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Abstract 

Electroluminescence (EL) transients of solution-prepared CH3NH3PbI3 perovskite solar 

cells were recorded under different biasing voltage conditions. The EL transients are 

reversible and show a sharp increase and a peak in the range of 1 s to 10 s, while after 

the peak the signal decays in 30 s to 60 s. The possible origins of the different features 

are discussed, pointing to a shift in the region of dominating recombination during 

biasing, governing the EL increase, and ion migration induced non-radiative 

recombination centers during the EL decrease. Moreover, when ramping up the 

polarization voltage the EL transients shorten, suggesting an acceleration of the 

microscopic mechanism with increasing electric fields. Cells prepared with compact 

instead of mesoporous TiO2 electron contact show faster dynamics, highlighting the link 
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between dynamics and interface properties. Furthermore, experiments using cells with 

different hole contacts show that the observed behavior and the duration of the transient 

is similar in cells using Spiro-OmeTAD and copper phatlocyanine (CuPc). When 

considering the steady-state EL, the open circuit voltage under solar operation correlates 

with EL across samples with different HTL materials. A non-monotonous behavior is 

also observed in temperature-dependent EL transients, where maxima in EL as well as 

in time to the peak are observed around 30 °C, which is close to the temperature of 

crystalline phase change from tetragonal to cubic phase known in MAPI at 37 °C. 

 

 1. INTRODUCTION 

Perovskite solar cells (PSC) are at the pinnacle of the efforts directed to the 

development of third generation photovoltaics, highly regarded as top candidates for 

near term massive impact on renewable energy production [1]. Despite the fast progress 

towards highly efficient and durable devices achieved by the scientific community, the 

complexity of PSC demands a diverse set of characterization methods and models to 

disentangle microscopic phenomena [2]. It is expected that a greater knowledge of the 

underlying mechanisms will pave the way to the development of new preparation 

methods and materials for production-ready devices [3]. 

 A widespread tool in the characterization of solar cells in scientific laboratories 

as well as photovoltaic modules in industrial production is the electroluminescence (EL) 

imaging technique [4–6]. Using a simple setup composed by a CCD camera and a 

power source, EL imaging records the light emitted by the photovoltaic device in the 

dark upon biasing and current injection [6]. Owing to a correspondence between dark 

and illuminated characteristics, the features revealed in EL images are directly linked to 

the device under solar illumination [5], rendering EL imaging as a reliable and fast 

characterization technique for solar devices in general. In PSC, EL constitutes a 

valuable technique, already proven successful for the characterization of layer 

homogeneity and localization of degradation spots [7,8]. However, the general use of 

EL in PSC requires careful inspection, since many PSC solar cell architectures show a 

time-dependent response, most widely revealed by the well-known rate-dependent 

hysteresis observed in current-voltage characterization [9]. The timescale of transient 

behavior in PSC spans from the microsecond to the hour range, with several different 

microscopic phenomena ruling each transient phase, from fast charge injection (in the 

order of ns), migration of fast ions (ms), interface charge/discharge (up to 10 s), and 
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slow ion migration (1000 s) [10,11]. Although screening EL as a fast tool, such long 

lasting transients may offer a complementary method to the characterization under solar 

operation. In previous investigations, EL transients were recorded in lead-halide PSC, 

showing a monotonous increase towards a stationary value in the minute scale [12], 

where others observed a non-monotonous evolution showing a maximum at timescales 

of up to 25 min, followed by a slower decrease [13]. In a recent paper [14], Wong et al. 

employed EL transient characterization across solar cells prepared with different 

electron contacts, finding important differences in the different EL decay rates 

depending on the chosen electron contact materials. This allowed to estimate the 

amount of non-radiative recombination at the defect energy levels at the interfaces of 

each device introduced by each material. Such analyses can be expanded when 

incorporating other variables, for instance the relative EL intensity difference across 

samples, the link between transient EL and steady-state solar output characteristics, and 

the temperature dependence of EL.  

 In this contribution, we report the systematic EL transient characterization of 

methylammonium lead iodide (CH3NH3PbI3 or MAPI for short) solar cells, focusing on 

the characteristic times, the EL intensity relative to the injected current, and the 

relationship between the EL characteristics and the open-circuit voltage under solar 

operation. We analyze in detail different shapes of the EL transients under several 

polarization conditions in solar cells using different electron as well as hole contacts, 

revealing the impact of interfacial recombination introduced by each contact material, 

and finding a correlation between solar cell output and EL transients across cells. 

