	196	the color coordinates, since the a^* value was positive but close to 0 (slightly in the red region) and
43 44	197	<i>b</i> * was >0, well in the yellow zone. The PF sample was visually reddish-yellow, with higher <i>a</i> * and
45 46	198	b* values. As a consequence, the color coordinates of MIX had intermediate chroma values,
47 48	199	providing a reddish-brown color, with positive and intermediate a^* and b^* values. In the spray-
49 50	200	dried powders the visual appearance was governed by the presence of maltodextrin, the samples
51 52	201	were almost achromatic, with very high luminosity (L^* value close to 85), being MPF slightly pink.
53 54		
55 56		
57		
58 59		
60		Institute of Food Science and Technology

The encapsulation efficiencies for PF and MIX were 90% and 64% w/w, respectively. The different yields can be related to the nature of the raw material, since the spray-drying conditions were maintained as a constant (Tontul and Topuz, 2017).

PF and MIX powders presented higher bulk density than FVR. As higher is the bulk density, less air is occluded within the powder particles. Considering that the heavier material can be more easily accommodated in the spaces between particles (Santhalakshmy et al. 2015), there is less possibility of product oxidation and thus storage stability is increased due to less contact with atmospheric oxygen. High bulk density is also favorable for transportation and packaging (Tontul and Topuz, 2017). Consequently, the addition of PF to FVR potentially favors the functional components stability. No differences in bulk density were observed among the microencapsulated samples, since it was predominantly governed by the maltodextrin matrix.

 a_w and hygroscopicity play important roles for storage stability, while solubility is related to the powders reconstitution (Rezende et al., 2018). The a_w of the samples were between 0.09 and 0.3, indicating stability against chemical or enzymatic reactions. Spray-drying with maltodextrin as wall materials resulted in the lowest a_w values, important for packaging specifications. The samples presented hygroscopicity values from 13.26 to 16.63% (d.b.), which are considered adequate, since values lower than 20% indicate a low tendency to absorb water (Tontul and Topuz, 2017). In agreement with other researchers, encapsulation by spray-drying with maltodextrin as wall material, which decreased degradation of bioactive compounds (Busch et al., 2017; Rezende et al., 2018), increased the solubility and water absorption of the powders in aqueous media.

3.2. Water adsorption isotherms

Water sorption isotherms at 25 °C presented sigmoidal shape, characteristic of type II isotherms
 (Fig. S1), indicating the existence of multilayers in the inner surface of the material (Fonteles et al., 2016).

The BET, GAB and GDW models employed provided adequate description of the experimental data (Table 2), with determination coefficients (R^2) higher than 0.99, and %E less than 10% (Téllez-Pérez et al., 2014), being the BET model limited to a_w values lower than 0.5 (Furmaniak et al., 2009).

The hydration limits (X_m , or "monolayer values") obtained by the GAB equation for PF was in the range of those obtained for different pepper varieties (Seid and Hense, 2012). As higher is the GAB constant *C*, greater is the water binding force at the monolayer (Téllez-Pérez et al., 2014). For the analyzed systems GAB constants values, *k* < 1 and *C* > 2 were obtained for all studied samples (Table 2), which is also typical of type II isotherms.

The GDW model, previously used to describe water sorption isotherms of different food products (Furmaniak et al., 2009), maintains all the considerations for the GAB model, but assumes that only a proportion of water molecules bound to primary adsorption centers can act as secondary centers and w is lower than a value of 1. When each one of the water molecules adsorbed in primary sites is converted to a secondary sorption site, the parameter w equals 1 and the GDW model is reduced to GAB model. In some cases, one primary center can adsorb more than one water molecule (Furmaniak et al., 2009), and in this case w > 1. As shown in Table 2, w was guite lower than 1 for the un-encapsulated systems and quite close to 1 for the encapsulated systems. This indicates that the raw milled samples had a denser or tortuous microstructure while the spray-dried samples presented a more open and less compact structure, which allowed the full conversion of primary sites into secondary sites for water adsorption. This fact explains why the spray-dried samples were well represented by the GAB equation while GDW provided a better description for the water sorption in raw powders.

