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Abstract

The surface diffusion of interacting k-mers is studied both through analytical and Monte Carlo simulation methods in one-dimen-
sional systems. Adsorption isotherms, jump diffusion coefficients and collective diffusion coefficients are obtained for attractive and
repulsive k-mers, showing a variety of behaviors as a function of the size of particles, k. The following main results are found: (a) dif-
fusion coefficients increase with k for non-interacting particles; (b) for fixed k, diffusion coefficients increase as the interaction energy
increases from negative (attractive) to positive (repulsive) values; (c) for attractive interactions diffusion coefficients increase with k in
the whole range of coverage; (d) for repulsive interactions diffusion coefficients decrease with k up to moderately high coverage and
increase with k at high coverage. Results are rationalized in terms of the behavior of the vacancy probability distribution.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One-dimensional systems appear in a variety of physical
phenomena, as different as, for example, the kinetics of
laser-induced excitons in TMMC crystals [1], conduction
in quantum wires [2,3], as well as biological phenomena,
like for example the adsorption of molecules on ARN
chains. Another source of interest in these low-dimensional
systems is that it is not unusual to find that many processes
(for example reaction-diffusion processes) may present
novel behaviors as compared to the same processes in high-
er dimensions [4].

Simple phenomena, like adsorption and surface diffusion
of particles are at the basis of many more complex processes
occurring in such systems. The study of these phenomena
have been usually restricted to monomers, i.e., particles
occupying a single site [5]. When the involved particles are
k-mers, i.e., particles occupying k > 1 sites, the site-vacancy
symmetry is lost and the statistical thermodynamics of ad-
sorbed layers becomes more complex. For this reason there
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has been only a relatively low number of studies related to
multisite occupancy adsorption [6–10], and almost none
dedicated specifically to surface diffusion, in spite of the fact
that this is the case of greater interest for applications.

The recent synthesis of single-walled and multiwalled
carbon nanotubes is a major development in material
science that has extraordinarily encouraged the study of
vapors and liquids confined in low-dimensional adsorption
potentials. This literally provides the route to the
experimental realization of one-dimensional adsorbents
[10–15]. Many studies on conductivity, electronic structure,
mechanical strength, etc. of carbon nanotubes are being
carried out. However, still a very limited amount of theoret-
ical and experimental work has been carried out on the
interaction and properties of simple gases adsorbed in
nanotubes [16–22]. Thus, it is an open problem whether
gases will adsorb with a strongly localized or rather mobile
character. A leading experimental contribution has recently
been reported in which transport of a polyatomic adsorbate
in cylindrical nanopores has been measured by incoherent
quasi-elastic neutron scattering [23]. Large adsorbates,
like neopentane, appear to have mobility through activated
jumps.
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For theoretical purposes, adsorption in the narrowest
nanotubes can be treated in the one-dimensional lattice-
gas approach. This is, of course, an approximation to the
state of real adsorbates in nanotubes, which is justified be-
cause thermodynamics and transport coefficient can be
analytically resolved in these conditions. This is helpful
and may be applied for monoatomic species strongly
bonded to the nanopores’s wall, as well as for polyatomics,
where the distance between their building units does not
seriously mismatch the separation between adsorption
potential minima for single units.

In this context, our objective here is to study the
properties of surface diffusion of interacting k-mers in
one-dimensional systems. It is worth noticing that although
lateral interactions are introduced in the present model, the
system does not show a phase transition at finite tempera-
ture (it is well-known that no phase transition develops in a
one-dimensional lattice when weak coupling between
neighboring particles exists). If interactions are important
and phase transitions are possible, modeling diffusion be-
comes significantly harder. In this sense, important ap-
proaches to diffusion of interacting particles have been
recently reported. Among them, Giacomin et al. [24–26]
developed a rigorous statistical mechanical theory of
non-equilibrium phase transitions. This theory provides a
fundamental theoretical background for modeling the evo-
lution of non-equilibrium coexisting phases. More recently,
a new approach to molecular diffusion of interacting parti-
cles was developed by Aranovich and Donohue [27]. The
calculations were derived using density functionals for
fluxes and the Metropolis algorithm in the mass balance
equation.

The paper is organized as follows. In Section 2 we out-
line the model and the calculation method, both trough
exact analytical equations and Monte Carlo simulations.
Results are presented and discussed in Section 3 and
conclusions are given in Section 4.

