
 
 

 

 
Foods 2021, 10, 778. https://doi.org/10.3390/foods10040778 www.mdpi.com/journal/foods 

Review 

Modelling Volume Change and Deformation in Food 
Products/Processes: An Overview 
Emmanuel Purlis 1, Chiara Cevoli 2,* and Angelo Fabbri 2 

1 CIDCA, UNLP, CONICET, La Plata 1900, Argentina; emmanuel.purlis@quimica.unlp.edu.ar 
2 Department of Agricultural and Food Sciences, Alma Mater Studiorum, Università di Bologna,  

47521 Cesena, Italy; angelo.fabbri@unibo.it 
* Correspondence: chiara.cevoli3@unibo.it 

Abstract: Volume change and large deformation occur in different solid and semi-solid foods during 
processing, e.g., shrinkage of fruits and vegetables during drying and of meat during cooking, 
swelling of grains during hydration, and expansion of dough during baking and of snacks during 
extrusion and puffing. In addition, food is broken down during oral processing. Such phenomena 
are the result of complex and dynamic relationships between composition and structure of foods, 
and driving forces established by processes and operating conditions. In particular, water plays a 
key role as plasticizer, strongly influencing the state of amorphous materials via the glass transition 
and, thus, their mechanical properties. Therefore, it is important to improve the understanding 
about these complex phenomena and to develop useful prediction tools. For this aim, different 
modelling approaches have been applied in the food engineering field. The objective of this article 
is to provide a general (non-systematic) review of recent (2005–2021) and relevant works regarding 
the modelling and simulation of volume change and large deformation in various food 
products/processes. Empirical- and physics-based models are considered, as well as different 
driving forces for deformation, in order to identify common bottlenecks and challenges in food 
engineering applications. 

Keywords: cellular solids; hyperelastic material; mechanical modelling; multiphysics; multiscale 
modelling; porosity; solid mechanics; texture; virtualization; viscoelastic material 
 

1. Introduction 
In many processes involving solid and semi-solid foods, significant volume change 

and large deformation occur in the products. Some typical examples include the 
following: shrinkage of fruits and vegetables during convective drying and of meat 
products during cooking, dough/bread expansion during proofing and baking, expansion 
in extrusion and puffing to produce snacks and breakfast cereals, and swelling during 
soaking of pulses. In some cases, these phenomena are positive and indeed a characteristic 
feature of the product/process, like expansion in baking and extrusion. On the other hand, 
they can represent undesired changes in other situations, e.g., excessive shrinkage during 
drying and cooking. However, in any case, for a wide range of processes, operating 
conditions, and food materials, significant volume change and deformation are part of the 
processes and, thus, are inevitable. Therefore, there is a need for better understanding the 
fundamental mechanisms of these phenomena in the context of food engineering, that is, 
to develop scientific knowledge and useful tools to describe and predict the relationships 
between processing conditions and behavior of food materials. The main goal is then to 
steer such phenomena towards the design of food products/processes that achieve 
multiple objectives involving food safety and quality (nutritional and sensory), as well as 
process efficiency. In this sense, modelling and numerical simulation can play an 
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important role, providing adequate frameworks and quantitative tools for a systematic 
and robust analysis [1]. 

The occurrence and development of volume change and deformation in foods during 
processing can be explained by considering both material properties and driving forces 
established by a given process and operating conditions, like in other transport 
phenomena. On the one hand, most of solid and semi-solid foods are recognized as very 
complex biomaterials [2]; they can be described either as multiphase mixed dispersed 
systems or as multiphase capillary–porous media with a deformable, hygroscopic, and 
amorphous matrix or skeleton made of biopolymers (e.g., polysaccharides and proteins), 
also containing small molecular species (e.g., salts and sugars) and water [3,4]. The 
microstructural organization of the different phases and their physical state, and the 
presence of water, which is the main plasticizer, largely determine the mechanical 
properties and rheological behavior of foods [4,5]. On the other hand, a certain process 
establishes the driving forces, e.g., temperature, moisture, pressure, and/or mechanical 
stress gradients, while operating conditions regulate their intensity. Considering the non-
equilibrium or dynamic nature of food processing, the role of water as plasticizer is 
essential, since, together with temperature, they determine the state of amorphous 
materials via the glass transition (Tg) concept [6]. In general, at low temperature and/or 
low water content, foods are in a solid-like brittle state, the so-called glassy state. 
However, an increase in temperature above the Tg range (or an increase in water content) 
produces the glass transition: Foods change their state to rubbery (liquid-like) and now 
behave as soft viscoelastic materials [7,8]. Another important transition is denaturation of 
proteins; in the case of meat cooking, denaturation of proteins induced by heat plays a 
key role in structural changes [9]. So, volume change and deformation in foods are the 
result of complex and dynamic relationships between composition and structure of foods, 
and driving forces given by processes and operating conditions. Different mechanisms of 
deformation are discussed later for typical food products/processes. 

Creation and transformation of structures or structuring of materials has a significant 
impact on different properties of foods, i.e., physical, transport, sensory, and also 
nutritional properties [10]. Volume change and deformation, in addition to changes in 
moisture content and temperature during processing, can generate variations in porosity 
and (apparent) density of foods, thus modifying the transport and mechanical properties 
of the materials [8,11]. In this sense, texture profile analysis (TPA), which can be thought 
as an imitation of mastication or chewing process, is often used to relate mechanical 
measurements to subjective sensation (sensory attributes), thus making food texture 
characteristics more predictable [12]. For instance, the Young’s modulus, a mechanical 
property of materials, is considered an important measure or proxy for texture. A few 
efforts have been made to associate process conditions and transport phenomena with 
mechanical properties and finally texture of food products, by using this mechanical 
property [13–15]. Furthermore, structural modifications due to different processing 
methods and pathways certainly influence the oral processing and overall digestion 
process of foods [16–18]. Besides sensory aspects, the structure and, thus, texture of foods 
can influence oral processing behavior, helping to moderate eating rate and energy intake 
[19]. On the other hand, volume change and deformation imply the variation of food 
geometry and also movement of solid skeleton, and thus need to be taken into account 
when modelling transport processes for a correct calculation of gradients, fluxes and 
average values of dependent variables [20]. This represents an additional challenge for 
modelling and simulation of food processes, besides the availability of thermophysical 
properties and experimental validation of numerical predictions [21]. 

So far, it is evident the underlying complexity of modelling and simulating volume 
change and deformation of foods during processing, but at the same time, the importance 
and thus the need to address this intricate problem. Actually, the development of the next 
generation of food process models, i.e., digital twins (virtual replica of the real process), 
certainly requires the inclusion of the previously described aspects, towards a holistic and 
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comprehensive approach for food product/process design, considering the current and 
future challenges of agri-food industry [22]. Therefore, the objective of this article is to 
provide a general review of the more recent (2005–2021) and relevant works that have 
addressed the modelling and simulation of volume change and large deformation in 
different food products/processes, from a food engineering perspective. That is, it is not 
intended to be an extensive and detailed or systematic review of all models and/or 
numerical methods reported in the literature, but an overview of significant contributions 
in different applications with focus on large deformation of solid-like materials, which can 
be taken as reference for further studies and developments. By taking this transversal and 
comprehensive perspective, we aim at condensing the common bottlenecks and 
challenges shared by main applications, since most of available review articles are rather 
focused either on a single product/process or on a specific modelling approach. The 
review is organized as follows: In Section 2, different modelling approaches are described 
upon an ad hoc classification, including both empirical- and physics-based, as well as 
hybrid formulations; in Section 3, the mechanisms and modelling of volume change and 
deformation of different common products/processes are discussed; in Section 4, 
conclusions and perspectives are given to finalize. 

2. Modelling Approaches 
As it was discussed in the Introduction section, deformation of solid-like food 

materials is not an isolated phenomenon, but it is definitely coupled with heat and/or mass 
transport processes, which establish the driving forces for deformation during processing. 
In other words, in most food engineering applications, deformation of a material does not 
involve a pure solid mechanics problem, but there is a physics coupling, i.e., it is generally 
a multiphysics problem. An exception could be the simulation of a texture/TPA or 
mechanical test, or modelling a “dry” oral breakdown or mastication process. So, in 
general terms, modelling of deformation is naturally related to modelling of heat and/or 
mass transfer, or the corresponding transport phenomena for a given process. 
Nevertheless, since this review is focused on volume change and deformation, only 
essential discussions regarding modelling of other phenomena during food processing 
are included, together with relevant references. 

Considering that more than one phenomenon or transport process can occur, and 
thus be modelled and simulated for a given product/process, classification of modelling 
approaches is not straightforward, since different types of assumptions, simplifications 
and solutions have been proposed by many authors for several applications. Based on the 
performed literature analysis, we propose to divide the modelling approaches into two 
main groups, depending on the complexity involved and the degree of detail provided; 
within each group, different kinds of modelling approaches are included, from empirical-
based to physics-based: 
1. Empirical, phenomenological, and simple theoretical models: Overall, these models 

are relatively simple, in terms of formulation and implementation, and their outputs 
are average or bulk values. Some models of this group can help in providing local or 
detailed information, in combination with physics-based models, although using 
simplifications in the formulation and/or implementation (i.e., hybrid models from 
the second group). 

2. Physics-based and hybrid models: In general terms, these are transport models 
formulated from physical or fundamental laws, which may involve different and 
multiple scales. These models provide information about local values (e.g., 
spatiotemporal profiles), and average values as well. In some cases, complexity is 
reduced by using some simplifications (hybrid models). 
Following, we present the description and more relevant details of each group of 

models, prior to discussing a series of application examples in Section 3. Figure 1 depicts 
a summary of modelling approaches and overall perspective of this review article. 
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Figure 1. Graphical summary of the review article, including general perspective and modelling approaches, according to 
the proposed classification. 

2.1. Empirical, Phenomenological, and Simple Theoretical Models 
Firstly, empirical modelling approach aims at finding a direct relationship between 

experimental inputs and outputs (data), without the premise of describing the underlying 
mechanisms that explain such connection. In this sense, these models are often referred as 
black-box or data-driven models. Such direct relationship can be established by using 
different numerical tools, e.g., regression models, response surface methodology, and also 
more complex methods like artificial neural networks [23]. In our case, inputs would be 
some product characteristics and processing conditions, while outputs would be different 
variables or properties associated with food deformation, e.g., ratio of volume change 
(shrinkage/expansion), density, porosity, etc. The main advantage of this approach is the 
low–medium difficulty in terms of mathematical modelling, which makes it more easily 
implementable. This is of particular interest for industrial applications, especially for 
SMEs (small- and medium-sized enterprises), which may not have access to more 
sophisticated or complex tools [24]. On the other hand, the major limitation of this 
approach is probably the lack of a physical meaning of the established relationship, and 
thus the impossibility of explaining the occurring phenomena. In addition, this approach 
generally needs a large amount of data for fitting/training and validation, covering a wide 
range of conditions, in order to provide reliable tools. 