As previously observed (Furmaniak et al., 2009), M_e values of the GDW model were higher than those obtained for X_m of the GAB model. Sorption kinetic constants for the primary sites (*K*) presented values higher than one, corresponding to type II isotherms. The *K* values indicate that the FVR and MIX milled systems have slower water sorption than the FP and encapsulated extracts. The sorption kinetic constants for the secondary sites (*k*) were slightly higher than 1 for
the milled systems and slightly lower than 1 for the encapsulated extracts.

3.3. Antioxidant activity assay

The total phenolic contents were higher for the aqueous extracts than for the ethanolic extracts (Table 3). The addition of PF to the FVR increased the phenolic content. Recently, 42 phenolic compounds were identified by UPLC-ESI-Q-TOF-MS/MS in PF, of which quercetin 3-Orhamnoside, luteolin 7-O-glycoside and naringenin were the most abundant (Mendes et al., 2019). On the other hand, 88 compounds were tentatively identified in the FVR: phenolic acids (28), flavonoids (32) and other polyphenols (28), being hesperidin the main compound extracted (Goncalves et al., 2018).

As shown in Table 3, the ethanol extract of PF showed higher free radical scavenging activity than FVR and the MIX. Non-spray-encapsulated samples, showed similar anti-radical capacity in aqueous and ethanol media. The lowest antioxidant activity of the samples was observed for the spray dried samples (MPF followed by the MPVR, Table 3), due to their dilution in the maltodextrin matrix. The antiradical capacity was higher for the samples extracted with water, in parallel with their higher total polyphenols content.

39 270

3.3. FT-IR spectroscopy

The main differences in the FT-IR spectra of PF, FVR and MIX are indicated in Figure 1 a, b and c, respectively. The normalized absorbance values of those signals are presented in Figure 2 as a function of the proportion of PF (Fig. 2a), or of total polyphenols content (Fig. 2b). The absorbance values at frequencies typical of the hydrocarbonated skeleton of carotenoids (which are those at 2922 cm⁻¹ and 2853 cm⁻¹ related to CH_3 and CH_2 vibrations, around 1450 cm⁻¹, due to the bending vibration of methylene $-CH_2$, and those around 1367 cm⁻¹, caused by scissoring and bending bonds of alkanes (Kushwaha et al., 2014), followed the order FVR < MIX < PF

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
2.5 2.4	
24	
25	
20	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>41</u>	
12	
42 12	
43	
44 47	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
00	

279 (Figure 2a). The absorbances of the band at 1743 cm⁻¹, attributed to the ester carbonyl group of acylglycerols, were in the same order (Figure 2a), due to the higher proportion of lipids in PF. 280 As shown in Figure 2b, the absorbance values at 1580, 1410 and at 1020 cm⁻¹, which have been 281 associated with the antioxidant activity of fruit extracts (Lu and Rasco, 2012), and the 282 283 absorbances at 1650 cm⁻¹, caused by chlorophylls and proteins (Kushwaha et al., 2014) increased

with higher total polyphenolic contents and with the PF content. 284

The ratio of absorbances at 1625 cm⁻¹ (related to chlorophylls) and 1743 cm⁻¹ (lipids + 285 chlorophylls) was very sensitive to the compositional changes (Figure 2b). 286

The FT-IR bands in the ranges 3270-3320 cm⁻¹, 1629-1663 cm⁻¹ and 1014-1019 cm⁻¹ have been 287 associated to polyphenol contents of tea extracts (Senthilkumar et al., 2017). However, for the 288 analyzed samples, only the absorbances at 1020 cm⁻¹ were related to increasing PF proportion 289 and with the antioxidant capacity (Figure 2b). 290

291 No frequency displacements in the range 3470 to 3230 cm⁻¹ (which corresponds to –OH interactions) were detected by PF addition, reflecting that potential molecular interactions of 292 polyphenols with other components (Fig. 1, a-c), would not affect the antioxidant capacity, in 293 ien agreement with the data shown in Table 3. 294

4. Conclusions 296

295

Dried fruits and vegetables by-products combined with pepper flour represent an interesting 297 alternative for the production of functional ingredients. The addition of pepper flour to the fruits 298 299 and vegetables flour increased the red coloration, modified the bulk density, improving its stability,

and functional properties, also increasing polyphenols content and antioxidant capacity. The 300 absorbance of selected FT-IR bands, mainly those related to carotenoids, phenolics and 301 302 chlorophylls, reflected the addition of PF to the fruit and vegetable extract.