2. Model and calculation methods

2.1. Theory

We consider a substrate consisting of a chain of M

adsorption sites, all with the same adsorption energy e0,
which can be taken equal to zero without loss of generality.
Particles from a gas phase at chemical potential l and tem-
perature T can be adsorbed on the chain, in such a way that
each particle occupies k consecutive sites: i, i + 1, . . . ,
i + k � 1. Particles interact with each other through a
nearest-neighbor (NN) interaction energy, w, which can
be either attractive (w < 0) or repulsive (w > 0).

The exact expression of the free energy per site, f(h,T),
for N adsorbed particles resulting in a coverage h = N/M,
was obtained through a transformation consisting in map-
ping the system of N k-mers adsorbed on M sites onto a
system of N monomers adsorbed on N + M � kN sites
[28–30] as
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From these equations, and the differential form of f in the
canonical ensemble, all equilibrium properties of the adsor-
bate can be calculated. In particular, the chemical poten-
tial, l, and the entropy per site, s, are obtained as
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It is worth to recall that, as it has been already shown
[28–30], even in absence of inter-particle interactions, the
predictions of these exact results are quite different from
the predictions of the classical Flory–Huggins approxima-
tion [31,32].

Adsorbed k-mers are assumed to diffuse through ther-
mally activated jumps to a NN position, i.e., they can move
over a distance of only one lattice constant either to the left
or to the right, provided that the corresponding NN site is
empty. Although the surface migration of large molecules
can, in many cases, involve large jumps, keeping this
restriction will allow us to obtain exact expressions for
the coverage dependence of diffusion coefficients, still pre-
serving the main characteristics of their behavior.

It is well known [33–36] that the displacement ~r of a
simple particle occupying a single site (a monomer) on a
one-dimensional chain follows the time dependence
hr2(t)i / t1/2, and therefore the tracer diffusion coefficient
vanishes at long times for diffusion on an infinitely long



F. Bulnes et al. / Surface Science 601 (2007) 569–577 571
chain. However, the displacement of the center of mass of a
number of particles in one dimension (collective motion),
~R, at a finite coverage, h, behaves as hR2(t)i / t, where
the proportionality constant, Dj(h), depends on the cover-
age and is known as the jump diffusion coefficient. It is easy
to show that the same behavior also holds for the diffusion
of k-mers on one-dimensional chains with jumps to NN
sites.

We are interested in the study of another kind of collec-
tive diffusion coefficient, the chemical diffusion coefficient,
D(h), which is phenomenologically defined through Fick’s
law. This coefficient is given in terms of the jump diffusion
coefficient, Dj(h), and the thermodynamic factor, Th(h),
through the phenomenological Reed–Ehrlich equation as
[36,37]:

DðhÞ ¼ DjðhÞThðhÞ ð5Þ

where the thermodynamic factor, defined by

ThðhÞ ¼ ol=kBT
o ln h

� �
T

ð6Þ

can be obtained by differentiation from Eq. (3). D(h) can be
alternatively written as

DðhÞ ¼ CðhÞ o expðl=kBT Þ
oh

� �
T

ð7Þ

where

CðhÞ ¼ DjðhÞh expð�l=kBT Þ ð8Þ

is known as the effective jump rate [36,37], representing the
rate for jumps of k-mers into NN empty sites at coverage h.
This rate can be written as

CðhÞ ¼
X2

v¼0

2� v
2

P vCv ð9Þ

where Pv is the probability that a k-mer be surrounded by v

other NN k-mers and Cv is the jump rate of such a k-mer,
which can be written as

Cv ¼ Cð0Þ expðmw=kBT Þ ð10Þ

Here C(0) represents the jump rate at zero coverage and
can be arbitrarily taken as = 1 without loss of generality.
On the other hand, inspired in the quasi-chemical approx-
imation [38,39] for monomers, which is exact in one dimen-
sion, we propose for Pv the following expression:

P v ¼
2

v
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gv

ð1þ gÞ2
ð11Þ

where g is an undetermined parameter depending on the
coverage, the temperature and the size k of particles, i.e.,
g = g(h,T,k).

