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Abstract. Power supply is one of the basic needs in modern smart
homes. Computer-aid tools help optimizing energy utilization, contribut-
ing to sustainable goals of modern societies. For this purpose, this article
presents a mathematical formulation to the household energy planning
problem and a specific resolution method to build schedules for using
deferrable electric that can reduce the cost of the electricity bill while
keeping user satisfaction at a satisfactory level. User satisfaction have a
great variability, since it is based on human preferences, thus a stochas-
tic simulation-optimization approach is applied for handling uncertainty
in the optimization process. Results over instances based on real-world
data show the competitiveness of the proposed approach, which is able
to compute different compromise solution accounting for the trade-off
between these two conflicting optimization criteria.

Keywords: smart cities; energy planning; mixed-integer programming;
simulation; multiobjective optimization.

1 Introduction

The paradigm of smart cities aims at increasing resource efficiency in several
daily activities that citizens perform in urban environments. In the case of en-
ergy management, this aim is not only related to the amount of energy consumed,
but also to the infrastructure required to distribute the energy [3]. The capacity
of this infrastructure is often conditioned by peak consumption, as it should be
able to distribute the energy during the periods of high demand without pro-
ducing power outages. However, if consumption of a certain area is remarkably
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unbalanced (having important variations along the day), this would required a
large investment in infrastructure that will be idle the most of the time [10].

The introduction of time-of-use pricing in electricity bills for households is
a major contributor to the overall efficiency of the electrical system, since it
incentives citizens to have a smoother consumption patron, displacing the usage
of electric devices from expensive peak hours to relatively cheaper off-peak hours.
This behavior reduces the maximal instant power consumption of an urban area
and, therefore, cuts back the required infrastructure investment to handle the
peak and the risk of power outages [10]. However, usually off-peak hours, in
which electricity is cheaper, are not preferred by users for using their appliances.
This effect, which is known as inconvenience due to timing [1], can affect the
well-being of the users. Therefore, there is a trade-off between both criteria, i.e.,
electricity cost and users satisfaction. Intelligent computer-aid tools may help
users in the decision-making process of scheduling their deferrable devices [19].

This article proposes a novel mixed integer programming model for schedul-
ing the deferrable electric appliances usage in households, which simultaneously
considers minimizing the electricity cost and maximizing the users satisfaction.
Users satisfaction measures to what extend the starting time and duration for
appliances usage scheduled by the model match the users preferences–which is
estimated through the analysis of historical data [4, 5, 22]. However, since this
parameter can show certain variability between different days, a simulation-
optimization resolution approach that considers this stochastic behaviour is de-
vised. Therefore, the main contributions of the research reported in this work
include: i) a compact mathematical formulation for the energy household prob-
lem, ii) the application of a stochastic resolution approach to consider uncertain
users preferences, and iii) experimental evaluation over instances based on real-
world data and analysis of the results.

The article is structured as follows. Section 2 presents the analysis of the main
related works. The proposed mathematical formulation is outlined in Section 3.
Section 4 describes the proposed simulation-optimization resolution approach.
Section 5 describes the computational experimentation conducted to evaluate its
effectiveness, and reports the numerical results for realistic problem instances.
Finally, Section 6 formulates the conclusions and describes the main lines of
future research.