303 FVR, PF and MIX could be used after a very easy drying and milling procedure when there are no solubility requirements, as in the case of snacks and seasonings for breaded preparations. On 304

1 2		
3 4	305	the other side, flours extracts encapsulation by spray-drying may be the choice when the water
5 6	306	solubility of the powders is needed. Spray dried powders are characterized by their reduced water
7 8	307	content, without a significant change in hygroscopicity. By the encapsulation process, the
9 10	308	ingredients obtained developed an improved stability and are suitable for applications in
11 12	309	hydrophilic media. The proposed ingredients represent an attractive alternative for the
13 14	310	development of innovative products, as well as a viable solution for the valorization of food
15 16 17	311	processing by-products, agroindustrial waste and regional resources, adding value to
17 18 10	312	unappreciated materials.
20	313	
21 22	314	Conflict of Interest
23 24 25	315	All authors declare that there is no conflict of interest.
25 26 27	316	
27 28 29 30 31	317	Ethical Guidelines
	318	Ethics approve was not required for this research.
32 33	319	
34 35	320	Data Availability Statement
36 37	321	The data that support the findings of this study are available on request from the corresponding
38 39	322	author. The data are not publicly available due to privacy or ethical restrictions.
40 41	323	
42 43	324	Acknowledgments
44 45	325	The authors acknowledge financial support from Agencia Nacional de Promoción Científica
46 47	326	y Tecnológica (PICT 2013-1331), Universidad de Buenos Aires (UBACYT 20020170100459BA)
48 49 50	327	and PDTS CIN-CONICET 0196. N.S.M. acknowledges Universidad de Buenos Aires and to
50 51 52	328	Programa de Movilidad en el Posgrado de la Red de Macrouniversidades Públicas de América
53 54	329	Latina y el Caribe, for the financial support.
55 56		
57		
58 59		

1 2		
3 4	330	References
5 6	331	Andrade, R.M.S., Ferreira, M.S. L. F & Gonçalvez, É.C.B.A. (2014). Functional capacity of flour obtained
7 8	332	from residues of fruit and vegetables. International Food Research Journal, 21, 1675-1681.
9 10	333	Brito, T.B., Carrajola, J. F., Gonçalves, E.C.B.A., Martelli-Tosi, M., & Ferreira, M. S. L (2019) Fruit and
10	334	vegetable residues flours with different granulometry range as raw material for pectin-enriched
12	335	biodegradable film preparation. Food Research International, 121 , 412-421.
14 15	336	Busch, V. M., Pereyra-Gonzalez, A., Šegatin, N., Santagapita, P. R., Poklar Ulrih, N.& Buera, M. P. (2017).
16 17	337	Propolis encapsulation by spray drying: characterization and stability. LWT-Food Science and Technology,
18 19	338	75 , 227–235.
20 21	339	Cano-Chauca, M., Stringheta, P. C., Ramos, A. M.& Cal-Vidal, J. (2005). Effect of the carriers on the
22 23	340	microstructure of mango powder obtained by spray drying and its functional characterization. Innovative
24 25	341	Food Science & Emerging Technologies, 6, 420–428.
26 27	342	Ferreira, M. S. L., Santos, M. C. P., Moro, T. M. A., Basto, G. J., Andrade, R. M. S.& Gonçalves, É. C. B.
28 29	343	A. (2015). Formulation and characterization of functional foods based on fruit and vegetable residue flour.
30 31	344	Journal of Food Science and Technology, 52 , 822–830.
32	345	Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Carneiro, A. P. G., Miguel, E. de C., Cavada, B. S., Furmaniak,
33 34	346	S., Terzyk, A. P., Gołembiewski, R., Gauden, P. A.& Czepirski, L. (2009). Searching the most optimal model
35 36	347	of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, 42,
37 38	348	1203–1214.
39 40	349	Galanakis, C. M., Tsatalas, P., Charalambous, Z. & Galanakis, I.M. (2018). Polyphenols recovered from
41 42	350	olive mill wastewater as natural preservatives in extra virgin olive oils and refined olive kernel oils.
43 44	351	Environmental Technology and Innovation, 10 , 62-70.
45 46	352	Gonçalves, E. C. B. A., Lozano-Sanchez, J., Gomes, S., Ferreira, M. S. L., Cameron, L. C. & Segura-
47 48	353	Carretero, A. (2018). Byproduct generated during the elaboration process of isotonic beverage as a natural
49 50	354	source of bioactive compounds. Journal of Food Science, 83, 2478-2488.
50 51 52	355	Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of
53	356	the National Bureau of Standards – A. Physics and Chemistry. 81, 89-96.
54 55		
50 57		
58 59		
60		Institute of Food Science and Technology