In order to determine g, we start from the internal
energy per site u(h), which is given by

uðhÞ ¼ f ðhÞ þ TsðhÞ ð12Þ
Now, from Eqs. (1) and (4) we have:

uðhÞ ¼ w
h
k
� a

� 	
ð13Þ

On the other hand, u(h) can also be written as

uðhÞ ¼ wN 11=M ð14Þ
where N 11 is the mean number of pairs of occupied NN
sites belonging to different k-mers. Taking into account
that the probability of finding a set of k contiguous occu-
pied sites on the chain is h/k, the quantity N 11 can be
written in terms of the probabilities Pv as

N 11

M
¼ 1

2

h
k
ðP 1 þ 2P 2Þ ð15Þ

where the factor 1/2 avoids the double counting of pairs.
From Eqs. (11)–(15), the parameter g can be determined as

gðh; T ; kÞ ¼ kðb� 1þ hÞ þ h
2kð1� hÞ ð16Þ

Finally, the exact solution for the chemical diffusion
coefficient can be written in the form:

DðhÞ ¼ 1þ g expðw=kBT Þ
ð1þ gÞ2

ol=kBT
o ln h

� �
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ð17Þ

At this point it is interesting to note that in the limit case of
non-interacting k-mers, for which w = 0, the dependence
of D with h and k is given by: D(h) / [1 � (k � 1)h/k]�2,
which represents a remarkably weaker coverage depen-
dence than that predicted by the Flory–Huggins approxi-
mation: D(h) / [1 � (k � 1)h/k]�k.

The above equations allow the exact calculation of the
jump and the chemical diffusion coefficients for k-mers on
a one-dimensional chain. The same quantities will also be
obtained through Monte Carlo simulations. The compari-
son between analytical and simulation results bears a dou-
ble check purpose: on one hand, to verify the accuracy of
the analytical solution and, on the other hand, to verify
the validity of the Reed–Ehrlich phenomenological ap-
proach for the process studied here. Two different simula-
tions will be used to obtain separately the factors Th and
Dj in Eq. (5), using a lattice of M sites with periodic bound-
ary conditions.
2.2. Standard Monte Carlo method in the grand canonical

ensemble: calculation of Th

The adsorption process is conveniently simulated by
using a standard Monte Carlo method in the grand canon-
ical ensemble [40]. For a given value of the temperature
and the chemical potential, an initial configuration with
N = M/2k k-mers adsorbed at random positions is gener-
ated. Then, an adsorption–desorption chain of events is
started by choosing a site at random and attempting to
change its occupancy number according to the Metropolis
transition probability [41]:
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where DH = Hf � Hi is the difference between the Hamilto-
nian of the final and initial states, which is defined as

H ¼ w
X
ði;jÞ
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X
i

ci � l
X

i
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where ci is the occupation number of site i ( = 0 if va-
cant, = 1 if occupied) and (i, j) stands for summation over
all pairs of NN sites. A Monte Carlo step (MCS) is
achieved when M sites have been tested to change their
occupancy state. The approximation to thermodynamic
equilibrium is monitored through the fluctuations in the
number N of adsorbed particles; this is usually reached in
about n 0 =105 MCS. After that averages are taken on the
system through the next n = 105 MCS on non-correlated
configurations. At high values of w/kBT up to 106 MCS
had to be used in order to let the system to relax from
metastable states.

Thermodynamic quantities such as the mean coverage,
h, and the mean energy, U, are obtained as simple averages:

h ¼ 1

M

XM

i¼1

cih i; U ¼ Hh i ð20Þ

where the bracket denotes average over n uncorrelated con-
figurations. The thermodynamic factor, Th, is calculated
through the average:

Th ¼ dNh i2

Nh i

" #�1

ð21Þ

and is equivalent to the factor:

Th ¼ oðl=kBT Þ
o ln h
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ð22Þ

involved in the calculation of the collective diffusion
coefficient.

2.3. n-Fold way Monte Carlo scheme: calculation of Dj

Simulations for the calculation of Dj are performed in
the canonical ensemble, where the number N of particles
is kept constant. Diffusion jumps are allowed only to NN
vacant sites and the position of the center of mass, ~RðtÞ,
is monitored. In this way the jump diffusion coefficient is
obtained as

DjðhÞ ¼ lim
t!1

R2ðtÞ

 �

2t
ð23Þ

Our numerical simulations of Dj are performed by consid-
ering a fast kinetic Monte Carlo scheme based on the n-fold
way-like algorithm (nFWMC) [35], which relies on the ex-
act computation of the transition probabilities from each
configuration of the system and the association of the time
evolution to a random variable sampled from the waiting
time distribution for these configurations. Therefore, the
Monte Carlo simulation of the diffusion process is per-
formed by iterating the following two steps for any given
configuration:

