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Summary: 5194 words and eight (8) Figures 

Abstract 

Fluorescence spectroscopy and Molecular Dynamics results show that Cholesterol 

reduces water along the chains in ether lipids by changing the water distribution 

pattern between tightly and loosely bound water molecules. Water distribution was 

followed by emission spectra and generalized polarization of 6-dodecanoyl-2-

dimethyl aminonaphthalene (Laurdan) inserted in 1,2-dimiristoyl-sn-glycero-3-

phosphocholine (DMPC) and 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine 

(14:0 Diether PC) membranes. Molecular dynamics simulations indicate that the 

action of cholesterol could be different in ether PC in comparison to ester PC. In 
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addition, Cholesterol seems to act “per se” as an additional hydration center in 

ether lipids. 

Regardless of the phase state, Cholesterol both in DMPC and 14:0 Diether PC 

vesicles, changed the distribution of water molecules decreasing the dipole 

relaxation of the lipid interphase generating an increase in the non-relaxable 

population. Above 10% Cholesterol/14:0 Diether PC ratio vesicles´ interphase 

present an environment around Laurdan molecules similar to that corresponding to 

ester PC.  

 

Keywords: 14:0 Diether PC; DMPC; cholesterol; generalized polarization; 

hydration; molecular dynamics. 

 

Highlights: 

 Cholesterol conforms a new hydration site in membranes lacking carbonyl 

groups.  

 An increase in 14:0 Diether PC polarization is produced at 10 % Chol below 

Tm not observed in ester PC. 

 The transition observed at 10% Chol in 14:0 Diether PC is due to an 

increase of non relaxable water molecules population. 
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Graphical Abstract 

  

 

 

 

 

 

 

Abbreviations: DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine; 14:0 Diether 

PC: 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine; Laurdan: 6-dodecanoyl-2-

dimethyl aminonaphthalene; Tm: Transition temperature; GP: Generalized 

Polarization; FWHM: full width at half-maximum. 
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1. Introduction   

It is well known that Cholesterol (Chol) plays a major role in biological membrane 

functions and ether lipids are involved as plasmalogens in its traffic [1,2].  

Therefore, studies in relation to the interaction of Chol and ether lipids in model 

membranes are pertinent. 

Chol affects the properties of the gel and liquid crystalline phases of 

phosphatidylcholines. In general, it is accepted that it expands the gel phase and 

compress the liquid crystalline one decreasing the cooperativity at the transition 

temperature (Tm) that remains unchanged [3,4]. At high Chol concentrations, the 

phase transition tends to disappear which denotes that this molecule affects the 

degree of freedom of the rotational isomers of the acyl chains [5–7]. 

In addition, the action of Chol has been also related to the hydration state of the 

lipid membrane. In particular, using Laurdan as a fluorescent probe, the changes of 

water properties in its immediate adjacencies has been reported. Above the phase 

transition temperature Chol promotes an increase in generalized polarization (GP) 

of the membrane, a parameter that is indirectly related to the decrease of water in 

the membrane phase [7,8].  

The decrease in water content has been considered a consequence of the 

increase in packing by Chol above Tm. However, a recent work has shown that the 

same shift in GP can be obtained when octanol is deprived of water indicating that 

no structural change in the phase is required to produce a decrease in GP [9]. In 

other words, Chol effect modulates the water content of the membrane 

independently of the packing and Laurdan is an appropriate probe to measure it. 
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The hydration levels of the lipid membranes can be defined in three regions: water 

organized around the phosphate groups, the carbonyl groups and the acyl chains. 

Molecular Dynamics (MD) studies and interface-selective vibrational sum 

frequency generation (VSFG) spectroscopy have also detected a population 

around the choline groups [10]. 

Moreover, hydration of each of these regions is correlated. The water-phosphate 

interaction is enhanced when carbonyl groups are absent [11,12]. It has been 

shown using a combination of fluorescent spectroscopy, FTIR-ATR analysis and 

monolayer surface pressure/area isotherms that the population of relaxable water 

molecules is increased in ether in comparison to ester PC [13]. This has been 

explained by the formation of water bridges between phosphate (PO) and carbonyl 

(CO) groups of the PCs that hinders the rotational degrees of freedom which are 

gained when the water molecule is linked only to the PO in the ether lipid [13–15]. 