Moreover, temperature dependent EL transients show a non-monotonous behavior 

which possibly reflects the occurrence of a change in crystalline phase near room 

temperature. The paper structure is as follows: section 2 describes the experimental 

methods employed during the preparation and characterization of the samples, detailing 

the procedure followed during EL recording. Section 3 presents the results, showing 

first a typical EL image time-sequence with the resulting EL transient curves defining 

characteristic transient parameters, outlining the possible origin of the observed 

behavior. The characteristic parameters are later linked to the solar output parameters 

and compared across devices with different contact materials. The last part of section 3 

shows temperature dependent experiments, where the EL transients reveal a maximum 

that is associated to structural transitions. 
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 2. EXPERIMENTAL METHODS 

 2.1 Solar cell preparation 

The FTO glass substrates were cleaned with detergent and Milli-Q water in an 

ultrasound for 10 min, followed by immersion in acetone, ethanol and isopropyl alcohol 

for 10 min. The substrates were blow-dried under N2 flow and finally exposed to air 

plasma for 7 s. The compact TiO2 layer was deposited by spin coating at 2000 rpm for 

20 s from a solution of TiCl4 in ethanol 1:200. In the case of cells using a porous layer, 

after thermal annealing the compact TiO2 at 100 ºC for 10 min, a mesoporous TiO2 layer 

was deposited by spin coating at 2000 rpm for 20 s from a 5 %vol TiO2 

paste (Greatcell Solar 30NR-D) in ethanol. Finally, the films were sintered at 500 ºC for 

30 min. High-quality perovskite thin films were obtained by the one-step method, using 

a 1:1:1:1 stoichiometric relation. Lead iodide PbI2 99.995 % (Beantown Chemical) was 

completely dissolved in a solution mixture of DMSO and DMF (Merck) with a 1:1:1 

relation, and heated to 70−80 °C. The Methylammonium iodide (CH3NH3I) >99 %, 

(Greatcell Solar) was added to the resulting solution after cooling. The resulting 

CH3NH3PbI3 (MAPI) solution was filtered through a PVDF syringe filter (0.45 µm 

pore) and spin-coated onto the previously prepared titania film at 4000 rpm for 50 s. 

Chlorobenzene was applied as an antisolvent during spinning. The film was later 

annealed for 2 min at 100 ºC on a heating plate. In the preparation of Spiro hole 

transporting layer, 72.3 mg of 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-

spirobifluorene (Spiro-OMeTAD), 28.8 μL of tert-butylpyridine (Sigma-Aldrich), and 

17.5 μL of a previously prepared solution of 520 mg/mL of lithium bis-

(trifluoromethylsulfonyl) imide (Sigma-Aldrich) in acetonitrile was dissolved in 1 mL 

of chlorobenzene. CuPc 40 nm hole transporting layer were prepared by thermal 

evaporation of copper phtalocyanine (Sigma-Aldrich), with an evaporation rate of 2 

nm/s at a 10-5 Torr pressure. The Au electrode was thermally evaporated on HTL with 

the same evaporation parameters than CuPc, obtaining a layer of 130 nm.  

 

 2.2 I-V characterization 

The current density- voltage (JV) curve measurements were realized under AM1.5G 

illumination (100 mWcm-2) using an Abet SunLite 0.2 solar simulator and Keithley 

2400 source meter. In all JV measurements, a voltage sweep from -0.2 to 1.2 V with a 

scan rate of 100 mVs-1 was used. Figs. S1 and S2 in the supplementary information 
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show the JV curves and its parameters for samples with Spiro-MeoTAD and CuPc 

respectively. 

 

 2.3 EL imaging and processing 

 EL imaging was performed using a commercial infrared CCD camera (mvBlueFOX) in 

video mode, set at one second integration time for each frame. The EL time evolution 

was measured during 60 s at a frame rate of one image per second and 0.985 seconds 

integration time, immediately after biasing with a Keithey 2400 source meter operated 

under constant voltage mode, simultaneously tracking the injected current with a 

multimeter. The sample holder and camera were placed inside a dark box, also enabling 

the measurement of dark JV curves. In order to avoid polarization preconditioning 

between measurements, we kept the samples without polarization under dark condition 

during 4 minutes between different video acquisition events, allowing to reach 

electrostatic equilibrium at zero bias in the dark. The temperature-dependent 

measurements were performed on samples covered with a 1 mm thick glass that allowed 

to make physical contact using thermal conducting paste onto a Peltier regulated 

temperature aluminum plate. The sample temperature was estimated as the mean value 

of the plate temperature, obtained through a thermocouple placed within the aluminum 

block ca. 1 mm below the surface, and the temperature of the top glass obtained by an 

infrared thermometer. The error in temperature was estimated as the average deviation 

of each measurement to the mean value. 