Secondly, phenomenological models are based on hypotheses derived from 
experimental observations about a certain phenomenon or behavior of interest, and 
attempt to describe the involved mechanisms by relating some key variables and/or 
parameters. The difference between this approach and the empirical one relies on the 
degree of fundamental knowledge involved. Pure empirical modelling is basically a data-
fitting problem, while phenomenological models can be seen as a first step towards a 
physics-based or fundamental model, or as a simplified version of it. For instance, strictly 
speaking, the classical transport phenomena “laws” like Fourier’s law and Fick’s law, 
among others, are phenomenological relationships. Afterwards, when a 
phenomenological model is proved to be valid for a wide range of materials/conditions, 
or it can be derived from theory under certain conditions, it acquires a physical law status, 
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mostly in an engineering context. Phenomenological models are also called as semi-
empirical or semi-theoretical models. In general, the empirical aspect of these 
relationships is lumped into a (effective) coefficient or property, which depends on the 
material and main variables of the process (e.g., temperature and water content). 

Thirdly, it may be possible to derive simple models from fundamental concepts and 
principles, i.e., from theory. For instance, by taking certain assumptions, mass balances 
can be used to obtain a simple model either to predict overall volume change or to 
compute the local velocity of deformation (some examples are covered in the next section). 
Such assumptions make possible to obtain these so-called simple theoretical models, 
which can be also helpful to reduce the complexity of physics-based models, as we discuss 
later. 

Overall, the common characteristic of these three types of models is that they are not 
mechanics-based models. That is, volume change and deformation are not predicted by 
solving the solid momentum balance equation and using mechanical properties of the 
material, but certain aspects of these phenomena are described in an indirect or simplified 
way. In addition, the degree of empiricism can be significant. Nevertheless, it is worth 
recalling that mathematical models are essentially tools, which may have different 
objectives. In other words, from a pragmatic viewpoint, these simple models can still be 
useful for the design, control, and optimization of processes, besides the mentioned use 
in combination with more complex physics-based formulations. However, the models of 
this first group have a limited capacity of describing the underlying mechanisms that 
explain the behavior of the products/processes. Furthermore, empirical-based models are 
constrained to specific conditions (products/processes) from which empirical parameters 
were estimated, i.e., new parameters will be needed if new conditions have to be 
incorporated into the existing model [1]. In this sense, extrapolation or generalization in 
terms of both behavior or mechanisms and numerical predictions should be avoided 
without an appropriate experimental verification. 

2.2. Physics-Based and Hybrid Models 
Physics-based or mechanistic modelling approach is based on the use of fundamental 

physics concepts and laws to describe the physical mechanisms involved in a process. The 
starting point for physics-based models is the formulation of the problem, i.e., establishing 
a set of hypotheses regarding the (supposed) underlying physics of a process and 
developing their mathematical representation via the corresponding physical laws. 
Mathematical formulation comprises governing equations, typically partial differential 
equations, with their respective boundary and initial conditions. Governing equations 
involve balances or conservation laws of mass, energy and momentum, and the 
corresponding constitutive equations or transport phenomena laws or expressions, 
according to established hypotheses, e.g., Fick’s law of molecular diffusion, Fourier’s law 
of heat conduction, Hooke’s law of elasticity, etc. As it was mentioned before, these 
transport phenomena “laws” are phenomenological, but they have been extensively 
utilized and are considered of general application. Nevertheless, special attention is 
needed in food process modelling: The complex structure and composition of foods may 
generate significant deviations from the ideal behavior of simple or ideal media/materials 
(e.g., metals and ideal gases). Finally, the model is completed with thermophysical 
properties, transport coefficients and other parameters. In most cases, material properties 
are not constant values, but depend on state variables, e.g., water content, temperature, 
and also porosity in deformable porous materials. For instance, if a physics-based model 
is oversimplified by neglecting significant mechanisms and/or using effective properties 
to lump complex behavior, the model is indeed a phenomenological or semi-empirical 
one, as described above. 

Bearing in mind the focus of this review, the objective of a physics-based model is to 
describe and predict the deformation behavior and associated variables like velocity of 
solid and spatiotemporal evolution of porosity. However, as it was already mentioned, 
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driving forces for deformation are usually originated by heat and mass transport 
processes, so physics-based models need to account for all phenomena involved. This 
generates a coupled system of equations for which numerical implementation is not 
straightforward (analytical solutions are not possible). Fortunately, due to advance in 
computing power and the availability of specialized software, solution of these models is 
feasible nowadays (although not obvious). After model solution, numerical results need 
to be validated against experimental data, i.e., hypotheses of the model have to be tested 
properly by using data from the real process. Afterwards, the model hypotheses can be 
modified to better describe the real behavior and thus to obtain a more accurate model. 

To illustrate this approach, let us consider the poromechanics-based modelling 
framework for the coupled physics of transport and large deformation in food materials, 
developed by Dhall and Datta [20], based on extended Biot’s theory of poromechanics. In 
order to provide a concise description, we focus on essential aspects and equations related 
to large or finite deformation. Firstly, food is considered as a multiphase porous material 
where all the phases are in the continuum (macroscale approach), and the solid skeleton 
is an incompressible hyperelastic (or Green elastic) material. This nonlinear constitutive 
theory is suitable to describe a wide range of physical phenomena in which deformation 
may be large or finite [25]. Secondly, the macroscopic total stress tensor (𝜎ത) can be written 
as a sum of averages in the individual phase volumes of the material, leading to the 
following expression: 𝜎ത = 𝜎തᇱ − 𝑝f I (1)

where 𝜎തᇱ is the effective stress on the solid skeleton, and the second term represents the 
pore or fluids pressure, 𝑝f (I is the identity tensor). Thirdly, the solid momentum balance 
can be simplified by assuming quasi-steady state for deformation (no acceleration) and no 
external forces being applied: ∇ ∙ 𝜎ത = 0 (2)

By combining both equations, we obtain the relationship between effective stress on 
solid skeleton and driving forces (pressure in the pore): ∇ ∙ 𝜎തᇱ = ∇𝑝f (3)

For instance, if the pores contain liquid water and gases (e.g., air–water vapor 
mixture and carbon dioxide produced by yeasts), the governing equations become the 
following: ∇ ∙ 𝜎തᇱ = ∇𝑝g − ∇ሺ𝑆w𝑝cሻ (4)

On the right-hand side, the first term is the gas pressure (pg) gradient and the second 
term involves capillary pressure (pc; Sw is liquid water saturation), which can be related to 
water potential via Kelvin’s law. Capillary pressure (or water potential) is generally a 
function of water content and temperature (although temperature dependency is 
commonly neglected). 

In summary, Equation (4) indicates that effective stress on solid skeleton is due to 
driving forces established by a given heat and mass transfer process. In addition, Equation 
(4) is related to strains and displacements of solid matrix via constitutive equation of the 
material (e.g., hyperelastic material). So, Equation (4) establishes that deformation 
behavior (strains, solid displacements) depends on mechanical properties of the material 
and driving forces. Considering that mechanical properties can also depend on state 
variables (e.g., water content and temperature), the multiphysics problem becomes highly 
coupled. Note that other constitutive equations for the material can be used, but Equation 
(4) is still valid, since it represents the governing equation for momentum transport. For 
more details about this general formulation, the reader is referred to Reference [20], and 
solid mechanics textbooks (e.g., Reference [25]). 
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In general terms, physics-based modelling approach presents some advantages over 
the empirical-based modelling [26]: 
• Variables, functions, and parameters have physical meaning, so results can be 

interpreted and explained with certain logic; 
• The number of experimental tests is usually reduced, which decreases time and 

resources involved; 
• Great insight into the process is provided due to possibility of performing virtual 

experimentation and useful studies like sensitivity analysis and “what-if” scenarios; 
• Design, prediction, control, and optimization capabilities of products/processes are 

improved. 
Because of these advantages, physics-based models are considered as a key element 

for the development of digital twins and virtualization of food industry or Industry 4.0 
[22]. The drawbacks of this approach are mainly associated with the implementation of 
physics-based models in food processing. The main bottleneck is probably the lack of data 
about thermophysical and mechanical properties for a wide range of products and 
processes [21]. More work is needed in this essential aspect, supported by adequate 
experimental methods and also by physics-based models, which can be used as estimation 
tools via inverse methodology. Moreover, the development and implementation of these 
complex models can be a difficult task, especially in the industrial environment, so more 
specific or adapted modelling frameworks and software, as well as education and 
training, are necessary to expand their use in food processing applications [1,24]. For 
example, advanced numerical methods involving moving meshes are generally required. 

So far, previous description is quite general and with focus on the main modelling 
framework used in food engineering, i.e., continuum or macroscale approach. Briefly, 
macroscale approach is based on the continuum hypothesis and averaging methods, 
where a representative elementary volume (REV) is used to describe a “point” of a 
structureless continuum domain and to define local macroscopic variables, such as 
macroscopic total stress tensor in Equation (1). More details about this classical modelling 
framework can be found elsewhere (e.g., References [27–29]). Besides, the finite element 
method (FEM) is probably the most used numerical technique to solve equations of these 
macroscale models [30]. On the other hand, in the last 10–15 years, novel and promising 
physics-based modelling paradigms have been applied in the food engineering field: 
microscale and multiscale approaches. For the sake of simplicity, we use the term 
“microscale” throughout this work to describe different fine scales, e.g., microscale, 
mesoscale, and nanoscale. Overall, the microscale approach aims at describing the 
behavior of microstructures like colloids, cells, polymers, composites, interfaces and 
molecular arrangements. These complex microstructures are actually the components of 
the structureless continuum material of the macroscale approach. So, the idea is to model 
the physicochemical and mechanical changes occurring at these fine scales. 

Multiscale models are defined as a hierarchy of interconnected sub-models which 
describe the material behavior at different spatial scales [28]. This is an interesting 
approach since biomaterials actually have a hierarchical structure [31]. In this sense, 
multiscale modelling can provide a solution to the mentioned bottleneck of macroscale 
modelling regarding physical properties. For instance, a microscale model can be used 
either to calculate a transport property due to microscopic dynamics to feed a macroscale 
model or to understand macroscopic responses through variations at microscale. The 
most important asset of this paradigm is probably the explicit incorporation of 
microstructure details on the physics-based model. This feature certainly increases the 
abovementioned possibilities and capabilities of mechanistic models. For example, it may 
be possible to design a food product with a target texture or mechanical behavior 
(structure engineering) by using a physics-based multiscale model [8]. This is of great 
importance for mimicking and/or reformulation purposes in R&D (research and 
development) applications, e.g., plant-based analogues of dairy and meat products. For 
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more details about this modelling framework, the reader is referred to the excellent review 
of Ho et al. [28]. An interesting alternative framework for multiscale modelling is 
provided by hybrid mixture theory (HMT), which has a continuum mechanics basis; this 
approach has been applied to different food products/processes [32]. With the same 
objective of incorporating microscale information into macroscale models, application of 
soft matter approaches can also help to obtain a better understanding and useful insights 
about the relationships between structure and composition, and properties and 
macroscopic behavior of foods [33]. 