It is understood that in the absence of CO groups the hydrogen bonds with the 

phosphate groups are strengthen [12,16,17]. Thus, the water molecules form with 

the phosphate a tighter first hydration shell making, in consequence, a looser 

second hydration one.  

This particular feature of hydration due to the absence of CO groups could be 

modified by Chol given that it may change the propensity to displace water in 

processes in which interphases are involved (peptides penetration, fusion, etc.). In 

this sense, it would be of interest to determine if Chol can be “per se” a hydration 

site in ether lipids. In order to assess this point the effect of Chol on water 

distribution in ether PC membranes in comparison to ester PC in the same phase 
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state was studied using fluorescence properties of Laurdan. The distribution of 

water and the hydrogen bond populations in each of the conditions assayed were 

modelized by Molecular Dynamics. 

 

2. Materials and Methods 

2.1. Chemicals:  

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-di-O-tetradecyl-sn-

glycero-3-phosphocholine (14:0 Diether PC); were purchased from Avanti Polar 

Lipids Inc. (Alabaster, AL); Cholesterol (Chol) was from Sigma-Aldrich. Purity of 

lipids and Cholesterol were higher than >99% as checked by FTIR and UV 

spectroscopies. Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) was 

obtained from Molecular Probes and used without further purification. Chloroform 

was obtained from Merck and was previously dehydrated with 5 Å molecular sieves 

during five days. All other chemicals were of analytical grade. All aqueous solutions 

were prepared with ultrapure water (conductivity = 0.002–0.010 mS cm−1) obtained 

from an OSMOION 10.2 water purification system (APEMA, Buenos Aires, 

Argentina). 

 

2.2. Samples preparation 

Stock solutions of DMPC, 14:0 Diether PC and Laurdan were prepared in 

Chloroform. Laurdan concentration of the solution was determined by absorption 

spectrophotometry in the ultraviolet region, at a maximum wavelength of 364 nm 
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corresponding to an absorptivity coefficient of 20.000 M−1 cm−1. The final molar 

ratio Laurdan/lipid was in all cases 1:500 [15,18]. 

Multilamellar vesicles (MLV´s) were prepared following Bangham technique [19]. 

Vesicles with different Chol/lipid ratio were prepared mixing the appropriate 

aliquots of Chol and PC stock solutions in chloroform.  

LUV´s suspensions were prepared by extruding the MLV´s suspensions 20 times 

above Tm through a polycarbonate filter (pore diameter 100 nm). Particle size in the 

final suspension was determinate by dynamic light scattering in a DLS- Horiba 

nano particle analyzer SZ-100, at 90° with an accuracy ± 2% at 25 °C [20]. 

 

2.3. Fluorescence spectroscopy measurements 

Steady-state emission spectra were obtained in a SLM 4800 spectrofluorometer 

using a 1.0 cm quartz cell in the range of 390–600 nm, equipped with a cell holder 

controlled by thermostatized water. The excitation wavelength was 370 nm with a 2 

nm slit. Emission spectra were recorded between 10 to 50 ºC  0.1 ºC in 

suspensions with an optical density smaller than 0.05 in the range of work given 

above. Consequently, no correction for the inner filter effect was needed.  

Generalized Polarization (GPex) function was calculated from the emission 

intensities using the following Equation 1 adapted from Parasassi et al. [15,21–23]. 

     
           

           
 (1) 

where I440 and I480 correspond to the emission maxima of Laurdan below and 

above Tm, respectively. 
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2.3.1. Spectra decomposition procedure  

Fluorescence spectra were fitted using a superposition of two LN mirror symmetric 

functions using Equation 2 as reported by Bacalum et al. [24]. 