1 2		
3	357	Guadarrama-Lezama, A. Y., Dorantes-Alvarez, L., Jaramillo-Flores, M. E., Pérez-Alonso, C., Niranjan, K.,
5	358	Gutiérrez-López, G. F., & Alamilla-Beltrán, L. (2012). Preparation and characterization of non-aqueous
7	359	extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Journal
8 9	360	of Food Engineering, 112 , 29–37.
10 11	361	Kushwaha, K., Saxena, J., Tripathi, B.K., Agarwal, M.K. (2014). Detection of carotenoids in psychrotrophic
12 13	362	bacteria by spectroscopic approach. Journal of Bioscience and Biotechnology. 3, 253-260.
14 15	363	Lu, X. & Rasco B.A. (2012): Determination of antioxidant content and antioxidant activity in foods using
16 17	364	infrared spectroscopy and chemometrics: a review. Critical Reviews in Food Science and Nutrition, 52,10,
18 19	365	853-875.
20 21	366	Mendes, N. S., Santos, M. C. P., Santos, M. C. B., Cameron, L. C., Ferreira, M. S. L. & Gonçalves, E. C.
22 23	367	B. A. (2019). Characterization of Pepper (Capsicum baccatum) - A Potential Functional Ingredient. LWT -
24 25	368	Food Science and Technology. 112, https://doi.org/10.1016/j.lwt.2019.05.107
26 27	369	Neacsu, M., Vaughan, N., Raikos, V., Multari, S., Duncan, G. J., Duthie, G. G.& Russell, W. R.
27	370	(2015). Phytochemical profile of commercially available food plant powders: their potential role in healthier
29 30	371	food reformulations. Food Chemistry, 179, 159–169.
31 32	372	Perla, V., Nimmakayala, P., Nadimi, M., Alaparthi, S., Hankins, G. R., Ebert, A. W.& Reddy, U. K. (2016).
33 34	373	Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes. Food
35 36	374	Chemistry, 202, 189–198.
37 38	375	Rezende, Y. R. R. S., Nogueira, J. P.& Narain, N. (2018). Microencapsulation of extracts of bioactive
39 40	376	compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying:
41 42	377	Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281–291.
43 44	378	Santhalakshmy, S., Don Bosco, S. J., Francis, S.& Sabeena, M. (2015). Effect of inlet temperature on
45 46	379	physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43.
47 48	380	Seid, R. M. & Hensel, O. (2012). Experimental evaluation of sorption isotherms of Chili pepper: An Ethiopian
49 50	381	variety, Mareko Fana (Capsicum Annum L.). Agricultural Engineering International: CIGR Journal, 14, 163-
50 51	382	172.
52 53		
54 55		
56 57		
58 59		

4	383
5	384
6 7	385
8 9	386
10	200
11 12	38/
13 14	388
14	389
16 17	390
18 10	391
20	392
21 22	202
23 24	393
24 25	394
26 27	395
28	
29 30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
20	

59

60

Senthilkumar, S. R., Sivakumar, T., Arulmozhi, K. T.& Mythili, N. L. (2017). FT-IR analysis and correlation
 studies on the antioxidant activity, total phenolics and total flavonoids of Indian commercial teas (*Camellia sinensis*) – A novel approach. *International Research Journal of Biological Sciences*, 6, 1-7.