2 Related work

Household energy planning has been considered as a complex problem in the re-
lated literature. The deterministic version (scheduling non-interruptible electric
appliances) is associated with bin packing [16], a well-known NP-hard problem.
Moreover, including uncertainty increases the complexity of the problem [17].
Several articles have considered uncertainty in this kind of problem. For a recent
review, we refer to Lu et al. [18] for a comprehensive analysis of the topic and
Liang and Zhuang [17], who focused on stochastic applications.
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Uncertainty in energy household planning problems has been considered in
several aspects. Chen et al. [6] considered uncertainties in the power consumed
by the appliances and the renewable solar energy gathered by a photovoltaic
array. A three-stages resolution process was proposed. First, a deterministic lin-
ear programming optimization model considering mean values for the appliances
consumption and maximum solar power generation was solved. A stochastic pro-
cedure based on Monte Carlo simulation was applied to the resulting solution.
The simulation considers different energy consumption rates of appliances and
selects the consumption rate that minimizes the probability of shortcuts, which
occurs when the overall consumption of electricity surpass a certain threshold
value. Finally, an online adjustment of the previous (offline) solution was applied,
which monitors the instant solar power generation and the consumption of ap-
pliances in real-time, compensating the household electric balance of the offline
solution with a larger power storage in the battery or purchase from the grid.
Hemmati and Saboori [12] proposed a particle swarm optimization algorithm
to deal with uncertainty of photovoltaic panels in a similar problem. Assuming
that the energy generated in the panels has a Gaussian probabilistic distribu-
tion, a Monte Carlo simulation was used each time the stochastic the stochastic
function has to be evaluated to obtain a sample of the generation values.

Other researchers have used robust optimization, which aims at minimizing
the impact of the worst-case scenario, considering that aleatory parameters have
a bounded probabilistic distribution [1]. Jacomino and Le [13] presented a robust
optimization approach to simultaneously minimize energy cost and maximize the
comfort of users. They considered uncertainty in two aspects: the outdoor tem-
perature and the solar radiation (related to weather forecast), that affect the
energy to be consumed to satisfy the required indoor temperature, and users de-
cisions related to not programmable services, i.e., despite the scheduled starting
time and duration of the appliances the user can modified these conditions when
actually using them. For handling uncertainty on users behaviour, a decomposi-
tion approach based on estimating the probability of occurrence of each scenario
was used. Wang et al. [28] proposed a robust optimization approach for dealing
with photovoltaic energy generation in household planning by using a mixed
integer quadratic programming model, and Wang et al. [29] for dealing with un-
certainty in hot water utilization and outdoor temperature that influences the
usage of heating and air conditioning systems.

Other authors, although they have not consider uncertainty in their models,
they have explored the trade-off that usually exists between electricity cost and
users satisfaction through linear mathematical programming approaches -as it is
performed in this work-. Among them, Yahia et al. [30] modeled a bi-objective
problem considering these two objectives, which were combined by means of
a linear weighted sum to form a unique objective function. They solved two
single-household instances, i.e., a real South African case study and an artificial
large instance, using LINGO. Additionally, they performed an extensive anal-
ysis of the sensitivity of the results to the modifications of certain parameters.
The same authors expanded their work in [31] by considering as a third ob-
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jective the reduction of the peak load. Moreover, in this last work they solved
an instance considering several households simultaneously. They applied and
compared three different multiobjective approaches: lexicographic optimization,
normalized weighted sum and compromise programming.

This work contributes to the literature in several aspects. Firstly, a novel
linear mathematical formulation of the household planning energy problem that
explicitly considers users satisfaction as an objective function is presented. Ap-
proaches as such are not common in the related work [30]. Moreover, this is
an improved mathematical formulation compared to the one presented in our
previous work [20] for a similar conceptual model, having a smaller number of
variables and restrictions. Secondly, this work considers stochastic users pref-
erences which differentiates it to other linear programming applications in the
related work [30, 31]. This leads to the final aspect that differentiates this work
that is the application of the simulation-optimization Sample Average Approx-
imation method to handle the uncertainty which has not been applied to this
specific problem before.

3 Mathematical formulation

The household energy planning problem addressed in this article aims at reduc-
ing expenses of electricity in households while enhancing users satisfaction. This
last objective was estimated by considering in which part of the day users prefer
to use the appliances (inferred from historical data). Then, the mathematical
formulation considers the following elements:

Sets:

– a set of users U =
(
u1 . . . u|U |

)
, each user represents a household;

– a set of time slots T =
(
t1 . . . t|T |

)
in the planning period;

– sets of domestic appliances Lu =
(
lu1 . . . l

u
|L|

)
for each user u;

Parameters:

– a penalty term ρu applied to those users that surpass the maximum electric
power contracted;