   ̅  {
     [ 

   

    
      ̅

   ̅ 
]   ̅   

   ̅   
           (2) 

 

Where   is the emission intensity,   is the wavenumber,    the maximum intensity, 

  the asymmetry of the function,   the limiting wavenumber and  ̅  the peak 

position.   and   are functions of the wavenumber values at half-intensity,  ̅    and 

 ̅   : 

  
 ̅   ̅   

 ̅     ̅ 
      ̅  

  ̅     ̅     

    
 

 ̅    and  ̅    are linear functions of  ̅ , depending on the polarity of the solvent, 

below 22300 cm-1 polar solvents and above 22300 cm-1 for non-polar solvents: 

 ̅       {
              ̅   ̅           

              ̅   ̅            

 ̅       {
              ̅   ̅           

            ̅   ̅            

 

Following this procedure, the components of Laurdan emission bands in the 

different conditions can be obtained. The fitting was performed using a script 

written in Python 3.7 using Pandas and Numpy libraries [25–27]  

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



9 

 

2.4. Molecular dynamics simulations 

The different phospholipid/Chol bilayers were assembled with the CHARMM-GUI 

Membrane Builder [28]. Pure DMPC and 14:0 Diether PC bilayers were prepared 

with 64 lipid molecules in each leaflet, and 30% Chol mixed membranes were 

prepared with 45 phospholipid molecules and 19 Chol molecules in each leaflet. 

Simulations were performed with AMBER16 simulation package [29] with bond, 

angle, torsion, and Lennard-Jones parameters from Lipid17 force field [30] taken 

directly from the General Amber Force Field (GAFF) [31]. Membranes were 

solvated with TIP3P water molecules along the Z axis with enough molecules to 

assure the systems were fully hydrated. After membranes were assembled, the full 

systems were minimized for 10000 steps, the first 5000 steps used the steepest 

descent method and the remaining steps used the conjugate gradient method [32]. 

Systems were then heated from 0 K to 100 K using Langevin dynamics [33] for 5 

ps at constant volume, with weak restraints on the lipid. Then, the volume was 

allowed to change freely and the temperature increased to the informed values 

with a Langevin collision frequency of γ= 1.0 ps−1, and anisotropic Berendsen 

regulation [34] with a time constant of 2 ps for 100 ps. After 150 ns equilibrium run, 

a final production was carried out within the NPT (constant number of atoms N, 

pressure P and temperature T) ensemble. The extent of the trajectories of the 

production runs was 100 ns for the different systems. SHAKE was activated for 

hydrogen bonds, using particle mesh Ewald for periodic boundary conditions to 

treat long-range electrostatics interactions [35] with a 10 Å cut off and a simulation 

time step of 2 fs. 
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3. Results 

Figure 1 shows the modification of the full width at half maximum (FWHM) obtained 

from the normalized Laurdan emission spectra for DMPC (Fig. S1) and 14:0 

Diether PC (Fig. S2), below (Part A) and above (Part B) Tm for increasing Chol 

ratio. 

For 14:0 Diether PC below Tm, FWHM decreases abruptly at 10% Chol and an 

equivalent upward jump is observed above Tm. These discontinuities are not 

observed in DMPC/Chol mixtures in both states. 

 

 

Fig 1: FWHM vs % Chol. (A) 14:0 Diether PC (red symbols) and 

DMPC (black symbols) below Tm. (B) 14:0 Diether PC (red 

symbols) and DMPC (black symbols) above Tm.  

 

In order to analyze the effect of Cholesterol on the dipolar relaxation in ester and 

ether PCs, generalized polarization function (GPex) was calculated using Equation 

1 shown in Materials and Methods. 
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The striking difference observed in FWHM between DMPC and 14:0 Diether PC 

below Tm is also noticeable when the GPex behaviour is analysed (Fig. 2). Part A 

shows that GPex values for DMPC are much higher than those for 14:0 Diether PC 

below Tm and 10% Chol. At this ratio an abrupt increase occurs which is not 

observed in DMPC. On the other hand, the changes above Tm does not show this 

transition neither in DMPC nor 14:0 Diether PC (Fig. 2B).  