 

 3. RESULTS AND DISCUSSION 

Solar cells with different performances were fabricated. Table 1 shows the forward– and 

reverse–scan output parameters of four MAPI-based solar cells measured under 

AM1.5G simulated light at room temperature. We purposely observed two devices with 

the same layer construction (namely Spiro-a and Spiro-b in Table 1), using 

SpiroMeOTAD as HTL, but with different efficiencies in order to analyze the EL 

characteristics. Most likely, the smaller efficiency of sample Spiro-b is related to an 

increased light absorption and reduced electronic properties of the Spiro layer 

depending on its oxidation state [13,15].  
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Table 1. Forward and reverse short circuit current density JSC, open circuit voltage VOC, 

fill factor FF and efficiency  of four solar cells measured under AM1.5G 

simulated light at room temperature. The designations p-TiO2 represent a FTO 

substrate cover with a compact TiO2 layer, while m-TiO2 refers the same 

substrate covered with a mesoporous TiO2 layer. 

 
Area 

[cm2] 
Scan 

directions 

JSC  

[mA cm-2] 

VOC 

 [V] 

 FF 

 [%] 
    
 [%] 

m-TiO2/MAPI/Spiro-a 0.33 
Backward 14.42 1.02 65.9 10.6 

Forward 14.42 0.99 55.8 7.31 

m-TiO2/MAPI/Spiro-b 0.27 
Backward 12.05 0.91 62.6 6.88 

Forward 12.03 0.89 48.9 5.28 

m-TiO2/MAPI/CuPc 
0.27 

 

Backward 16.76 0.85 53.3 7.55 

Forward 17.48 0.81 28.6 4.05 

p-TiO2/MAPI/Spiro 0.19 
Backward 3.59 0.97 51.4 1.79 

Forward 7.81 0.96 11.3 0.85 

 

Fig. 1 shows a sequence of images of EL emission of a MAPI solar cell with Spiro-

MeOTAD as the HTL, upon 1.1 V forward bias polarization. A decay in brightness is 

observed after the maximum brightness is achieved at 4 seconds (ELMAX), slowly 

reaching a stationary EL image at ca. 20 s. The EL images reveal a certain degree of 

defect inhomogeneity within the entire device area. The luminescence appears brighter 

initially at the frontiers of the device where typical border defects are expected. It later 

shows a brighter zone at the top of the device at tMAX that may be due to the radial 

distribution (which corresponds to the vertical direction in Fig. 1) of the material defects 

that are inherent from the spin coating process. 
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7 

 

Fig. 1. Time sequence showing the rise, maximum, and decay of electroluminescence 

(EL) images of sample m-TiO2/MAPI/Spiro-a  biased at +1.1 V. The maximum EL is 

observed at 4 s after polarization. 

 

By summing up all the pixel counts of each image, we obtain the EL curve as a function 

of time as shown in Fig. 2 (black line, left y-axis), shown together with the injected 

forward current (red line, right y-axis). The EL signal increases towards ELMAX from a 

starting value of about 25 % of ELMAX, followed by a much slower decrease towards a 

stationary value around 60 s. In contrast, the initial value of the injected current starts at 

nearly 80 % of the steady state value reached at 53 s, while the EL signal continues to 

decrease. The timescale in the minute-range needed to reach the stationary current 

seems compatible with surface polarization models that take into account the migration 

and release rates of ions from/towards interfaces [16]. Field-induced structural changes 

in the crystal lattice of MAPI may also play a role in the slow dynamics, although to a 

smaller degree [17]. Since the amplitude of the variation of the current is clearly smaller 

than the amplitude of the EL transient, we consider that the observed rise and fall of EL 

is only linked to a strong shift in the balance between radiative and non-radiative 

recombination with time, disregarding the transient of the injected current from the 

analysis. 
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8 

 

Fig. 2. Typical EL intensity (left y-axis) curve as a function of time obtained by 

integration of EL images in sample m-TiO2/MAPI/Spiro-a, and time dependence of 

injected forward current (right y-axis) at a fixed forward bias voltage of +1.1 V.  