Téllez-Pérez, C., Sobolik, V., Montejano-Gaitán, J. G., Abdulla, G.& Allaf, K. (2014). Impact of swell-drying
 process on water activity and drying kinetics of Moroccan pepper (*Capsicum annum*). Drying Technology,

388 **33**, 131–142.

Tontul, I.& Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. *Trends in Food Science & Technology*, **63**, 91-102.

von Borowski, R.G., Zimmer, K.R., Leonardi, B.F., Silva-Trentin, D., Campos-Silva, R., Primon de Barros,
M., Macedo, A.J., Baggio-Gnoatto, S.C, Gosmann, G., Zimmer, A.R. (2019). Red pepper *Capsicum*

393 baccatum: source of antiadhesive and antibiofilm compounds against nosocomial bacteria. Industrial Crops

ee perie

394 *and Products*, **127**, 148-157

2		
3 4	396	Legends for figures
5 6	397	Figure 1. Fourier transform infrared (FT-IR) spectra in the range 4000-700 cm ⁻¹ for fruit and vegetable flour
7 8 9 10 11	398	(FVR), pepper flour (PF) and MIX (PF/FVR). The circles indicate the main differences of the spectral bands.
	399	Bands located in the ranges 3270-3320 cm ⁻¹ and 1743-1663 cm ⁻¹ are typical of polyphenols. Peaks in the
	400	region around 1625 cm ⁻¹ are attributed to chlorophylls and proteins, contributions of carotenoids are located
13	401	at 1450 and 1250 cm ⁻¹ .
14	402	
16 17	403	Figure 2. Absorbances in the IR regions at which differences were observed when changing the proportion
18 19	404	pepper flour (PF) and fruit and vegetable flour (FVR).
20 21	405	a) Absorbance values at 1450, 1367, 2922 and 2853 cm ⁻¹ (attributed to carotenoids), at 1743 cm ⁻¹
22 23	406	(mainly attributed to lipids), as a function of the mass fraction of PF.
24 25	407	b) Absorbance values at 1020, 1410, 1580 and 1650 cm ⁻¹ and the absorbances ratio between 1743
26 27	408	and 1625 cm ⁻¹ as a function of total polyphenols in the aqueous extracts.
28 29	409	
30 31	410	
32 33	411	
34 25		
35 36		
37 38		
39 40		
41 42		
43		
44 45		
46		
47		
48 49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59 60		Institute of Food Science and Technology

Table 1. Physicochemical characterization of pepper flour (PF), fruits and vegetables flour (FVR),

413 mix of PF and FVR (MIX) and dry powders obtained by spray drying: PF Microcapsules (MPF);

414 PF and FVR Microcapsules (MPVR).

	PF	FVR	MIX	MPF	MPVR
Bulk Density					
	0.54 ± 0.04	0.42 ± 0.01	0.55 ± 0.02	0.49 ± 0.01	0.50 ± 0.01
(g/mL)					
a _w	0.37 ± 0.02	0.34 ± 0.04	0.39 ± 0.02	0.09 ± 0.01	0.09 ± 0.02
Hygroscopicity	120101	16 + 0	14.0 + 0.2	12.2 + 0.0	
(a a w/100 a)	13.0 ± 0.1	16 ± 2	14.8 ± 0.3	13.3 ± 0.8	$15.72 \pm 0.0^{\circ}$
(g.a.w/100 g)					
Solubility (%)	43 ± 2	42 ± 1	38.01 ± 0.03	99 ± 1	100.00 ± 0.07
L*	52.8 ± 0.5	55.8 ± 0.3	50.7 ± 0.4	84.7 ± 0.6	92.1 ± 0.7
a*	21.4 ± 0.2	2.6 ± 0.1	13.7 ± 0.2	16.1 ± 0.1	7.3 ± 0.2
b*	37.8 ± 0.2	20.0 ± 0.3	31.9 ± 0.3	18.1 ± 0.3	14.9 ± 0.1

g.a.w: g of absorbed water. All results are the means \pm SD (n = 3).