 

 
Fig. 2: GPex values for DMPC (black symbols) and 14:0 Diether PC 

vesicles (red symbols), at different Chol ratio, below (A) and above (B) 

Tm. 

 

It has been widely reported that the emission spectrum of Laurdan is a 

superposition of the non-relaxable and the relaxable emitting states. These two 

emitting states can be obtained by Log-Normal (LN) decomposition of Laurdan 

emission fluorescence [24,36]. These emitting states are an indirect measure of 

water molecules' populations with different rotational degrees of freedom 

surrounding Laurdan [13,24]. 
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The contributions of these populations were analysed as a function of Chol ratio in 

DMPC and 14:0 Diether PC below and above Tm using Eq 2 from Materials and 

Methods and are shown in Fig. 3.  

Figure 3A shows the changes in the distributions of relaxable and non-relaxable 

populations for DMPC below Tm without (part A) and with 20% Chol (part B). In the 

first case, there is small contributions of relaxable populations which disappear in 

the presence of Chol (part B). For DMPC the non-relaxable and relaxable 

populations represent 78% and 22% of the total emission. In the presence of 20 % 

Chol, the non-relaxable and relaxable populations are 100 and 0 % respectively. 

 

 

Fig. 3: Deconvolution Laurdan spectra below Tm for DMPC (part A) and 

DMPC/20% Chol (Part B).  

 

On the other hand, in Fig. 4, the effect of Chol on 14:0 Diether PC on relaxable and 

non-relaxable populations below Tm are shown. In comparison to DMPC, Fig. 4A 

shows that the relaxable - non relaxable ratio is considerably increased in the ether 

lipid which is substantially decreased in the presence of Chol (Part B). However, 
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this ratio is much greater in 14:0 Diether PC/Chol than in DMPC/Chol shown in Fig. 

3B. 

For 14:0 Diether PC the non-relaxable population contribution decreases 15% with 

a corresponding increase for the relaxable population. In the presence of 20 % 

Chol, 14:0 Diether PC restores the contributions to levels similar to DMPC, 79% for 

non-relaxable and 21% for relaxable populations. 

 

 

Fig. 4: Deconvolution Laurdan spectra below Tm for 14:0 Diether PC 

(Part A) and 14:0 Diether PC/20% Chol (Part B).  

 

Figure 5 resumes the changes in relaxable and non-relaxable populations for 14:0 

Diether PC and DMPC below (part A) and above (part B) Tm produced by 

increasing Chol ratios. 
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Fig. 5: Percentual Contribution (%) of relaxable and non-relaxable 

populations depending on Chol ratio in DMPC and 14:0 Diether PC below 

(A) and above (B) Tm. Filled symbols correspond to DMPC (in black) and 

14:0 Diether PC (in red) non-relaxable populations. Empty symbols 

correspond to DMPC (in black) and 14:0 Diether PC (in red) relaxable 

populations. 

 
In Figure 5A, the non-relaxable water population in DMPC increases continuously 

with Chol and reaches saturation at 10% Chol. For 14:0 Diether PC, a slight 

increase of the non-relaxable population is produced at 5 % Chol. A second and 

more intense increase is produced between 10 and 20% Chol. This last increase is 

at the same Chol ratio in which the discontinuities in FWHM and GPex were 

observed in previous figures. So, the effect of Chol is qualitatively different in 14:0 

Diether PC in comparison to DMPC below Tm. However, above Tm, (Fig. 5B) Chol 

produces the same decrease in the relaxable water population both for DMPC and 

14:0 Diether PC.  

The increase of the non-relaxable water populations with Chol parallel to the 

decrease of relaxable water populations indicates that Chol affects the rotational 

degrees of freedom of water molecules in a different way in ether and ester PC. A 

further inspection in regard to the different distributions of water species according 
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to the kind and number of H-bonds they form with its surroundings for pure DMPC 

and 14:0 Diether PC was performed by MD. 