 

Similar EL transients were observed previously in MAPI light emitting diodes having 

identical layer structure as our samples, and were understood by visible degradation 

effects upon current injection [13]. In our case, however, no appreciable degradation 

effects are seen after the EL transients, which are reproducible and reversible, as shown 

below. Therefore, it is much more likely that a change in the time-dependent radiative 

recombination is taking place in our measurements. Under this assumption, the 

observed peak-shaped EL transients must be ruled fundamentally by two counteracting 

mechanisms: a shift in the balance between non-radiative and radiative recombination 

during the first stages of biasing, and the generation of new defects that act as 

recombination centers with biasing time. Such defect generation upon polarization has 

been observed e.g. in MAPI films, where the vanishing of photoluminescence upon 

biasing in a coplanar contact geometry corresponds to the appearance of non-radiative 

recombination centers, conditioned by ion motion [18,19]. We assume that this process 

of defect generation is present during the whole experiment. Contrarily, the factor that 

introduces the non-monotonous behavior in the EL is in our opinion the change in the 

band diagram. Within the typical 'wiggly band' [20] model for a MAPI solar cell, it is 

the central part of the perovskite layer which first absorbs the drop of the applied 

potential. As a consequence, the band bendings at the interfaces remain mainly 

unchanged, offering significant barriers for carrier injection (cf. Scheme 3 in Ref. [20]). 

The barriers thus favor non-radiative recombination at the interfaces, leaving a certain 
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initial level of radiative recombination in the perovskite. With the ongoing slow ion 

movement to counteract the applied potential, the band bendings at the interfaces are 

gradually lowered, decreasing the barriers to carrier injection. This implies that a larger 

portion of the injected carriers are allowed to reach the interior of the MAPI layer. 

Depending on the concentration of active recombination centers in the perovskite, this 

shift in the regions of higher recombination is capable of enhancing radiative 

recombination, with the resulting EL increase observed in our experiments. The 

aforementioned generation of defects with time counteracts the former process, leading 

to a reduction of charges available for radiative recombination. If defect generation is 

slow enough, then a peak in the EL must appear, as seen in our experiments. Such 

interplay of the involved stages must of course depend strongly on the interface defect 

concentration. Recently, EL transients in MAPI light-emitting diodes were found to 

show monotonous or non-monotonous behavior depending on the thickness of SnO2 

electron contact layer, highlighting the strong influence of interface properties on the 

observed dynamics [21]. Moreover, there are further processes that are believed to 

contribute to the observed EL decay, such as structural changes occurring in MAPI 

layers during polarization [17], which include lattice distortions and changes in the 

interface electronic properties. We believe that further investigations including detailed 

experiments and modeling are required to allow a better view of the dominating 

mechanisms.  

 Fig. 3(a,b) shows different EL transients recorded at different bias voltages in 

two samples, Spiro-a and Spiro-b, prepared with the layer stack m-TiO2/MAPI/Spiro-

OMeTAD, where full lines correspond to measurements with increasing voltage, 

starting from the lowest voltage (1.1 V) to the highest voltage (1.3 V), while dashed 

lines correspond to biasing voltages in decreasing direction (with the same voltage 

values as in the increasing direction). Between each measurement, 4 min rest with no 

polarization were allowed for the cells to reach equilibrium. Figs. 3(a,b) show that 

higher bias voltages deliver higher ELMAX as well as higher stationary values, due to the 

higher injected current (Fig. S4 in the SI shows the relation between ELMAX and applied 

voltage). After the bias ramp-up, the cells do not seem to undergo significant 

degradation, as the transients recorded with decreasing bias follow very closely the 

original transients (dashed lines).  
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Fig. 3. Electroluminescence (EL) transients depending on bias voltage for two 

perovskite solar cells (Spiro-a and Spiro-b) with the layer stack m-TiO2/MAPI/Spiro-

OMeTAD.  

 

The applied bias not only affects the total EL value but it also shortens the transients, as 

shown in Fig. 4 where three characteristic times are plotted vs. the applied voltage for 

the cells from Fig 3. The times tRISE50% and tDEC50% correspond to the time that it takes 

the EL signal to rise and decay to 50% of its maximum value (ELMAX) respectively. In 

addition, tMAX is the transient peak time at ELMAX. Since all three characteristic times 

tend to decrease with voltage, we conclude that biasing accelerates the involved 

fundamental processes mentioned above. 
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Fig. 4.  Three characteristic times in the EL transients of samples Spiro-a and Spiro-b as 

a function of bias voltage. 