In summary, the essential characteristic of physics-based or mechanistic models is 
that volume change and deformation of the material are described in a direct and explicit 
manner. This modelling approach is mechanics-based, i.e., the solid momentum balance 
is used to predict the behavior of the product, based on the mechanical properties of the 
material and on driving forces established by the process. So, this framework is 
considered here as the best possible solution towards the global objective of developing 
scientific knowledge and useful tools to describe and predict the relationships between 
processing conditions and behavior of food materials. 

Despite of the mentioned advantages, formulation and implementation of these 
models can be a difficult task. Therefore, a common solution to reduce the complexity of 
these formulations is to avoid the resolution of the mechanical part of the multiphysics 
problem. That is, deformation of the solid is not calculated through the corresponding 
momentum balance and mechanical properties, but it is obtained by an alternative way, 
e.g., by using empirical, phenomenological, and simple theoretical models. In such case, 
the model is catalogued here as a hybrid model, since the mechanical problem is not 
solved, but heat and mass transport equations are still considered (Figure 1). In other 
words, hybrid models are a simplified version of physics-based models. Depending on 
the degree of simplification and/or empiricism involved, the capabilities of the hybrid 
model will be reduced in comparison with a full or pure physics-based model. 

Finally, it is worth to mention an important aspect of physics-based (and hybrid) 
models: geometric modelling of food materials at different scales, i.e., the process of 
creating a digital or virtual representation of the structure/geometry of a real product [34]. 
After a model is formulated, a virtual domain has to be defined to solve the corresponding 
equations. For the case of modelling realistic geometries, different imaging techniques are 
available to perform data acquisition. Ho et al. [28] recommended the use of methods that 
provide 3D images which can be then converted into 3D solid models, in order to capture 
all possible information about geometry and structure of materials. In particular, 3D 
models are able to describe full connectivity of porous materials, which is not possible in 
2D models. Such imaging techniques include X-ray computed tomography, optical 
methods and magnetic resonance imaging. In this regard, Wang et al. [35] indicated that 
X-ray micro-computed tomography (micro-CT) provides the unique ability to capture 
intact 3D internal microstructure data without significant preparation of the sample and 
in a non-destructive way. These authors concluded that geometric models will be 
significantly improved by using micro-CT data, which will lead to more realistic 
simulations and more accurate solutions to transport equations. 

3. Applications in Various Products/Processes 
Different driving forces established during processing can cause volume change and 

deformation of food materials, e.g., removal of water in drying and cooking; water uptake 
in hydration/soaking; internal pressure or gas-induced expansion in baking, extrusion, 
and puffing; and mechanical stresses in oral breakdown. The objective of this section is to 
discuss the mechanisms and the applications of modelling approaches of volume change 
and deformation in typical food products/processes. The revision of examples is based on 
the following criteria: 
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• Food engineering perspective: The goal is to provide an overview about significant 
contributions, with a focus on physical mechanisms and modelling approaches; 
details about mathematical formulation and numerical implementation are partially 
covered. 

• More recent and relevant works of the last 10–15 years are included (2005–2021, 
Scopus database); significant review articles are cited, if available, which may cover 
older articles. 

• Focus on solid and semi-solid (raw) materials. 
In this way, we expect to provide an essential review that can be taken as reference 

or starting point for further research and applications in food product/process 
engineering. Furthermore, by taking a transversal and comprehensive perspective, we 
aim at condensing common bottlenecks and challenges shared by different applications, 
since most of available review articles are focused either on a single product/process or 
on a specific modelling approach. Finally, since some products/processes have been 
studied for longer time and by more authors than others, we expect that this study also 
helps to increase feedback between different applications, in order to improve modelling 
works in food product/process engineering in a global sense. 

The section is organized by unit operations, which in general are associated with a 
limited range of materials and products. For each case, basic principles of the process and 
details about structure of corresponding material are given, in order to better understand 
the mechanisms of deformation during processing. Afterwards, main contributions to 
modelling are presented, taking as reference the ad hoc classification of models previously 
discussed. As a reference guide, Table 1 presents a summary of the covered applications, 
including basic information. 

Table 1. Summary of applications discussed in Section 3, as a reference guide. 

Process Product(s) 
Type(s) of 

Deformation 
Driving Force(s) for 

Deformation 
Recommended 

References 

Drying 
Fruits and vegetables 
(also mushrooms and 

meat products) 
Shrinkage Dehydration causing loss of 

turgor pressure in cells [20,36–39] 

Hydration (or 
soaking) 

Grains (legumes and 
cereals) 

Swelling Water absorption by 
biopolymers 

[40–44] 

Cooking Meat products Shrinkage 
Proteins denaturation 

increasing the swelling 
pressure 

[9,45–48] 

Baking Bread, cakes Expansion Gas pressure rise inside of 
pores of dough 

[49–53] 

Extrusion and 
Puffing 

Snacks, breakfast cereals Expansion Pressure rise due to water 
vaporization 

[54–58] 

Oral processing Solid foods 
Compression and 

fracture Mechanical stress [18,59–62] 

  



Foods 2021, 10, 778 10 of 33 
 

 

3.1. Drying 
Drying or dehydration is one of the most common and oldest unit operations in food 

processing. The main objective is to remove water to a certain moisture content, in order 
to reduce water activity and thus increase shelf life. Water remotion (or dewatering) can 
be done by different methods, so there is a wide and still increasing variety of drying 
techniques and related equipment, from ancient solar and traditional convective hot-air 
drying, to modern methods like electrohydrodynamic and infrared- and microwave-
assisted drying. Overall, fruits and vegetables are the typical food materials subjected to 
drying for preservation; other examples include grains, mushrooms and meat. We focus 
then on plant-based materials, due to similarity in structure and thus mechanisms implied 
in deformation. Fruits and vegetables are mainly composed of water, that is contained in 
the parenchyma tissue. Parenchyma cells are polyhedral, with thin walls, and they are 
densely packed together. In this sense, plant-based materials can be thought as 
pressurized, liquid-filled, closed-cell foams [31]. Briefly, microstructure consists of 
intracellular and intercellular spaces, and cells walls. Intercellular space is formed by 
pores and capillaries between cells, that contain a small amount of free water, air and 
some solutes. Intracellular space refers to the interior of the cells, where the major part of 
water is located and defined as loosely bound water. Finally, cell walls, made of 
biopolymers, also contain water (strongly bound water). Drying primarily consists of 
removal of intracellular water, which can migrate by three pathways: cell to cell, cell to 
pores, or by cell-wall rupture (to pores) [63,64]. Afterwards, liquid water is evaporated 
and transferred to surroundings. 

Dehydration causes shrinkage and deformation of plant-based materials: Removal of 
water (usually assisted/accelerated by heating) produces a loss of turgor pressure, 
thermal- and hygro-stresses, and the collapse of cells, with a consequent loss of shape and 
structure of tissue. Therefore, shrinkage has a negative effect on the quality of dried 
products. Besides macroscopic changes in shape and volume, hardness of material is 
increased, surface cracking may occur and rehydration capability of product can be 
diminished, mainly due to unbalanced stresses and structural collapse as a result of a 
defective or non-uniform process [36]. Although significant shrinkage is produced by 
most drying methods (e.g., freeze-drying and use of vacuum can cause less shrinkage and 
collapse), it is important to understand the mechanisms leading to the mentioned 
structural changes in order to better steer the process and to obtain products of better 
quality. For this aim, mathematical modelling can be very useful; however, the task is not 
straightforward. Drying presents a “multi-cubed” nature: Multiphase transport processes 
occur at multiple scales, where multiple physical processes are involved [65]. Next, we 
discuss different modelling approaches aiming at describe shrinkage and associated 
changes during drying of plant-based materials. It is worth noting that mushrooms and 
meat products are also high-moisture, cellular-based, porous, and soft materials, so the 
general concepts introduced here are also applicable to these food products (e.g., 
References [66–69]). 

Probably the most common and simplest modelling approach applied in drying 
involves the empirical correlation between a measure of shrinkage and the average 
moisture content values of the product. Shrinkage is often expressed by using a relative 
or reduced dimensional change of volume, area or thickness. A summary of these linear 
and non-linear empirical correlations can be found in Reference [36]. The following 
equation is a typical example of this approach: 𝑉𝑉଴ = 𝑏 + 𝑎 𝑋𝑋଴ (5)

where V is the volume of sample with average moisture content X (dry basis), a and b are 
fitting parameters, and subscript 0 indicates initial time. This relationship represents the 
hypothesis that volume reduction of samples is only due to removal of water, which is 
known as ideal or linear shrinkage. That is, it is assumed that the material is composed by 
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a deformable or soft solid structure whose pores are filled only by water [70]. In practice, 
deviations from linear shrinkage have been observed for a wide range of materials and 
operating conditions. Numerous factors have been indicated as responsible for the non-
linear shrinkage behavior: drying conditions, sample shape, structural and mechanical 
characteristics of material, case hardening, glass transition, and presence and 
concentration of starch in the food matrix [71]. Some of these factors have been 
incorporated into the empirical correlations in order to improve fitting results and 
description of shrinkage phenomenon [36]. 

Due to (non-ideal) shrinkage and structural modifications, porosity of the material 
can change during drying, affecting transport processes and quality attributes. In this 
regard, several models have been developed to predict overall porosity evolution as a 
function of average moisture content [72,73]. For instance, Khalloufi et al. [74] proposed a 
phenomenological model considering also the initial air content, besides average moisture 
content, and two possible phenomena for porosity formation: shrinkage and collapse. 
Madiouli et al. [75] reported a simple semi-empirical model to calculate the bulk porosity 
of a material during drying, based on three properties (solid density, liquid density, and 
initial bulk density) and experimental data of the reduced moisture content (X/X0) vs. the 
volume shrinkage (V/V0). More recently, Joardder and Karim [76] developed a 
phenomenological model for porosity prediction by using a heat and mass transfer model 
for drying and the so-called “shrinkage velocity”, which depends on effective moisture 
diffusivity and glass transition temperature. On the other hand, it is possible to develop 
simple theoretical models to relate bulk or average values of moisture content, shrinkage, 
density and porosity of the material, based on mass balances, density and porosity 
definitions [77]. In most cases, such models are built upon the assumption of additivity of 
the volumes of the different phases of the system [36]. Overall, these simple theoretical 
models are easy implementable and do not require empirical fitting of parameters. 

To finalize with the first group of models, it is worth mentioning that artificial 
intelligence- or machine learning-based modelling has also been applied to predict 
different aspects of food drying, including prediction of porosity and shrinkage [78,79]. 
Such models are based on artificial neural networks (ANN) and related algorithms, so 
they are considered as empirical-based or black-box models. In general terms, an 
advantage of these ANN methods is the capability of predicting complex non-linear 
relationships, without using a physics-based model. On the other hand, a large dataset is 
required for training and validation, and ANN models lack of physical meaning. 