Below and above Tm (panels A, B, C in Figure 6) and in the presence of Chol 

(panels D, E, F in Figure 6) the index that classifies water molecules by their 

number of water-water, water-PO and water-CO hydrogen bonds is shown  

 

Fig. 6: WPC index for lipid membranes below and above Tm. Fig. A, B and C 

correspond to DMPC (grey and black) and 14:0 Diether PC membranes (light red 

and red). Fig. D, E and F correspond to DMPC/Chol (light blue and blue) and 

14:0 Diether PC/Chol (light orange and orange) membranes. Top panels 
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represent the region between PO and CO groups, middle panels represent CO 

region and bottom panels correspond to acyl chains below CO groups. 

 

In particular, the analysis has been restricted to the region below the phosphate 

groups in order to highlight the changes around the ester and ether bonds, that is 

between the PO and CO groups, (panels A and D); the CO group regions itself 

(panels B and E) and the acyl chains below CO groups (panels C and F).  

The index WPC represents the number of H-bonds that the water molecules form 

with other water molecules (W), PO groups (P) and CO groups (C), respectively 

[37]. For instance, 201 denotes two H-bonds with other water molecules, no H-

bonds with PO and one H-bond with CO. This was performed considering all the 

water molecules at a distance to the lipid heavy atoms lower than 4.5 Å and 

calculating all their H-bonds with other water molecules, PO and CO groups. 

When going from below to above Tm (panels A and B), there are no significant 

changes in the WPC index for DMPC and 14:0 Diether PC in the regions between 

CO and PO and the CO itself.  

In contrast, a significant difference is observed below and above Tm for both lipids 

in the region between the CO and the acyl chains. In particular, a major increase is 

observed in the WPC= 000, corresponding to non-bound water molecules which is 

in accordance with the increase of rotational isomers forming kinks for water 

appearing at the phase transition [5]. The same behavior was observed for the 

WPC population 100 (Panel C). 

Comparing the behavior of DMPC and 14:0 Diether PC in the same phase states, it 

is concluded that the absence of CO groups increases the population of 
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WPC=000. This is congruent with the interpretation that the substitution of an ester 

bound by an ether one is equivalent to a slight increase in the acyl chain length 

promoting the same increase in rotational isomers as described for the phase 

transition [12]. 

In the three zones, the 14:0 Diether PC membranes exhibit more water molecules 

without H-bonds (000) and with only one H-bond (100) in comparison with the 

DMPC membranes, whose water molecules around the lipids form more H-bonds 

with other water molecules or with the CO atoms. The noticeable increase of the 

200 and 300 populations in DMPC membranes denotes that in these lipids the 

water-water association is increased in comparison to the ether lipids. A similar 

picture is found above the transition temperature. 

The presence of Chol in 14:0 Diether PC and DMPC membranes causes an 

evident effect on water H-bonds distribution in comparison to pure 14:0 Diether PC 

and DMPC membranes. For example, 000 and 100 water molecules´ populations 

decrease in 14:0 Diether PC and DMPC membranes with Chol, and the water 

molecules with two or more H-Bonds increase respect to the pure membranes. 

This is shown in Fig. 6 for pure 14:0 Diether PC membrane and mixed 14:0 Diether 

PC/Chol membrane. The same profile is observed above the transition 

temperature although in an attenuated form. 

In this context, DMPC membranes loose population of these class of molecules 

since there is an increase of water molecules that present a HB with the carbonyl 

groups of the lipid chains (001, 101, 201 and 301). These molecular classes (which 
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summed up reach almost 40 percent of the total water molecules in such region) 

are less prone to relaxation given that they are bound to the lipid chains. 