 

The behavior observed so far is also found for cells with different contact materials on 

the electron and hole transport layers (ETL and HTL, respectively). Fig. 5(a,b) shows 

the EL transients for cells with two different contacts: cell (a) is prepared with CuPc as 

the HTL and cell (b) contains a planar (or dense) TiO2 as the ETL. The overall EL trend 

observed for the previous samples also holds here: the EL reaches a peak in around 10 s 

to later decay towards a stationary intensity within 30-60 s. The sample containing CuPc 

as the HTL shows the slowest and weakest EL emission.          
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Fig. 5. EL transients at different bias voltages observed for the sample with the layer 

stack m-TiO2/MAPI/CuPc (a) and sample with compact TiO2 in the stack p-

TiO2/MAPI/Spiro-OMeTAD (b). 

 

A comparison between all four samples is shown in terms of tMAX in Fig. 6, showing that 

for a given polarization voltage, the slowest response is obtained by the sample with 

CuPc. We also notice that the sample with planar p-TiO2 ETL shows intermediate times 

at comparable bias values. This suggests a stronger incidence of the HTL rather than the 

ETL on the EL transients, despite the large difference in effective interface area of the 

mesoporous compared to the planar TiO2 layer.   
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13 

 

Fig. 6. Evolution of tMAX on bias voltage for the Spiro-OMeTAD (a and b), planar TiO2 

and the CuPc cells.  

 

Fig. 7a shows the correlation between the value of ELMAX and tMAX for all cases. The 

highest ELMAX values always correspond to the shorter tMAX. A better quantitative 

comparison between the different cells is given in Fig. 7b, where we define the quantum 

yield Qe as the quotient between EL signal and current density J according to  

     ( ) ( ) / ( )eQ t EL t J t=      (1) 

in units of counts/mA.  In Fig. 7b, the value for Qe(tMAX) is obtained from ELMAX and the 

current density JMAX at tMAX. Here, we notice that the cells with higher Qe correspond to 

the cells with higher open circuit voltages (VOC) in Table 1 as expected. High radiative 

recombination corresponds to low defect (i.e. non-radiative) recombination for a given 

number of injected carriers such that it necessarily results in increased EL and high VOC. 

An identical trend is found for the stationary value of Qe at each voltage (see below). A 

further correlation between the transient response and the solar cell performance is 

possible by recalling the results of tMAX from Fig. 6. It can be noticed that cells with 

higher VOC presents lower tMAX, i.e. faster EL transients. This suggests that the dynamics 

of the EL response is linked to the amount of non-radiative recombination under 

stationary conditions, provided tMAX relates to the time needed to overcome non-

radiative interface recombination, which depends on the concentration of interface 

defects. 
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Fig. 7. Comparison of ELMAX (a) and Qe(tMAX) (b) as a function of tMAX for the four 

samples. 

 

A further comparison is possible by relating the stationary quantum yield Qe(∞) 

obtained with the values of EL and J at the end of the registered transients, and the 

steady state values of VOC. According to the electronic reciprocity principle for non-

ideal solar cells, steady state quantum yield and open circuit voltage are linearly related 

by [20] 

    , ln( )OC OC rad rad t eV V n V Q= + ,     (2) 

where Vt is the thermal voltage, nrad is the radiative ideality factor, and VOC,rad = 1.33 V 

is the open-circuit voltage in the radiative limit for MAPI [21]. This equation assumes 

that the ratio between radiative to total recombination is identical under dark and 

illuminated characteristics, with the result that the same radiation is emitted from the 

device at a given voltage bias, regardless if it is a dark bias or VOC. Applied to the 

devices studied here, Fig. 8 shows that Qe(∞) correlates logarithmically to the open 
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circuit voltage VOC. The straight lines in Fig. 8 correspond to the fits of the values 

obtained from the m-TiO2 cells at bias voltages V = 1.15 V (open symbols and dashed 

line) and at V = 1.25 V (filled symbols and full line), yielding nrad = 2.7 and nrad = 2.1, 

respectively. The solar cell based on p-TiO2 cannot be included in the same fits as the 

m-TiO2 cells because nrad would change for a MAPI layer that is grown onto a different 

substrate since its crystallinity and optoelectronic properties are expected to depend on 

the underlayer material characteristics [22,23].  