(i) The transition rates, Wi (i = 1,2, . . . , 2N), where 2N is
used to account for the two possible transitions (to
the left or to the right) for each particle, are evaluated
by using Eq. (10). Then, a random number n1 uni-
formly distributed in (0, 1) is obtained and the jth
event chosen from the condition:
1

W

Xj�1

i¼1

W i � n1 6
1

W

Xj

i¼1

W i; W ¼
X2N

i¼1

W i ð24Þ
is performed.
(ii) A second random number n2 is generated and the

time t elapsed from the initial state is incremented
through:
t ¼ t þ Dt ¼ t � 1

W
ln n2 ð25Þ
The advantage of using the nFWMC scheme for simulating
the jump diffusion coefficient can be understood by taking
into account that in the standard kinetic Monte Carlo sim-
ulation framework the number of trials for a successful
jump scales as a function of time as 1/Wi, while the effi-
ciency of nFWMC is not affected by an increase in w/
kBT, since every trial produces a successful jump of some
particle to a NN empty site. Henceforth, the dynamics of
strongly interacting particles at very low temperatures
can be readily achieved at a computational cost several
orders of magnitude less (typically 10�3 for w/kBT � 5)
than that required by the Metropolis algorithm [41].

3. Results and discussion

We divide conveniently our results into three groups: (a)
non-interacting k-mers (k = 1–5); (b) interacting dimers,
with attractive and repulsive interactions; (c) k-mers
(k = 2–5) with a given attractive and a given repulsive
interaction. For each group, both simulation results (sym-
bols) as well as exact solution results (continuous lines) are
presented. An excellent agreement is obtained in all cases,
for the adsorption isotherm, the jump diffusion coefficient,
the chemical diffusion coefficients and the probabilities Pv,
the latter being of great help for the understanding of the
behavior of the diffusion coefficients. The agreement be-
tween analytical and simulation results confirms both the
accuracy of the theory leading to the exact results and of
the Reed–Ehrlich phenomenological formulation in the
cases studied here.1

We begin with the case of non-interacting particles,
which provides us with the basic understanding to analyze
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Fig. 2. Normalized jump (a) and chemical (b) diffusion coefficients for
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the more complex cases. Adsorption isotherms are shown
in Fig. 1. The case k = 1, representing the classical Lang-
muir isotherm for monomers is useful for comparison pur-
poses. As k increases, the coverage grows faster at low l
and slower at high l, which can be easily understood by
considering the equilibrium between the adsorption and
desorption processes. At low coverage only few adsorption
attempts fail and each adsorption event produces a higher
coverage for higher k, so that a lower pressure is necessary
to produce the same equilibrium coverage. At high cover-
age the opposite situation occurs, since more adsorption at-
tempts fail for higher k due to the surface crowding.
Adsorption isotherms are smooth (no plateaus are
formed), so that the thermodynamic factor will also be
smooth and the behavior of the chemical diffusion coeffi-
cient will be dominated by the behavior of Dj. Fig. 2 shows
the behavior of the jump diffusion coefficient (a) and the
chemical diffusion coefficient (b), while Fig. 3 presents the
NN occupancy probability Pv. Only P0 and P1 will contrib-
ute to the jumping rate, so that, in absence of interactions,
the behavior of Dj is strongly related to that of 1 � P2 (the
relationship is not direct due to the different factors in Eq.
(9)). As it can be easily understood, P2 increases with h for
all k, but for fixed h it decreases with k (since it becomes
more difficult to avoid inter-particles vacancies). Therefore,
the behavior of Dj shown in Fig. 2(a) results, where it can
be observed that the jump diffusion coefficient decreases
with h for all k and increases with k for fixed h, which is
similar to the behavior of 1 � P2. Multiplying Dj by the
thermodynamic factor (which is related to the inverse of
the derivative of the adsorption isotherm and therefore in-
creases strongly with h) the behavior of D shown in
Fig. 2(b) results, producing a chemical diffusion coeffi-
cient which increases monotonically with h for all k and
increases with k for fixed h.