It is well known that the first hydration shell of biomolecules implies both specific 

and general hydration water. While the former implies bound water (including water 

molecules hydrogen-bonded to the lipid), the latter involves much weaker 

interactions (like van der Walls interactions). Thus, the water residence time in the 

first hydration shell is a result of two well differentiated relaxation behaviors, with 

the water molecules hydrogen-bonded to the lipid presenting much larger 

relaxation times. In order to include some dynamical information, the mean 

residence time the water molecules hydrogen-bonded to the CO of DMPC and the 

water molecules around the corresponding region of the PC lipids which lack the 

carbonyl groups, was calculated. To that end, the mean time to abandon the first 

hydration shell (water molecules in the lipid first neighbors) region, that is to move 

more than 4.10 angstroms away from the O of the carbonyl of DMPC or the C of 

the corresponding region of PC lipids was considered. This threshold for the first 

hydration shell was defined from studies on different systems, ranging from 

graphene surfaces to proteins, and considering both water density distributions 

normal to the solute surface (first peak extension) and also distributions of 

minimum water-solute distances [38–40]. 

The calculations show that the water molecules hydrogen-bonded to carbonyl 

groups in DMPC reside within this first hydration shell region 31.2 ps in average, 

while for 14:0 Diether PC (none water-lipid HB) the timescale is roughly an order of 

magnitude lower (2.6 ps). Thus, water molecules within the region of the probe for 
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14:0 Diether PC lipids are much more labile or relaxable than that for DMPC lipids, 

in accordance with the experimental results 

4. Discussion.  

In phospholipid vesicles, Laurdan’s emission spectra are sensitive to the packing of 

lipid molecules and consequently to their phase state. A further process that affects 

Laurdan fluorescence is due to the Molecular Dynamics of water molecules in the 

vicinity of the probe. For example, the reorientation of water molecule dipoles 

around the excited-state dipole of Laurdan [9,41]. 

Comparison of the experiments in Figs 2 and 3 denotes that both the GPex values 

and the non-relaxable population are larger in DMPC than 14:0 Diether PC 

regardless of the phase state. This is because some water molecules form a H-

bond with the carbonyl group as confirmed by the MD simulations through the 

WPC index (Fig. 6). Water is organized around the polar head groups of the lipids 

forming a bidimensional solution in a region named as “interphase” [42,43]. Under 

the scope of this work this term has more significant physical meaning than 

“interface” because this one refers to a mathematical plane dividing the polar and 

the non-polar region [44]. 

The greater organization at the DMPC interphase, can be due to the possibility that 

water molecules could form an intramolecular water bridge binding simultaneously 

to PO and CO groups by H bonds, in the same lipid molecule forming a water 

bridge [13]. The MD results indicate that Chol in DMPC does not break these water 

bridges, but rather forms a water bridge between CO and its -OH group, giving 

place to a more ordered interphase region  
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WPC index reports that the presence of water molecules without H-Bonds (000) or 

only one H-Bond (100) is higher for 14:0 Diether PC compared to DMPC in 

accordance with the increase of relaxable population observed by fluorescence 

analysis (Fig 4 and 6). The addition of Chol to 14:0 Diether PC decreases this 

population denoted by a lower number of free water molecules. 

The intramolecular water bridge is not formed in 14:0 Diether PC due to the 

absence of CO groups [17]. Hence, the water bound to the PO can rotate around 

the H-bond given as a result a reorientation of the water dipole increasing the 

relaxable population. This effect is less noticeable in the presence of Chol 

suggesting that Chol generates a water bridge between the PO and the -OH group 

as was reported before [17]. This bridge prevents the rotation of the water 

molecule bound to the PO, generating a decrease in dipolar relaxation giving place 

to an increase in GP and non-relaxable population.  

At 10% Chol, GPex values and non-relaxed population in 14: 0 Diether PC vesicles 

are close to those obtained in pure DMPC (Fig 5A and 5B), suggesting that 

Laurdan is in environments of similar polarities.  
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Fig. 7: Density profiles along the Z axis for water (blue line), carbonyl groups 

(red line), phosphate groups (black line) and cholesterol (green line) for 

DMPC (A), DMPC/Chol (B), 14:0 Diether PC (C) and 14:0 Diether PC/Chol 

membranes (D). Dotted red lines in panels (C) and (D) indicate the region 

where the CO groups should be. 