 

 

   

Fig. 8. Electroluminescence quantum yield in stationary conditions, Qe(∞), vs. the open 

circuit voltage VOC of the different cells. Open/filled symbols correspond to applied 

voltage bias of 1.15 V/1.25 V, respectively. Fits with eq. 2 are shown in lines.    

 

A similar validation of the optoelectronic reciprocity theory in MAPI solar cells was 

reported previously under stationary conditions by correlation of the spectral quantum 

efficiency and the EL [21]. The occurrence of radiative ideality factors higher than unity 

reflects the incidence of non-idealities, e.g. a high incidence of non-radiative 

recombination or the occurrence of radiative transitions between band tail energy states 

[20]. In amorphous Silicon solar cells nrad > 2 have been demonstrated and also shown 

to vary with bias level [24]. 
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 Since the timescale of the observed EL transients is compatible with ionic 

diffusion and interfacial trapping/detrapping dynamics, the EL transients are expected 

to show significant sensitivity to temperature changes. Fig. 9 shows the obtained EL 

transients recorded at a bias voltage of 1.3 V between 17 °C and 55 °C for a m-

TiO2/MAPI/Spiro-OMeTAD solar cell. The temperatures are suggested by the color of 

each curve, from cold (blue) to hot (red). The maxima are indicated for clarity, 

showing that the EL first increases with increasing temperature to later decrease again 

above 33 °C. Since the current at each part of the EL transients increases 

monotonously with temperature (See Fig. S5), it is the ratio of radiative to total 

recombination which must be changing with temperature. 

 

 

Fig. 9. EL transients at a bias voltage of 1.3 V recorded under different temperatures 

(values indicated in legend) for a m-TiO2/MAPI/Spiro-OMeTAD cell. 

 

The temperature dependence of EL can be better examined in terms of the quantum 

yields Qe(tMAX) and Qe(∞) shown in Fig. 10a, displaying maxima at 29 °C and 33 °C, 

respectively. Fig. 10b also presents the tMAX values as function of temperature with a 

peak at 33 °C. Although more experiments are needed to understand the observed 

behavior, we suggest that the observed maxima between 29-33 °C could be related to a 

phase change that occurs in MAPI at 37 °C, where the crystal lattice changes from 

tetragonal to cubic [25] (other authors report the same phase change to occur between 

42 °C and 57 °C, see refs. [26,27]). Around the the peak seen in Fig. 10b, tMAX 

decreases with temperature, possibly owing faster ion dynamics and faster interface 

charge trapping/detrapping at higher temperatures. The phase change could introduce a 

retardation of the involved mechanisms, originating the peak in tMAX. 
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Fig. 10. Temperature dependence of the quantum yield Qe(tMAX) and Qe(∞) in 

stationary conditions (a). Time to reach maximum EL, tMAX, vs. temperature (b).   

 

 

 4. CONCLUSIONS 

 

Electroluminescence (EL) measurements of solution-prepared one-step CH3NH3PbI3 

(MAPI) perovskite solar cells were recorded as a function of time, detecting a peak EL 

which depends on bias voltage, contact layer materials and temperature. The peaks are 

found at times in the 1 s - 10 s range, while the whole transients last up to 60 s, 

suggesting that the involved mechanisms are likely governed by ion dynamics, e.g. 

originated in interface trap filling and bulk trap generation by ion-vacancy generation. 

The characteristics of the transients are related to the open circuit voltage VOC under 

solar illumination, showing that not only the stationary value but also the peak EL 

correlates with VOC. The time required to reach the maximum EL holds an inverse 

relation to VOC, possibly meaning that faster ion dynamics translates into better 

performing cells at bias voltages around or above VOC. First temperature-dependent EL 

transient experiments  show a maximum EL around 30 °C, close to the change of 
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crystalline phase of MAPI at 37 °C. Further experiments in samples using different 

contact layers are planned to investigate if the observed maximum is strictly related to 

the phase change in MAPI or a consequence of interface properties. A possible 

technological implication of the observed non-monotonic behavior of EL with time and 

temperature is that the conventional use of EL imaging as a fast tool for diagnosing 

solar cells and modules requires caution when using MAPI devices prepared with 

traditional solution-processing techniques. 
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