Regarding physics-based models, let us first consider the continuum or macroscale 
approach, which is still the main framework modelling in the food engineering literature. 
According to the proposed classification in previous section, these models are mechanics-
based, i.e., the solid momentum balance and mechanical properties of the material are 
used to describe deformation during processing. In this regard, the poromechanics-based 
modelling framework developed by Dhall and Datta [20] is taken as reference work. The 
authors proposed a comprehensive modelling approach where solid momentum balance 
is used to relate deformation with driving forces and mechanical properties of the material 
(e.g., Equation (4)); mechanical, moisture, and thermal strains are considered in the 
general formulation. Besides, an interesting discussion is given about the importance of 
the state of the material on modelling shrinkage related phenomena. While the material is 
in a soft rubbery state, it remains saturated and the gas phase does not enter the pores 
(water evaporation occurs at surface); this is favored by a non-intensive drying-rate to 
avoid surface cracking. Then, volume change of food is equal to volume of removed water 
and free shrinkage assumption can be considered as valid. Under this condition, the solid 
momentum balance is not required to calculate solid velocity and the multiphysics 
problem can be simplified by using other methods previously discussed, e.g., mass 
balances. However, as soft material is dehydrated, the transition to the rigid glassy state 
occurs, together with shrinkage of pores and increase of bulk modulus. In this case, free 
shrinkage assumption is no longer valid. Finally, Dhall and Datta [20] highlighted that the 
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main advantage of a solid mechanics analysis is predicting such deviations from ideal or 
free shrinkage, which allows the prediction of other important aspects, e.g., porosity 
development, case hardening, and surface cracking. 

By using such poromechanics-based modelling framework, Gulati and Datta [37] 
performed a benchmark study about convective drying of food materials. The physics-
based formulation includes the influence of glass transition on mechanical properties of 
the product (potato). The developed model is able to describe the case hardening 
phenomenon during drying, as well as to predict various product quality aspects. The 
authors concluded that deviations from free shrinkage and case hardening are caused by 
high drying rates, which induce the rubbery/glass state transition and a decrease in the 
Poisson’s ratio of the material. A similar modelling approach was used by Gulati et al. [80] 
to understand large deformation during microwave drying. In this case, the model 
includes Maxwell’s equations for electromagnetics and stresses are caused by pressure 
gradients. As well as in the two previous cited works, a modified Neo-Hookean 
constitutive model (hyperelastic material) was chosen to characterize large deformation 
of food during processing. In addition, all three works utilized the same approach to 
compute the volume change due to moisture loss: Firstly, according to large deformation 
(finite strain) analysis [25], a multiplicative decomposition is used to separate the total 
deformation gradient (F) into a purely mechanical or elastic contribution (Fel) and a 
contribution due to moisture effects (FM), F = Fel FM. The elastic deformation gradient 
depends on mechanical properties and behavior or constitutive model of the material, e.g., 
Neo-Hookean model. The deformation gradient due to moisture loss depends on the 
corresponding Jacobian JM, or volume change due to moisture loss: FM = JM I. Secondly, by 
assuming free or ideal shrinkage, JM is calculated as a function of volume fraction of water 
(𝜙w), based on a simple mass balance: 𝐽M = 𝑉𝑉଴ = 1 − 𝜙w,01 − 𝜙w

 (6)

Likewise, porosity can be defined as a function of (total) Jacobian J to compute the 
evolution of material porosity due to deformation [20]. A similar mechanics-based 
modelling approach was proposed by Aregawi et al. [38] to predict coupled water 
transport and large deformation of apple tissue during dehydration. In this case, the total 
strain (𝜀) is defined as the sum of the mechanical or elastic strain (𝜀el) and the shrinkage 
or moisture strain (𝜀M): 𝜀 = 𝜀el + 𝜀M (7)

The shrinkage strain is expressed as a function of water content (X) gradient or 
difference to a reference state (e.g., initial state X0): 𝜀M = 𝛽ሺ𝑋 − 𝑋଴ሻ (8)

where β is the volumetric shrinkage coefficient, defined as follows: 𝛽 = 1𝑉 ∂𝑉∂𝑋 (9)

The value of β can be obtained from experimental data of V vs. X; note that Equation 
(9) is related to Equation (5). Aregawi et al. [38] analyzed different mechanical models for 
apple tissue deformation behavior during drying: They made a comparison between 
linear elastic, linear viscoelastic, and nonlinear viscoelastic models. The authors 
concluded that nonlinear models (Mooney–Rivlin and Yeoh hyperelastic materials) better 
predict hygro-mechanical behavior, in comparison with linear elastic and viscoelastic 
models, which are better suited for small deformation (or infinitesimal strain) analysis. It 
is worth noting that for the case of nonlinear viscoelastic models, the authors also utilized 
the multiplicative decomposition of deformation gradient, according to large deformation 
analysis, and the Jacobian due to shrinkage was computed as follows: 
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𝐽M = ሺ1 + 𝜀Mሻଷ (10)

On the other hand, Curcio and Aversa [81] assumed elastoplastic behavior and small 
deformation for the case of convective drying of potato cylinders. So, the formulation of 
the mechanical problem was based on Equation (7), and shrinkage strain was defined in 
a similar manner as in Equation (8). The authors determined experimentally the shrinkage 
coefficient by considering changes in axial and radial directions, in order to account for 
anisotropic shrinkage. However, they found similar behavior in both directions, so an 
average shrinkage coefficient was finally used, corresponding to isotropic shrinkage 
condition. Besides, mechanical properties depended on local moisture content. Recently, 
Mahiuddin et al. [82] reported a very useful review about different models used in the 
literature to describe mechanical behavior of food materials. Mechanical properties and 
the influence of main aspects of drying on shrinkage were also revised by the authors. 

As pointed out by Dhall and Datta [20], a physics-based model can be simplified by 
avoiding the solution of the mechanical problem; instead, the solid velocity may be 
calculated by using some of the models of the first group of our classification. These so-
called hybrid models are generally used to predict hygrothermal behavior of products, 
while using a proper formulation that takes into account shrinkage of the material. Since 
there are many ways of including shrinkage via simple models (e.g., see References 
[36,70,83]), only a few reference works are mentioned here. For convective drying, Hassini 
et al. [84] assumed ideal shrinkage and incorporated volume change in a heat-mass 
transport model via a volumetric hydro-contraction coefficient, which is defined by an 
expression similar to Equation (5). This volumetric shrinkage coefficient can be related to 
a linear hydro-contraction coefficient by assuming isotropic volume change. Then, the 
linear shrinkage coefficient was used to compute hydro-strains in a decoupled mechanical 
model considering linear elastic behavior. That is, the authors proposed a sequential 
solution strategy where heat-mass transfer model was not solved simultaneously with the 
mechanical problem. A similar formulation regarding shrinkage modelling was reported 
by Hassini et al. [85], also for convective drying, although a viscoelastic model was used 
and the heat-mass and mechanical models were solved simultaneously. Another hybrid 
modelling approach was proposed for the case of intermittent microwave–convective 
drying [86]: The volumetric deformation due to dehydration was calculated by using a 
phenomenological model for shrinkage velocity, similar to the one proposed in Reference 
[76]. Then, porosity of the material was related to shrinkage velocity in order to couple 
deformation with heat and mass transport. A different phenomenological solution to 
compute solid velocity due to shrinkage during isothermal convective drying was 
recently applied by Adrover et al. [87,88]: Based on an analogy with swelling of rubbery 
polymers, a local shrinkage velocity (v) was defined as proportional (and opposite in sign) 
to the diffusive flux of water (Jw): 𝑣 = −𝛼ሺ𝜙wሻ 𝐽୵ (11)

where 𝛼 is a shrinkage factor that depends on local water volume fraction (𝜙w). This 
shrinkage factor can be obtained either from experimental data, by using the same idea of 
Equation (5), or it can be assumed a priori, e.g., 𝛼 = 1 for ideal shrinkage. This approach 
was also applied to model continuous and intermittent convective drying of pears under 
non-isothermal conditions [89]. On the other hand, a CFD–DEM model (computer fluid 
dynamics for gas flow, and discrete element method for solid phase) was developed to 
describe fluidized bed drying of grains, where particle shrinkage due to dehydration was 
incorporated via an empirical equation similar to Equation (5) [90]. 

To complete this mini-review dedicated to drying, we herein focus on advanced 
physics-based modelling approaches. For example, Fanta et al. [91] developed a 2D 
microscale model to predict water transport and large deformation in pear cortex tissue 
during dehydration under high relative humidity (more than 97%), e.g., water loss during 
storage of fruits and vegetables. The model considers transport of water in the 
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intercellular space, the cell-wall network and cytoplasm (intracellular space), by using the 
chemical potential as driving force for water exchange. Regarding deformation, the 
micromechanics model assumes that turgor loss of the individual cells due to water 
transport is responsible for shrinkage. The cell wall is modelled as a set of springs and the 
shrinkage mechanics is described by the Newton’s law. Besides the prediction of 
microscale dynamics of water transport and mechanical deformation considering a 
realistic microstructure, the model is able to estimate the apparent water conductivity of 
the tissue, which can be used in a macroscale model. In this regard, as a continuation of 
this microscale study, Aregawi et al. [39] developed a multiscale model where the 
described water transport and mechanical model at microscale was used to estimate 
apparent properties to feed a macroscale model. In this case, the authors utilized apple 
tissue as material, subjected also to mild dehydration conditions. At the continuum or 
macroscopic scale, the mechanics model consists of two parts: nonlinear behavior 
described by Yeoh strain energy functions, and viscoelastic behavior following Maxwell’s 
model. A homogenization procedure was used to calculate apparent water diffusion and 
mechanical properties at macroscale, from simulations with microscale models. As it was 
mentioned earlier, this is one of the interesting and promising aspects of multiscale 
modelling approaches, i.e., estimation of macroscale properties from microscale physics-
based models. Furthermore, the multiscale approach provides insights about how 
microstructure of the material affects macroscale behavior. For recent and good reviews 
about multiscale modelling approach in the context of food drying, the reader is referred 
to References [63,64,92]. 

Two more modelling frameworks are worth of mentioning. Firstly, let us consider 
microscale and multiscale modelling by using meshfree methods, instead of conventional 
or classical grid-based techniques like finite element method (FEM) and finite difference 
method (FDM). For instance, Karunasena et al. [93] developed a 2D meshfree particle-
based model to predict extreme deformations of cellular structure during drying. In this 
model, smoothed particle hydrodynamics (SPH) was used to model cell protoplasm as a 
high viscosity incompressible Newtonian fluid, while discrete element method (DEM) 
was utilized to model the cell wall as a viscoelastic solid material. The authors also 
developed a tissue model to describe interactions between cells. Drying was simulated by 
varying the moisture content, the turgor pressure and cell wall contraction effects, i.e., a 
moisture content-domain simulation method was proposed, instead of time-domain, due 
to computational requirements of the method. This microscale meshfree model was then 
used to analyze the morphological changes of plant-based materials (apple, potato, carrot, 
and grapes) as a function of cellular properties: cell size, wall thickness, cell wall stiffness, 
cell wall contractions during drying, turgor pressure, and pectin layer dimensions and 
stiffness [94]. Recently, the same research group proposed a coarse-grained multiscale 
model to describe macroscale behavior based on microscale dynamics by using also 
meshfree methods, based on previous works [95]. 