Model	Constants	PF	FVR	MIX	MPF	MPVF
	X _m	9.359	9.175	9.516	4.674	5.118
	С	51.69	19.45	23.08	14.45	11.39
BET	R ²	0.997	0.998	0.998	1.000	0.998
	%E	1.886	1.498	1.768	0.306	1.909
	%RMS	3.772	2.997	3.536	0.613	3.819
	X _m	10.13	9.916	10.02	4.895	4.985
	С	44.38	19.36	25.91	14.15	13.64
040	К	0.839	0.859	0.849	0.918	0.926
GAB	R ²	0.998	0.999	0.997	0.999	0.998
	%E	2.345	1.985	3.172	0.799	3.069
	%RMS	5.744	4.863	7.771	1.959	7.519
	М	16.29	17.50	18.03	5.042	5.606
	К	10.06	5.798	6.300	13.49	10.97
	k	1.025	1.027	1.006	0.906	0.919
GDW	W	0.215	0.2248	0.2337	1.102	0.985
	R ²	0.999	0.999	0.999	0.999	0.998
	%E	0.922	0.855	0.744	1.070	3.338
	%RMS	2.438	2.262	1.798	2.823	8.831

Table 2. Parameters of the proposed models for moisture sorption isotherms at 25 °C.

X_m, M: water hydration limit ("monolayer value", % dry basis); *C, K, k, w, A, B:* model parameters;

R²: determinant coefficient; %E: mean relative percentage deviation; %RMS: root mean square.

Table 3. Total phenolic co	ontents and antioxidant ac	tivity of PF, FVR	, MIX, MPF and MPVR.

	Total phen	olic contents	DPPH•			
Samples	(mg GAI	E/g extract)	(%of DPPH• o	liscoloration, 30')		
-	H ₂ O	ETHANOL 50 %	H ₂ O	ETHANOL 50 %		
PF	387 ± 2 ^{a, A}	300 ± 22 ^{a, B}	73.7 ± 0.5 ^{a, A}	84 ± 1 ^{a, A}		
FVR	314 ± 15 ^{b, A}	271 ± 13 ^{a, A}	70 ± 2 ^{a. A}	69 ± 3 ^{b, A}		
MIX	361 ± 13 ^{a, A}	308 ± 1 ^{a, A}	74 ± 6 ^{a, A}	70 ± 2 ^{b, A}		
MPF	151 ± 9 ^{с, A}	118 ± 13 ^{b, A}	13 ± 3 ^{b, A}	2.9 ± 0.5 ^{c, B}		
MPVR	159 ± 3 ^{c, A}	82 ± 4 ^{b, B}	19 ± 6 ^{b, A}	3 ± 0.2 ^{c, B}		

All results are the means \pm SD (n = 3). Different lowercase letters in the same column indicate significant differences between samples using Tukey's multiple range test (p < 0.05). Different uppercase letters in the same line indicate significant differences between samples using Tukey's multiple range test (p < 0.05).

P.C.

Institute of Food Science and Technology

Figure 1.

162x191mm (96 x 96 DPI)

Absorbances in the IR regions at which differences were observed when changing the proportion pepper flour (PF) and fruit and vegetable flour (FVR). Error bars represent standard deviation and some of them lay below the symbols.

a) Absorbance values at 1450, 1367, 2922 and 2853 cm-1 (attributed to carotenoids), at 1743 cm-1 (mainly attributed to lipids), as a function of the mass fraction of PF.

128x128mm (300 x 300 DPI)

Institute of Food Science and Technology

b) Absorbance values at 1020, 1410, 1580 and 1650 cm-1 and the absorbances ratio between 1743 and 1625 cm-1as a function of total polyphenols in the aqueous extracts.

133x128mm (300 x 300 DPI)

195x259mm (300 x 300 DPI)

94x74mm (300 x 300 DPI)

Table 1. Physicochemical characterization of pepper flour (PF), fruits and vegetables flour (FVR), mix of PF and FVR (MIX) and dry powders obtained by spray drying: PF Microcapsules (MPF); PF and FVR Microcapsules (MPVR).