We now study how diffusion is affected by interactions
for fixed k. We choose the case of interacting dimers
(k = 2), which deserves special attention. Fig. 4 shows
adsorption isotherms for attractive and repulsive interac-
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Fig. 1. Adsorption isotherms of non-interacting k-mers.
tions (w/kBT ranges from �3 to 10 in steps of 1). We see
that when the interaction energy is highly repulsive, a pla-
teau appears in the isotherm around h = 2/3, which will
produce a peak in the thermodynamic factor, the sharper
the higher the energy. This peak will influence the chemical
diffusion coefficient. Fig. 5 shows the jump (a) and the
chemical (b) diffusion coefficients for the whole range of
interaction energy, while Fig. 6 shows the Pv for repulsive
interactions and Fig. 7 does the same for attractive interac-
tions. We analyze in first place the case of repulsive inter-
actions. Just as explained above for non-interacting
k-mers, at low coverage the behavior of Dj is mainly deter-
mined by that of 1 � P2, Fig. 6(a). Therefore the jump dif-
fusion coefficient increases slowly in this region, which
extends up to approximately h = 2/3, due to the effect of
repulsive interactions acting through Cv in Eq. (9). At this
coverage, for sufficiently strong repulsive interactions, an
ordered structure is formed (although there is no real ther-
modynamic phase transition), where pairs of NN dimers
are surrounded by vacant sites on both sides. This ordered
structure is evidenced by the plateau in the adsorption iso-
therm, Fig. 4, and the sharp increase and maximum in P1,
Fig. 6(b). In this region of coverage P0 is low and P1 acts in
Eq. (9) with an enhanced weight C1� 1, therefore the
behavior of P1 dominates and determines the sharp in-
crease in Dj observed in Fig. 5(a). As Dj is multiplied by
the thermodynamic factor to obtain D, and given that Th
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will have a sharp peak at the isotherm plateau, the behav-
ior observed in Fig. 5(b) is obtained for strongly repulsive
interactions. This effect of the ordered structure gradu-
ally disappears in Dj and D as the repulsive interaction
decreases. The behavior of diffusion coefficients can be
straightforwardly analyzed in a similar way for attractive
interactions: the jump diffusion coefficient is mainly deter-
mined by the behavior of P0 in Fig. 7(a), due to the
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depressing effect of C1 < 1 on P1, and the thermodynamic
factor is smooth on the whole coverage range. As it can
be easily understood, due to the effect of Cv in Eq. (9), both
diffusion coefficients increase with w for any fixed coverage.

We finally analyze the case of fixed attractive and repul-
sive interactions (we choose w/kBT = 5, for repulsive inter-
actions, and = �3, for attractive interactions) and different
values of k = 2–5. Adsorption isotherms are shown in
Fig. 8 and diffusion coefficients in Fig. 9, while Figs. 10
and 11 present the probabilities Pv for repulsive and attrac-
tive interactions, respectively. After the analysis performed
above for dimers, it is now easy to rationalize the shown
results, so that we only highlight the main characteristics.
Ordered structures, i.e., two NN k-mers surrounded by va-
cant sites on both sides, are again formed for strongly
repulsive interactions, with the already discussed conse-
quences. However, as it can be seen from the isotherms
in Fig. 8(a) and from P1 in Fig. 10(b), the ordered structure
appears at higher coverage for higher k as it is to be
expected. This produces a peak in Dj and D shifting to
higher coverages for higher k. This is also the reason
why, for repulsive interactions, both diffusion coefficients
show two regions: the lower coverage region, where they
decrease with k, and the higher coverage region, where
they increase with k. For attractive interactions, on the
contrary, both diffusion coefficients increase with k over
the whole coverage range.
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4. Conclusions

We have developed an exact solution for the surface
diffusion coefficients of interacting k-mers on one-
dimensional chains, based on the phenomenological
Reed–Ehrlich approach. This solution, together with
Monte Carlo simulations, have been applied to study the
behavior of diffusing k-mers, with an excellent agreement
between the two methods in all cases.

According to the present study the diffusion of k-mers
on one-dimensional chains is characterized by the follow-
ing properties:

(a) diffusion coefficients increase with k for non-inter-
acting particles;

(b) for fixed k, diffusion coefficients increase as the inter-
action energy increases from negative (attractive) to
positive (repulsive) values;

(c) for attractive interactions diffusion coefficients
increase with k in the whole range of coverage;

(d) for repulsive interactions diffusion coefficients decrease
with k up to moderately high coverage and increase
with k at high coverage.

The observed behavior is physically interpreted by mak-
ing use of the vacancy probabilities Pv. These quantities
have demonstrated to be very useful for the understanding
of the process at a microscopic level.
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