Secondly, we briefly introduce a multiscale modelling approach for swelling 
biopolymers based on the hybrid mixture theory (HMT). This approach considers three 
spatial scales (micro, meso, and macro), and a continuum thermodynamics-based 
formulation to describe macroscale behavior based on phenomena occurring at all three 
scales [96]. At microscale (microns), the solid biopolymers and vicinal fluid (solvent, e.g., 
water) exist as separate phases; at mesoscale (millimeters), solid biopolymers and vicinal 
fluid form a homogenous mixture, and coexist as a separate phase with two bulk fluids 
(e.g., water and oil); at macroscale (centimeters), a homogeneous mixture of different 
phases is considered. The main advantage of this approach is the possibility of predicting 
non-Fickian/non-Darcian fluid transport in the vicinity of glass transition. Since 
rubbery/glassy state transition is common in food materials during drying, this theory 
from polymer science appears as interesting and well-suited. For example, this approach 
was applied to predict water transport and stress development in corn kernels during 
drying, assuming viscoelastic behavior for the material [97,98]. Recently, the same 



Foods 2021, 10, 778 15 of 33 
 

 

multiscale framework was proposed to model moisture transport in strawberries and 
carrots during drying; the HMT-based fluid transport equation was coupled with product 
quality and nutritional attributes for a comprehensive description of the effects of drying 
on overall product quality [99]. It is worth to note that uniform (no variation in shape) and 
also ideal shrinkage was generally assumed in these works, together with viscoelastic 
behavior. 

So far, it is evident the wide spectrum of modelling approaches that have been 
applied to predict volume change and deformation of food materials during drying. In 
this sense, this traditional and (still) important process can be considered as a benchmark 
problem in food engineering, and it may help us to follow the evolution of modelling 
approaches. We have attempted to provide a comprehensive overview in this regard: 
from simple empirical and theoretical models aiming at predicting overall shrinkage to 
physics-based models, which, in turn, have also evolved from classical continuum or 
macroscale framework to microscale and multiscale approaches, also involving modern 
meshfree methods like SPH and DEM. Furthermore, interesting and well-suited concepts 
and techniques from other fields, e.g., soft matter, polymer science, and particle 
technology, have been used to develop more accurate models, capable of explaining 
complex phenomena at different spatial scales. In consequence, and for sake of simplicity, 
we take this subsection as a reference for the following applications. 

As a partial conclusion, we understand that there are still some bottlenecks to deal 
with, especially regarding physics-based models. As we have already mentioned, an 
important problem to tackle is the availability of transport and mechanical properties of 
materials for an appropriate range of operating conditions, including temperature 
variation. In this sense, an interesting research was recently published by Khan et al. [100]: 
Nanoindentation experiments were performed to study the relationships between 
mechanical properties and moisture content of plant-based materials during drying. 
Another bottleneck is experimental validation of simulation results. In this case, X-ray 
micro-computed tomography appears as a very powerful tool, which can be used also to 
estimate structure related properties. For example, Prawiranto et al. [101] utilized this 
imaging technique to characterize and quantify the changes of the microstructure of apple 
tissue during drying under natural convective, forced convective and coupled 
irradiation–convective drying. More work in this direction will certainly help to improve 
physics-based models, in order to obtain a more accurate prediction of mechanical 
behavior of materials during drying. 

3.2. Hydration/Soaking 
Contrary to drying, hydration is the process of increasing the water content of a 

material. This operation is an essential step in several processes involving grains (cereals 
and legumes), which are generally harvested dry. Soaking generates positive effects on 
the physicochemical and nutritional aspects of grains, and it is required for subsequent 
industrial operations, such as cooking, extraction, fermentation, germination and malting. 
For instance, hydration helps to reduce the cooking time of grains (e.g., beans and rice), 
and facilitates the homogeneous gelatinization of starch and denaturation of proteins 
during cooking, besides improving the inactivation of anti-nutritional factors [40]. From 
the transport phenomena perspective, hydration is a mass transfer process driven by 
difference in water activity and depends on structure and state of the material. In general 
terms, grains present a complex and heterogeneous structure with different tissues and 
components, so diffusion may not be the only water transport mechanism, e.g., capillary 
flow through pores and channels plays an important role during hydration [40]. 
Furthermore, considering starch-rich materials, diffusion can be classified into three 
categories, depending on the value of n in the relation 𝑥w ∝ 𝑡௡, where 𝑥w is the fraction 
of water taken by solid matrix and t is the diffusion time [41]: (i) n = 0.5, Fickian diffusion 
in rubbery state; (ii) n ≥ 1, diffusion in glassy state; and (iii) 0.5 < n < 1, non-Fickian 
diffusion near glass transition. 
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Water absorption results in a significant expansion of the material, i.e., swelling [42]. 
This phenomenon is produced at microscale due to incorporation of water into the grain 
microstructure formed by biopolymers like proteins and starch, and it is macroscopically 
observed by changes in volume/shape of grains, together with variations in texture 
(softening). At the same time, swelling of biopolymers can affect water transport due to 
changes in mechanical behavior. In this regard, when hydration is carried out at high 
temperatures (> 50–60 °C), starch gelatinization and protein denaturation may occur, 
increasing the complexity of the process [41]. Due to its industrial relevance, it is 
important to model the hydration of grains, in order to better design, optimize and control 
the process. In this sense, different approaches have been applied, considering the 
swelling phenomenon, and are discussed next. 

Firstly, let us consider empirical models aiming at predicting the evolution of overall 
swelling of grains during hydration processes. For instance, empirical-based relationships 
commonly used to predict water uptake during soaking have been applied to follow 
dimensional changes of grains. Yadav and Jindal [102] tested two relationships for 
modelling the expansion of rice kernels during excess water cooking as a function of time, 
e.g., exponential equation and Peleg’s equation, but finally proposed a power-type model 
to predict relative expansion due to amount of water uptake. The authors found that 
swelling was not uniform, i.e., more expansion was registered in lateral direction in 
comparison with longitudinal direction, and reported that higher expansion occurred in 
high amylose rice varieties. That is, swelling was not isotropic and depended on structure 
aspects of rice kernels. Likewise, Hu et al. [103] evaluated five models to fit expansion 
ratio of rice grains as a function of soaking time, at different temperatures (25–70 °C): 
Peleg’s equation, solution of diffusion equation (exponential function), Weibull model, 
and two different sigmoidal equations. Overall, good fitting results were obtained in all 
cases, but models lack of physical meaning and parameters depend on specific 
experimental conditions. 

On the other hand, Sayar et al. [43] utilized two approaches to model the linear 
(length, width, and thickness) and volumetric expansion of chickpea seeds as a function 
of water uptake during soaking at different temperatures (20–100 °C). The first approach 
was based on the experimental correlation between volume variation and water 
absorption of chickpeas during soaking, expressed as follows: 𝑉 − 𝑉଴ = 𝜆 ሺ𝑀 − 𝑀଴ሻ𝜌w

 (12)

where V is the volume of chickpea at time t, and V0 its initial volume; M is the weight of 
chickpea at time t, while M0 its initial weight; ρw is the density of water, and λ is the 
volumetric expansion coefficient. If λ = 1, the volume increase is equal to volume of 
absorbed water, i.e., ideal swelling or volume additivity assumption (similar to ideal or 
free shrinkage previously discussed). However, all values found were smaller than 1, e.g., 
0.73–0.95 for different temperatures. The second approach involved solving Equation (9), 
previously introduced to define the volumetric shrinkage coefficient. In this case, different 
values of the expansion coefficient (β) were obtained by using volume, length, width and 
thickness variation of chickpeas, indicating anisotropic swelling. Furthermore, Sayar et al. 
[43] analyzed the variation of different expansion coefficients with temperature: Overall, 
all coefficients decreased linearly in the range of 20–50 °C, and then remained constant for 
70–100 °C. The authors indicated that starch gelatinization occurring at around 60 °C 
would explain this behavior in swelling of chickpeas. 

Secondly, we summarize physics-based and hybrid models applied to predicting 
swelling of grains. Considering macroscale or continuum framework, some researchers 
have applied a formulation similar to the one described by Aregawi et al. [38] for 
modelling coupled water transport and small deformation during dehydration, i.e., 
Equations (7)–(9). For instance, Perez et al. [104] utilized a realistic 3D geometry of rice 
obtained from tomographic images to simulate hygroscopic swelling during soaking at 
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different temperatures. Hooke’s law (linear elasticity) was used to model elastic strain of 
material, and Fick’s law to describe water transport. The authors aimed at better 
understanding the development of internal stresses due to swelling that leads to cracking 
and breakage of grains during soaking [44]. Through the proposed model, it would be 
possible to optimize the soaking process in order avoid breakage, which may result in loss 
of texture and thus of quality of rice. A similar formulation was also used to model water 
uptake of yellow peas during the steeping (soaking) step of a malting process, with the 
objective of selecting optimal time–temperature conditions of this critical stage [105]. In 
this case, it was assumed that the pea remains spherical during hydration (uniform 
expansion) and behaves as an elastic material, i.e., Hooke’s law was utilized for the stress–
strain relationship. Another example involving the mentioned formulation was reported 
to model water uptake and hygroscopic swelling of dehulled barley grains during cooking 
of canned porridge [106]. Again, linear elastic behavior was assumed, but mechanical 
properties were considered as functions of glass transition temperature. As we mentioned 
above, these models did not utilize a large deformation framework, but considered small 
deformation of grains. 

Other researchers have applied more complex concepts and approaches to model 
and better understand the swelling of materials. For instance, a two-scale 
thermomechanical theory for unsaturated swellable porous material was developed by 
considering large deformation and viscoelastic behavior of the solid matrix [107]. Then, 
this theory was applied to model boiling of pasta, i.e., soaking at boiling temperature 
[108]. Another interesting approach was developed by van der Sman [109]: A novel 
Lattice–Boltzmann method with a deforming lattice was used to model one-dimensional 
swelling of gel-like materials; the model assumed that volume changes are only due to 
loss/gain of water. The author aimed at providing an adequate description of the swelling 
of cell wall material for a further development of a multiscale simulation framework for 
hydration of porous foods. Besides, a good introduction to the Lattice–Boltzmann method 
is given in Reference [109]. The last example of these complex physics-based approaches 
involves the use of a soft condensed matter perspective to model hydration kinetics of 
navy beans [110]. The Flory–Huggins equation was employed to describe the osmotic 
pressure produced by the polymer–solvent mixture (i.e., protein–water), and the swelling 
was modelled as a moving boundary problem by assuming volume additivity. It is worth 
noting that the last two examples can be considered as hybrid models in this work, since 
volume change was not described by using a mechanical model. Nevertheless, we think 
that these advanced concepts and frameworks, which are mainly applied in other fields, 
can be an inspiration to developed physics-based models in food engineering. 