	PF	FVR	MIX	MPF	MPVR
Bulk Density					
(g/mL)	0.54 ± 0.04	0.42 ± 0.01	0.55 ± 0.02	0.49 ± 0.01	0.50 ± 0.01
a _w	0.37 ± 0.02	0.34 ± 0.04	0.39 ± 0.02	0.09 ± 0.01	0.09 ± 0.01
Hygroscopicity	42.0 + 0.4	40 + 0	14.0 + 0.2	40.0 + 0.0	45 70 + 0.04
(g.a.w/100 g)	13.0 ± 0.1	10 ± 2	14.8 ± 0.3	13.3 ± 0.8	15.72 ± 0.01
Solubility (%)	43 ± 2	42 ± 1	38.01 ± 0.03	99 ± 1	100.00 ± 0.01
L*	52.8 ± 0.5	55.8 ± 0.3	50.7 ± 0.4	84.7 ± 0.6	92.1 ± 0.7
a*	21.4 ± 0.2	2.6 ± 0.1	13.7 ± 0.2	16.1 ± 0.1	7.3 ± 0.2
b*	37.8 ± 0.2	20.0 ± 0.3	31.9 ± 0.3	18.1 ± 0.3	14.9 ± 0.1

g.a.w: g of absorbed water. All results are the means ± SD (*n* = 3).

Page 31 of 32

Table 2.	Parameters of the	ne proposed models	s for moisture so	orption isotherms at 25 °	C.
----------	-------------------	--------------------	-------------------	---------------------------	----

Model	Constants	PF	FVR	MIX	MPF	MPVR
BET	X _m	9.359	9.175	9.516	4.674	5.118
	С	51.69	19.45	23.08	14.45	11.39
	R ²	0.997	0.998	0.998	1.000	0.998
	%E	1.886	1.498	1.768	0.306	1.909
	%RMS	3.772	2.997	3.536	0.613	3.819
	X _m	10.13	9.916	10.02	4.895	4.985
	С	44.38	19.36	25.91	14.15	13.64
GAB	К	0.839	0.859	0.849	0.918	0.926
	R ²	0.998	0.999	0.997	0.999	0.998
	%E	2.345	1.985	3.172	0.799	3.069
	%RMS	5.744	4.863	7.771	1.959	7.519
GDW	М	16.29	17.50	18.03	5.042	5.606
	К	10.06	5.798	6.300	13.49	10.97
	k	1.025	1.027	1.006	0.906	0.919
	W	0.215	0.2248	0.2337	1.102	0.985
	R ²	0.999	0.999	0.999	0.999	0.998
	%E	0.922	0.855	0.744	1.070	3.338
	%RMS	2.438	2.262	1.798	2.823	8.831

X_m, M: water hydration limit ("monolayer value", % dry basis); *C, K, k, w, A, B:* model parameters; R²: determinant coefficient; %E: mean relative percentage deviation; %RMS: root mean square.

Table 3. Lotal phenolic contents and antioxidant activity of PF, FVR, MIX, MPF and N	<i>Ι</i> PVR.
---	---------------

	Total pheno	olic contents	DPPH•			
Samples	(mg GAE	/g extract)	(%of DPPH• discoloration, 30'			
-	H ₂ O	ETHANOL 50 %	H ₂ O	ETHANOL 50 %		
PF	387 ± 2 ^{a, A}	$300 \pm 22^{a, B}$	73.7 ± 0.5 ^{a, A}	84 ± 1 ^{a, A}		
FVR	314 ± 15 ^{b, A}	271 ± 13 ^{a, A}	70 ± 2 ^{a. A}	69 ± 3 ^{b, A}		
MIX	361 ± 13 ^{a, A}	308 ± 1 ^{a, A}	74 ± 6 ^{a, A}	70 ± 2 ^{b, A}		
MPF	151 ± 9 ^{с, A}	118 ± 13 ^{b, A}	13 ± 3 ^{b, A}	2.9 ± 0.5 ^{c, B}		
MPVR	159 ± 3 ^{с, A}	82 ± 4 ^{b, B}	19 ± 6 ^{b, A}	3 ± 0.2 ^{c, B}		

All results are the means \pm SD (n = 3). Different lowercase letters in the same column indicate significant differences between samples using Tukey's multiple range test (p < 0.05). Different uppercase letters in the same line indicate significant differences between samples using Tukey's multiple range test (p < 0.05).

R PR R