 

The density profiles shown in Figure 7 indicate that water covers the PO and CO 

region in DMPC, while in 14:0 Diether PC the CO region where the CO groups 

should be (dotted lines) and the PO region is displaced to a lower distance with 

respect to the membrane center. This figure also shows that the -OH group of Chol 

molecules in 14:0 Diether PC is located in the lipid carbonyl region in the same 

A B

C D
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position than in DMPC that allow water to penetrate deeper in the mixed 

membrane. This strongly indicates that Chol is giving water a new residue to bind 

in the absence of CO.  

In order to show the interactions of the water molecules with Chol, a modification of 

classification index is made. The last digit in the new index, WPCC, considers the 

H-Bonds with the OH group of the Chol molecules. For example, 2101 denotes two 

H-Bonds with other water molecules, one bond with PO from the lipid molecules, 

no bond with CO lipid groups and one bond with the Chol molecule. In Fig. 8, it is 

noted that water molecules bound to other water molecules and Chol (1001 and 

2001) prevail in both lipid mixtures. The absence of the carbonyl groups implies an 

increase in the number of water molecules bounded to PO groups and Chol (0101 

and 1101). 

In a previous work, it was shown that the -OH group of Chol in ether PC is able to 

bind to the PO group [17]. 
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Fig. 8: WPCC index for water molecules in 14:0 Diether PC/Chol (blue) and 

DMPC/Chol membranes (orange). 

 

In correlation with this organization imposed by Chol, a further inspection of Figure 

6, indicates that the distributions of WPC index of pure DMPC below Tm 000; 100; 

200; 300 and 400, are nearly coincident to those found for 14:0 Diether PC with 

cholesterol in the region of PO/CO groups. This explains why the GPex values for 

these two membranes are coincident in 0.4 as shown in Figure 2, strongly 

supporting that the probe is laying in this region. The point that the sharp transition 

is visualized in Figures 1 and 2 at around 10% Chol suggests that the required 

association needed to give this interfacial property is formed in a specific ratio of 

14:0 DietherPC/Chol. 
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5. Conclusion 

Regardless the phase state, the presence of Chol both in DMPC and 14:0 Diether 

PC vesicles, changed the distribution of water molecules decreasing the dipole 

relaxation of the lipid interphase generating an increase in the non-relaxable 

population. These results are corroborated with the WPC index obtained by MD 

analysis. 

The simulations made evident the fact that the addition of Chol in DMPC 

membranes reduces the amount of labile (that is, easily relaxable hydration water) 

at expense of an increase of water molecules hydrogen bonded to the lipid 

carbonyls. These water molecules, which are sensed by Laurdan GP, exhibit a 

local residence time roughly one order of magnitude larger than the corresponding 

one for ether PC lipids.  

The comparison of the effects of Chol on DMPC and 14:0 Diether PC membrane 

model systems, indicates that at the molecular level,  Chol generate anomalies in 

interfacial properties of membrane due to different water arrangements. On one 

hand, it interacts differently with the PO group if CO groups are present or not due  

to the formation of water bridges. Another important  observation in this work is that 

Chol is able to conform a new hydration site for water in membranes lacking 

carbonyl groups. 

Ether lipids and its mixture w. ith Chol contribute to the stabilization of lipid raft 

microdomains involve in cellular signaling in particular the water distribution at the 

interphase may provide structural characteristic affecting membrane fusion and 

dynamics. The present studies in DMPC/ 14:0 Diether PC /Chol indicate in a first 
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attempt that the incorporation of ether linked acyl chains in phospholipids affect the 

response of membrane by modifying intermolecular hydrogen bonds between the 

head groups [16].  

Supplementary Figures 

 

Fig. S1: 14:0 Diether PC normalized Laurdan emission spectra below (A) and 

above (B) Tm at increasing cholesterol concentrations from 0 (black line) to 

30% (green line). Blue dotted lines show the normalized Laurdan emission 

spectra for DMPC in both conditions. 

 
Fig. S2: DMPC normalized Laurdan emission spectra below (A) and above Tm (B) 

at increasing cholesterol concentrations from 0 (black line) to 30% (green line).  
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