Finally, let us consider macroscale hybrid models for swelling of grains. Overall, the 
following examples have assumed water transport by Fick’s law, using an effective 
moisture diffusivity, and volume change was modelled in a simplified way, without a 
mechanical formulation. For simplicity, we focus on how the authors proposed to solve 
the modelling of volume change. For the case of excess water boiling of rice, and 
considering an ellipse as geometry, an empirical-based linear relationship between 
dimensions and moisture content of grain was proposed by Bakalis et al. [111]. This 
relationship was used to update the simulation domain at each time step, according to 
water uptake. A similar solution was used by Nicolin et al. [112,113], although the 
empirical relationship involved radius of sphere and time of hydration. In this sense, 
Pramiu et al. [114] proposed a physically consistent simple expression for variation of 
average grain diameter with soaking time, considering values at initial and equilibrium 
times of hydration. On the other hand, uniform swelling and volume additivity were 
assumed to generate an equation for the variation of sphere radius with time to model 
soaking of rice [42,115]. Similar assumptions were established by Briffaz et al. [116] to 
relate Eulerian and Lagrangian frames to calculate solid velocity due to swelling. Finally, 
Nicolin et al. [117] also used a mass balance to derive a differential equation for radius 
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variation with time, but they included the expression of diffusive flux evaluated at surface 
to account for all mass accumulation inside the grain. 

In summary, we found that there are some gaps to fill in the modelling of 
hydration/soaking of grains, especially considering physics-based models at macroscale. 
More research is needed considering the following aspects: large deformation analysis 
and nonlinear mechanical models; non-ideal and anisotropic or non-uniform swelling; 
and influence of glass transition and composition on mechanical properties of grains. It is 
worth recalling the importance of developing accurate models to better design and 
optimize this process, since it is applied to staple foods like rice and plant-based protein-
rich products such as legumes. 

3.3. Cooking/Roasting 
Cooking is a general term referring to the transformation of a raw material into a ready-

to-eat food, mainly by application of heat. Any cooked product needs to be 
microbiologically safe and acceptable regarding sensory features, e.g., texture, color, and 
flavor. Although several foods are subjected to cooking in a general sense, we focus here on 
the cooking/roasting of meat products, since other food materials are covered in other 
subsections, e.g., vegetables in drying (Section 3.1.), grains in hydration (Section 3.2.), bakery 
products in baking (Section 3.4.), and snacks in extrusion and puffing (Section 3.5.). 

In particular, cooking of meat is essential to obtain a safe and appealing product. 
Meat products are approximately composed of 20% of proteins that represent the main 
constituent making up the structure of a meat product. During the cooking process, the 
proteins undergo substantial structural changes affecting the quality of the final meat 
product [118]. Particularly, meat proteins denature and cause structural changes, such as 
the shrinkage of muscle fibers and connective tissue [119]. Changes in muscle fibers 
during cooking in the 45–90 °C range occur in two phases: At about 45–60 °C, the 
shrinkage is primarily transversal to the fiber axis, and at 60–90 °C, mainly parallel. At a 
higher temperature of about 121 °C, there may be a third shrinkage of meat which is 
transversal to the fiber axis [118]. The structural changes affect the water holding capacity 
of the meat: The mechanical force exerted by the contracting protein network on the 
interstitial fluid, denoted swelling pressure, leads to the expulsion of the water from the 
meat [9]. Darcy’s law was used to associate the hydraulic pressure with the moisture 
transport [120]. As the temperature increases during cooking, a pressure gradient builds 
up and induces fluid motion, deformation, and, consequently, shrinkage of the solid 
matrix. The shrinkage of meat is one of the most important physical changes occurring 
during the cooking processes [121]. Besides the mentioned relationship between structural 
modifications of proteins during cooking and quality of final products, shrinkage is also 
important for calculation of cooking times, due to changes in volume and shape affecting 
the computation of concentration and temperature gradients. Overall, it is important to 
understand the mechanisms underlying deformation during cooking and their 
relationship with other phenomena. Next, we provide an overview of mathematical 
approaches proposed to deal with this relevant problem in food engineering. 

The shrinkage during meat cooking can be taken into account by considering that the 
change of dimensions is proportional to the moisture content [66,70,121,122], or by 
considering shrinkage as the integrated result of temperature-dependent and 
volumetrically distributed shrinking [123]. For instance, Clemente et al. [66] determined 
shrinkage evolution for pork meat during drying and reported a good linear relationship 
between the V/V0 ratio and the moisture content. This relationship was found to be 
independent on the size of the samples, their salt content, or drying conditions. In general 
terms, the water losses are reported as the main responsible for shrinkage. Wang et al. 
[122] evaluated the shrinkage of chicken nuggets during deep-fat frying: Linear fitting of 
volumetric shrinkage vs. moisture loss gave values of the coefficient of determination (R2) 
between 0.90 and 0.94. Du and Sun [121] investigated possible correlations between 
shrinkage and water content of pork ham by using computer vison data. They found that 
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the total volume shrinkage was highly and negatively correlated with water content (r = 
0.98). It is worth noting the similarity between these empirical approaches to model 
shrinkage of meat during cooking with the ones discussed for volume changes during 
drying and hydration. 

Concerning the physics-based modelling of meat cooking process, the underlying 
physical phenomena involve the coupling of heat and moisture transfer in a deforming 
porous medium [3]. A quite limited number of models were developed about meat 
cooking/roasting and two different approaches were investigated to describe mass 
transfer inside meat; the first one considering only diffusion [124–127], and the second one 
describing the moisture transport by the Flory–Rehner theory [45,119,120,128,129]. 
However, little information has been provided on modelling meat deformation during 
cooking. Considering mechanics-based models, we should mention again the 
poromechanics-based modelling framework developed by Dhall and Datta [20]: Contact 
heating of a hamburger patty was taken as an example of application of the general 
modelling approach. Briefly, large deformation analysis was performed (multiplicative 
decomposition of deformation gradient), meat was assumed to behave as an hyperelastic 
material (Neo-Hookean model), and free shrinkage was considered to calculate the 
Jacobian due to moisture loss, e.g., Equation (6). This approach was recently used by Moya 
et al. [46] to develop and validate a numerical model able to simulate the double-sided 
pan cooking of beef. The proposed model takes into account the heat flow from the pan 
to the meat and the moisture transfer simultaneously with the meat deformation. The 
model considers the swelling pressure gradient caused by the shrinkage of the meat fibers 
and connective tissue, due to the denaturation of proteins and the loss of the water holding 
capacity during cooking. 

In addition, some authors have proposed hybrid models, i.e., shrinkage was solved 
in a simplified way. For instance, Zorrilla and Singh [130] developed a mathematical 
model to predict temperature profiles in meat patties during double-sided cooking, 
assuming a 2D cylindrical geometry where the radial shrinkage changed with 
temperature. To account for shrinkage, two reductions in the patty diameter were 
evaluated, e.g., 13% and 18%. Considering the oven roasting of meat, Feyissa et al. [47] 
proposed a 2D mathematical model of coupled heat and mass transfer. Regarding 
shrinkage, the authors formulated an expression based on a simple mass balance to relate 
the volume of water removed (Vw) with shrinkage of meat, represented by volume, V: 𝑉 = 𝑉଴ − 𝛽 𝑉w (13)

where β was used to describe the effect of the formation of pores during roasting, and it 
can vary between 0 (the volume of water lost is entirely replaced by air and no 
deformation occurs) and 1 (the volume of water removed is equal to the volume 
deformation, i.e., ideal shrinkage). Finally, Blikra et al. [48] studied the shrinkage of cod 
filets and loins during oven heating at high relative humidity. Shrinkage was modelled 
by using a semi-empirical approach: Volume reduction was assumed to be due to cook 
loss, i.e., liquid exudate dripping from the fish during heating, which was obtained 
empirically. 

So far, we can say that drying of fruits and vegetables, hydration of grains, and 
cooking of meat products have been treated similarly regarding modelling of volume 
change and deformation, considering all modelling approaches: Overall, shrinkage or 
swelling is assumed to be due to water loss or gain, respectively. This behavior has been 
supported by different experimental studies, including materials and process conditions. 
The reason for this conclusion relies on the structure of materials: Cellular solids made of 
biopolymers are filled (or to be filled) with a large amount of water. In addition, 
hygrothermal changes generate important transitions that affect mechanical behavior and 
heat-mass transport: Glass transition, starch gelatinization, and protein denaturation. 
These remarks can be considered as positive towards a common modelling framework 
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and transversal solutions. However, as we mentioned before, more work is needed 
regarding specific mechanical properties of materials under real process conditions. 

3.4. Baking 
Baking is the final and most important step in the production of bakery products 

such as breads, cakes and biscuits. During the baking process, simultaneous and coupled 
physical, chemical, and biochemical changes occur in the products, which are responsible 
for their final overall quality [131]. Inside the oven, heat and mass transport generates 
variations in temperature and moisture content of a product, that are responsible for 
physicochemical and biological transformations such as browning reactions, evaporation 
of water, crust formation, volume expansion, gelatinization of starch and denaturation of 
proteins, which make baking a complex process [132–134]. A rapid increase in overall 
volume at the beginning of baking (so-called oven rise) was reported in several 
experimental studies [135]. Increase in gas pressure is the driving force to explain 
expansion [136]. Bakery dough initially includes unconnected gas bubbles mainly filled 
with carbon dioxide generated by yeast (or chemical leavening agents). When the bubbles 
grow with the release of CO2 and the temperature increases, they come into contact and 
gas transfer becomes possible. Bread swelling induces an increase of porosity. Rheological 
properties have a significant effect on the deformation; gelatinization happens at about 60 
°C and the dough turns into crumb. With the appearance of the dehydrated crust at 
surface, the deformation is constrained due to the outer solid/rigid structure, especially in 
traditional bread making (e.g., French bread). 

Considering the importance of mechanical/rheological properties for the 
deformation phenomena in bakery products, Guessasma et al. [8] elaborated a review 
about the mechanical modelling of cereal solid foods. The authors stated that it is possible 
to predict material properties from the accurate knowledge of its structure. Mechanical 
behavior of a solid cereal food is mainly affected by the water content (water is the 
plasticizer that governs the glass transition and also starch gelatinization, together with 
temperature) and by the structural characteristics (micro-structural and meso-structural 
levels). Besides water content and structure, density and porosity are the main parameters 
that explain the variations of the mechanical properties of cereal foods [8]. Therefore, 
baking appears as a multiphysics problem where simultaneous and coupled heat and 
mass transfer produces the expansion (large deformation) of the porous structure of 
dough, which is driven by pressure gradient. In addition, state transitions of biopolymers 
(starch and proteins) are part of this complex process, which determine also the final 
structure and texture of the products. 

In order to better understand the underlying mechanisms of baking, and thus 
improve its design and the overall quality of bakery products, different modelling 
approaches have been applied. In general terms, the baking models can be classified into 
two categories: diffusive or phenomenological models [49,137–145], and multiphase or 
physics-based models [50–53,146–154]. In the first case, only temperature and moisture 
content are calculated, i.e., liquid-water and vapor-water phases are not separated, and 
production of CO2 is not taken into account. Therefore, these models cannot predict 
variation of pressure inside the product, and thus cannot describe expansion of porous 
matrix by a mechanical or physics-based approach. Instead, volume expansion can be 
included by using empirical correlations obtained from baking experiments. For instance, 
Purlis and Salvadori [49] utilized a moving mesh method where velocity of deformation 
at boundary was described by experimental volume change of bread during baking. A 
similar approach was applied for modelling baking of sponge cake [145]. 

On the other hand, physics-based models take into account the mass conservation for 
each phase and the gas pressure can be introduced and predicted [53,152]. Consequently, 
deformation can be expressed as a function of the gas pressure change, e.g., by using the 
solid momentum balance with pressure gradient as driving force, as shown previously in 
Equation (4). In addition, evolution of porosity can be predicted, in order to describe 
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structure variation during baking. For instance, Zhang et al. [154] and Zhang and Datta 
[53] first developed a multiphase heat and mass transport model for bread baking, where 
large deformation was considered by using the principle of virtual work. Driving force 
for deformation was assumed to be internal pressure, and bread was modelled as a 
viscoelastic material (Maxwell’s model). In addition, the relaxation time (rheological 
property of the viscoelastic model) was expressed as a function of temperature, in order 
to represent the dough/crumb transition due to starch gelatinization at 65 °C. Afterwards, 
Nicolas et al. [151] proposed a model taking into account the heat and mass transfer and 
the phenomenon of swelling during traditional baking of French baguette bread. The 
model included the conservation equations of energy and mass to evaluate the water 
content, pressure, porosity and temperature of bread. A momentum conservation 
equation was used to calculate the swelling velocity of the porous matrix, which was also 
considered in the calculation of heat and mass fluxes (i.e., contribution due to solid 
movement). Particularly, the authors considered the bread like a Newtonian fluid, 
applying a viscous model. Later, this research group proposed a similar model of bread 
baking, but a viscoelastic model with a Terzaghi effective stress was used to describe the 
swelling velocity [52,152]. Variable elastic modulus and time relaxation as a function of 
the product state (dough, crumb, and crust) were employed. Considering the gas pressure 
as driving force of the expansion, a mechanical equilibrium between the product and gas 
pressure was imposed. It is worth noting that these models can be considered as 
elaborated or adapted applications of the general poromechanics-based modelling 
framework developed by Dhall and Datta [20], which was previously discussed. Recently, 
a multiphase flow modelling approach was used to describe the bread baking process in 
an industrial convection oven [146]. This CFD model utilized a simplified approach to 
describe volume expansion: Only the middle part of bread was allowed to be deformed 
(vertically upward), via the (fluids) volume additivity assumption, and the rheological 
behavior of solid matrix was not considered. 

Finally, a few authors have attempted to model microscale phenomena during 
baking, e.g., transport at pore or bubble level. Bikard et al. [147] proposed in a first step a 
model to predict the development of porous structure of dough during proofing. For this 
aim, the authors considered an elementary volume of dough (ca. 1 mm3), composed by 
two phases: solid matrix and gas resulting from fermentation of yeast. For simulation, it 
was assumed a random distribution of initial bubbles created during mixing/kneading 
before the proofing step. Then, the model consisted in conservation equations for mass 
and momentum for each phase, i.e., matrix and N number of bubbles. Evolution of 3D 
foaming was obtained via simulation of the proofing stage. In a subsequent work, Bikard 
et al. [50] aimed to simulate the baking process by taking the final dough structure 
obtained after proofing as starting point. In addition to previous model, the authors 
incorporated the heat balance equation and the thermosetting kinetics of the dough 
(dough/crumb transition). Likewise, Narsimhan [150] included the diffusion of CO2 
generated by fermentation, and coupled bubble expansion dynamics to heat and mass 
transport. Lucas et al. [149] developed a new multiscale formulation that accounts for 
evaporation–condensation–diffusion of water while pores are closed, and for Darcy flow 
when pores open. Pores or bubbles opening was assumed to depend on temperature 
(around 50 °C). At the macroscale, coupled deformation and multiphase heat and mass 
transport were considered. 

So far, it can be said that modelling of expansion during baking may present another 
degree of complexity in comparison with moisture-induced shrinkage and swelling. In 
drying, hydration, and cooking, it is possible to simplify a mechanical model without 
incorporating empirical-based shortcuts, by assuming ideal or free shrinkage or swelling, 
which actually has been experimentally verified for a wide range of operating conditions 
and materials. In the case of pressure-induced expansion during baking, prediction of 
pressure (exerted by different gases, including CO2 from fermentation) is obviously 
required, as well as solving the solid mechanics equation. In addition, different transitions 
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and changes related to intrinsic structure of dough have to considered, e.g., stiffening of 
the matrix due to dough/crumb transformation, development of the crust (which can be 
thought as another material or transition), evolution of porous structure (pore expansion, 
coalescence, and opening), and profiles of porosity (especially near and in the crust). In 
summary, modelling volume change and deformation during baking is still a great 
challenge, particularly regarding microscale phenomena towards an accurate description 
of cellular structure evolution during the process. 

3.5. Extrusion and Puffing 
A wide variety of ready-to-eat foods such as snacks and breakfast cereals are 

produced by expansion of starch-based matrices. Expanded products can be obtained 
either by extrusion cooking (direct expansion) or by puffing operations, such as frying or 
microwave heating (indirect expansion). In all cases, the final products are characterized 
by a low-density, cellular–porous glassy structure (solid foam), that provides specific 
texture properties, e.g., crispness. On the one hand, extrusion cooking, or simply 
extrusion, is carried out in an extruder, composed by three main elements: barrel, 
screw(s), and die. Briefly, a powdery material or flour is introduced in the barrel, together 
with water, which is then subjected to mechanical stresses and heat flow to cause the 
melting of the material, which is transported as a highly viscous fluid towards the die exit. 
At the end of the extruder, pressure in the fluid is very high (ca. 4–8 MPa); so, after passing 
through the die, pressure drops and expansion occurs due to instantaneous vaporization 
of water [155]. Expansion at die exit is a complex phenomenon involving phase transitions 
and multiphysics at micro- and macroscales, in a very short time interval (less than 1 s): 
Bubble nucleation and growth, coalescence, shrinkage, and final setting when the molten 
matrix becomes glassy after cooling [156]. Water plays an essential role in the expansion 
mechanism by extrusion, acting as a plasticizer for melting (glassy/rubbery transition) and 
as a blowing agent for expansion [157]. 

On the other hand, puffing can be defined as the expansion of a pre-structured 
material (pellet) or a grain (corn and rice) by application of heating, e.g., microwave and 
frying. Similar to extrudate foods, the final structure of puffed products depends on the 
glassy/rubbery transition of the material, expansion due to water vaporization, and final 
rubbery/glassy transition for structure setting [158]. For instance, expansion of starchy 
pellets during microwave heating involves the following steps: Drying/popping, 
nucleation, expansion, cell opening, rupture, shrinkage, fixation, and end of heating [54]. 

Due to its industrial relevance, driven by an increasing demand of healthier snacks 
and breakfast cereals by consumers, expansion by extrusion and puffing has been subject 
of numerous studies. The main objective is to better understand the underlying 
mechanisms of these processes, i.e., the relationships between formulation, processing 
conditions, and final structure and properties of the products. Next, we provide an 
overview about modelling efforts regarding this aim. Please note that given the 
complexity of the expansion phenomenon and space limitation of this article, only brief 
discussions are included. For a further and more detailed study of this topic, the reader is 
referred to the following excellent works, References [54,55,156,157,159,160]. 

Let us first consider empirical-based and phenomenological modelling approaches. 
For instance, Cheng and Friis [161] utilized classical dimensional analysis (Buckingham’s 
pi method) to develop a phenomenological model to correlate operating conditions of a 
twin-screw extruder with product expansion. Similarly, response surface regression 
together with genetic algorithms were proposed to develop a design tool, so screw speed 
and temperature can be related to different final product characteristics such as expansion 
ratio [162]. For microwave puffing of rice, Dash and Das [163] developed a genetic 
algorithm based on ANN modelling to investigate the effect of microwave power, puffing 
time, and addition of butter and sodium bicarbonate, on the expansion ratio and puffing 
percentage of products. With focus on cereal-based extruded foods, Kristiawan et al. [55] 
carried out a comprehensive study to improve the understanding about the effect of 
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extrusion variables and material properties on the vapor-induced expansion 
phenomenon. After a detailed analysis, the authors built a helpful conceptual map to 
describe the relationships between input variables at the die (product temperature, 
moisture content, melt rheological behavior, and die geometry), and output variables 
regarding the product (foam density and anisotropy factor). Based on this work, 
Kristiawan et al. [56] proposed and validated a phenomenological model of expansion to 
predict the volumetric and radial expansion indices, and the anisotropy factor of extruded 
products (expanded maize starches), from rheological properties of the melt and 
thermomechanical conditions of the extrusion process. The model can be used for 
optimization purposes, or it can be coupled with a 1D extrusion model to build a global 
model for the design of cereal-based extruded foods [55]. 

Regarding physics-based modelling at macroscale, mainly puffing has been studied. 
For instance, Rakesh and Datta [164] aimed at describing puffing during microwave 
heating. The authors followed the previously discussed poromechanics-based modelling 
framework proposed by Dhall and Datta [20]: In this case, large deformation was driven 
by excessive internal pressure due to water vaporization. Likewise, mechanical behavior 
of the material (potato) was described by a hyperelastic Neo-Hookean model. However, 
constant mechanical properties were used, and the glass transition was not taken into 
account to model expansion. These aspects were improved in the subsequent work of 
Gulati and Datta [57], where salt-assisted puffing by toasting of parboiled rice was 
studied. In this improved model, it was assumed that solid skeleton undergoes large 
elastic and inelastic deformations, so it was modelled as a hyperplastic-perfectly plastic 
solid, i.e., deformation gradient (F) is composed by an elastic component (Fel, with 
hyperelastic behavior) and by a plastic component (Fpl): F = Fel Fpl. A two-parameter 
Mooney–Rivlin material model was utilized to describe such behavior. In addition, elastic 
modulus and Poisson’s ratio were expressed as functions of glass transition temperature 
to account for rubbery/glassy transition. 

On the other hand, important and interesting efforts have been made to describe the 
expansion phenomenon at microscale and to further develop multiscale models. Overall, 
multiscale models for vapor-induced expansion are based on the coupling of a “cell 
model” that describes bubble growth dynamics at microscale, with a continuum approach 
model for transport phenomena at macroscale. Eventually, this multiscale model can be 
coupled with a model describing the flow behavior inside the extruder. For instance, the 
cell model developed by Schwartzberg et al. [165] has been used in various subsequent 
multiscale formulations. Examples of this multiscale modelling approach include the 
works developed by Manepalli et al. [58], van der Sman and Broeze [166], and Wang et al. 
[167]. Likewise, Ditudompo and Takhar [168] utilized a two-scale multiphase model 
based on the hybrid mixture theory (HMT, previously described), coupled with 
poroviscoelasticity equations to describe transport processes and mechanical changes in 
extruded products during expansion. 

In summary, the vapor-induced expansion during extrusion and puffing is a very 
complex phenomenon, and its modelling represents a challenging problem for food 
engineers. In fact, modelling approaches seem to be divided into two main groups: 
empirical-based and phenomenological models, and advanced physics-based models; the 
so-called hybrid models are lacking, as well as simple models to predict overall expansion 
(similar to the case of baking). That is, either the problem is solved in a pragmatic way or 
complex models are required. Furthermore, experimental validation of physics-based 
models is not an easy task, since expansion phenomenon and structuring of products 
occur in a very short time interval and under conditions which are difficult to monitor. In 
this regard, X-ray microtomography (XMT) imaging has demonstrated to be extremely 
helpful to characterize and quantify the 3D cellular structure of extruded and puffed 
materials [169–171]. 
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3.6. Oral Processing 
The ultimate transformation of a food product is its consumption, i.e., human 

processing. In brief, consumption or eating involves two subsequent major steps: Oral 
processing (oral digestion) and (gastric) digestion. Oral processing aims at producing the 
bolus after a series of mechanical and enzymatic processes. Afterwards, the bolus is 
swallowed and breakdown and absorption of food components occur at gastric level 
[172]. Oral processing is the most important step for perception and appreciation of 
texture of foods; both physiology aspects and intrinsic properties of food materials play a 
relevant role in this complex process [59]. That is, texture is a fuzzy concept since it is a 
sensory perception derived from the structure of food at different levels and interaction 
with digestive and cognitive systems. Besides sensory aspects, food texture also plays an 
important role in controlling food consumption (satiation) [60]. Therefore, in order to 
design more nutritious, healthy, and enjoyable foods, it is essential to better understand 
the relationships between food structure, patterns of oral processing, and sensory texture 
perception. Furthermore, such understanding is also important to improve the design and 
optimization of processes, since food structure is indeed built up by different processing 
steps (structuring or structure engineering), as discussed in previous applications. In this 
regard, modelling approaches and, in particular, mechanical- or physics-based modelling, 
can help in gaining insights on the structure–properties–oral processing relationships. 

In this last application of products/processes, we aim at giving a big picture about 
modelling of oral processing and its relation with food structure and texture. It is worth 
to mention that oral breakdown of solid foods involves large deformation but also fracture 
dynamics, certainly increasing the complexity of (mechanical) modelling, in comparison 
with previous applications. Considering empirical-based approaches, probably the most 
popular methodology is texture profile analysis (TPA). TPA aims at reproducing the 
chewing or indentation by using different settings; response to applied deformation is 
reported by parameters associated with texture, such as hardness, firmness, crunchiness, 
cohesiveness, etc. Afterwards, these texture indices can be used to develop kinetic models 
and correlations to include aspects of processing [12]. TPA is extensively applied in the 
food engineering field, but it is not very helpful to understand the structure–properties 
relationship due to the lack of well-defined physical/mechanical parameters [61]. 
Regarding semi-empirical approaches, scaling law or Gibson–Ashby model is widely 
utilized to characterize cellular solids [11]. This approach allows predicting mechanical 
properties (e.g., Young’s modulus, E) based on the relative density, defined as the ratio 
between the density of the foam or cellular solid (ρ) and the density of the solid phase (ρs): 

Foam property
Solid phase property = 𝐶 ൬ 𝜌𝜌s

൰௡
 (14)

where C and n are empirical parameters to be fitted, which in turn can be related to 
structure of the porous material. For example, this approach has been used to study the 
influence of cellular structure, given by formulation and dough processing conditions, on 
the mechanical properties of bread crumb [173]. 

On the other hand, mechanical (physics-based) modelling has demonstrated to be 
very useful to develop knowledge about relations between structure and mechanical 
properties, by subjecting a virtual food to a virtual standard mechanical test or a virtual 
oral breakdown. With the aid of imaging methods such as X-ray microtomography (XMT 
or micro-CT), realistic 3D geometric models can be obtained for simulation purposes [8]. 
Besides large deformation analysis, fracture mechanics has been applied to understand 
the breakage of solids under large deformation; this physics-based approach allows 
determining intrinsic properties of food materials, which do not depend on test 
parameters or sample geometry, e.g., Young’s modulus, fracture stress, fracture 
toughness, and the critical stress intensity factor [18]. For instance, different authors have 
employed the finite element method (FEM) to model mechanical tests such as 
compression, in order to obtain mechanical properties of materials, e.g., References 
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[62,174–177]. Due to limitations of FEM to simulate large deformation and fragmentation 
behavior, some authors applied meshfree methods. For example, Harrison et al. [178] 
developed a coupled biomechanical-smoothed particle hydrodynamics (SPH) model of 
human mastication, in order to predict the mechanical behavior and breakdown of two 
agar model foods. The authors reported that a further step would be to extend this model 
for predicting flavor release during oral processing from mechanical properties. Likewise, 
Hedjazi et al. [179] studied the fragmentation behavior of breakfast cereals by using the 
discrete element method (DEM). 

In summary, modelling approaches, especially physics-based models, in 
combination with advanced numerical methods and powerful imaging techniques, 
certainly help to increase the understanding about the relationships between structure, 
mechanical properties, and oral processing, in order to design foods with specific 
characteristics. For instance, structure can affect the digestion process [61], so such 
understanding is crucial to deliver healthier food products. In this regard, it is worth 
making a final comment about additive manufacturing (AM) or 3D printing, which has 
emerged as a promising technique for food tailoring or customization [180]. AM can be 
used to perform reverse engineering, i.e., to utilize knowledge and information about 
products/processes to improve or reuse the (direct) engineering process for delivering a 
new product. For example, topology optimization (optimal design of geometry) is a 
reverse engineering tool that can be used in AM. So, virtual design and reverse 
engineering can produce tailor-made foods for different objectives and functionalities, 
e.g., specific fragmentation performance, controlled released of active compounds, etc. 
[181]. Some recent works have been dedicated to study mechanical behavior of 3D-printed 
foods. For instance, Jonkers et al. [182] proposed a constitutive model (elasto-viscoelastic) 
to describe large deformation behavior of 3D-printed starch-based foods. In an interesting 
article, Piovesan et al. [183] applied a computer aided engineering (CAE) methodology to 
design 3D-printed foods with tunable mechanical properties, by using Young’s modulus 
as texture descriptor. Finite element modelling was used to analyze the relationship 
between Young’s modulus of 3D-printed cookies with a honeycomb structure and their 
parameters. The authors reported that wall thickness and cell size can be used as design 
parameters to customize texture based on Young’s modulus. For sure, more works will be 
dedicated to AM and mechanical modelling in the near future, to further elucidate the 
relations between food structure and oral processing, considering the ultimate challenge 
of optimal design of foods. 

4. Conclusions 
A wide variety of modelling approaches have been applied to describe and predict 

volume change and large deformation of food materials in various processes. A 
classification of such models was proposed in this work, based on the prediction 
capability and hypotheses of each approach: (i) Simple models are able to predict overall 
volume change and related properties (e.g., bulk porosity), either from empirical data or 
from theoretical simplifications; (ii) physics-based models can predict local deformation 
and porosity evolution, and stress field and related magnitudes via mechanical modelling 
(mechanics-based models). In some cases, mechanical modelling is avoided by using 
theoretical assumptions or semi-empirical approaches to compute solid velocity in a 
simplified way (hybrid models). Certainly, mechanics-based modelling presents relevant 
advantages in terms of prediction capability and interpretation of involved phenomena, 
providing useful tools and insights for a better understanding of the relationships 
between composition and structure of raw materials, processing conditions, and 
properties of final products. Besides macroscale modelling framework, which is 
commonly applied in food engineering, microscale and multiscale approaches have been 
utilized, as well as meshfree methods and well-suited concepts and theories from other 
fields, e.g., soft condensed matter and polymer science. These “novel” perspectives and 
methods will surely improve physics-based models in the food engineering field. 
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On the other hand, there are still some bottlenecks to be addressed in order to further 
expand the development and application of physics-based models. One major bottleneck 
involves the availability of appropriate thermophysical and mechanical properties, 
considering the actual composition and structure of food materials, and realistic 
processing conditions. In this regard, the influence of state transitions and anisotropy 
effects need to be incorporated. It has been extensively reported the key role of water as 
plasticizer and as agent for deformation, as well as the importance of structural 
arrangement of materials to transport phenomena. Another aspect to improve is the 
validation of simulation results, which in many cases is performed by using average or 
overall values, partially due to experimental limitations for the acquisition of detailed and 
adequate data. A full and direct validation of models will consolidate their predictive 
potential. The third issue concerns the need for the development of modelling frameworks 
and customized modules in simulation software, with focus on food engineering 
applications. This will certainly help to expand the application of physics-based models, 
including education and training aspects of (nonlinear) solid mechanics, considering that 
implementation of these models is not straightforward. 

Towards the development of a food engineering-oriented physics-based modelling 
framework, different products/processes can be grouped or classified according to the 
main mechanism or driving force causing large deformation and volume change: (i) 
Moisture-driven deformation in drying, hydration, and cooking; (ii) pressure-driven 
deformation in baking, extrusion, and puffing; and (iii) mechanical-driven deformation in 
oral processing. In addition, other driving forces can be relevant and thus need to be 
considered and coupled accordingly, e.g., temperature can affect deformation by 
modifying the state and, thus, the mechanical properties of the material. Besides, this 
classification can be useful to identify and solve common problems in various 
products/processes, and to increase feedback between different research areas. 

Finally, it is worth mentioning the need for bridging the gap between process 
modelling efforts (prediction of temperature, moisture content, deformation, etc.) and 
product-focused works (impact of processing on quality and sensory aspects). That is, the 
gap between “prediction of” and “impact of” works. An example of this gap is the lack of 
more articles dealing with the prediction of food texture from physics-based models. 
Certainly, mechanical modelling can provide useful tools for this aim. More efforts are 
required in this direction, towards the development of mechanistic digital twins and 
optimal design of food products/processes. 
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