– a parameter Du
l that indicates the average time of utilization for user u of

appliance l ∈ Lu ;
– a parameter Ct that indicates the utilization cost (per kW) of the energy in

time slot t;
– a parameter Pu

l that indicates the power (in kW) consumed by appliance l;
– a binary parameter UPu

lt that is 1 if user u prefers to use the appliance l ∈ Lu

at time slot t, 0 in other case;
– a parameter Eu that indicates the maximum electric power contracted by

user u;
– a parameter Ejoint that indicates the maximum electric power that the

(whole) set of users U are allowed to consume;
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Variables:

– a binary variable xu
lt that indicates if user u has appliance l ∈ Lu turn on at

time slot t;
– a binary variable δult that indicates if the appliance l ∈ Lu of user u is turn

on from time slot t up to a period of time that its at least equal to Du
l ;

– a binary variable ψu
t that indicates if the user is using more power than the

maximum power contracted Eu.
– a binary variable Ψu

t that indicates if the user is using more power than 130%
of the maximum power contracted Eu .

The problem aims at finding a planning function X = {xu
lt} for the use of

each household appliance that simultaneously maximizes the user satisfaction
(given the users preference functions) and minimize the total cost of the energy
consumed. The mathematical formulation is outlined in Eqs. (1)-(11).

maxF =
∑
u∈U

∑
l∈Lu

∑
t1∈T

t≤|T |−Du
l


δult1




∑
t2∈T

t1≤t2<t1+Du
l

UPu
lt2





 (1)

minG =
∑
t∈T

∑
u∈U

(∑
l∈Lu

xu
ltP

u
l Ct + ρu (0.3ψu

t + 0.7Ψu
t )

)
(2)

Subject to

δult ≤ 1−
Du

l −
(∑

t2∈T
t≤t1<t+Du

l

xu
lt1

)

Du
l

, ∀ u ∈ U, l ∈ Lu, t ∈ T (3)

∑
t∈T

δult = nu
l , ∀ u ∈ U, l ∈ Lu (4)

ψu
t ≥

∑
l∈Lu Pu

l x
u
lt − Eu

∑
l∈Lu Pu

l

, ∀ t ∈ T (5)

Ψu
t ≥

∑
l∈Lu Pu

l x
u
lt − 1.3Eu

∑
l∈Lu Pu

l

, ∀ t ∈ T (6)

∑
u∈U
l∈Lu

Pu
l x

u
lt ≤ Ejoint, ∀ t ∈ T (7)

ψu
t ∈ {0, 1}, u ∈ U∀ t ∈ T (8)

Ψu
t ∈ {0, 1}, u ∈ U∀ t ∈ T (9)

δult ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu, t ∈ T (10)

xu
lt ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu, t ∈ T (11)

Eq. (1) aims at maximizing the users satisfaction according to their prefer-
ences. Eq. (2) aims at minimizing the energy expense budget, which include the
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charge for energy consumption and the penalization for exceeding the maximum
power contracted. Eq. (3) enforces δilt to be one when the length of time an appli-
ance will be on is equal or larger than the required by the user. Eq. (5) enforces
ψi
j to be one if the user exceeds the maximum power contracted. Eq. (6) enforces

Ψ i
j to be one if the user exceeds the maximum power contracted for more than

30%. Eq. (7) enforces that the joint electric consumption by the set of users do
not surpass a certain threshold maximum power. This equation is included when
users are part of the same housing unit, e.g., an apartment building. Eqs. (8)-(11)
establishes the binary nature of the variables.

4 The proposed simulation-optimization resolution
approach for the stochastic household energy planning

Real-world data shows that considering users preferences (UP ) as a determinis-
tic parameter does not adjust to reality [15]. Users satisfaction can be modelled
more accurately if uncertainty is taken into account for preferences in the model.
Therefore, this article develops a resolution approach that considers this stochas-
tic behaviour.

4.1 Bi-objective optimization

In order to handle the biobjective nature of the optimization problem presented
in Section 3, a weighted sum optimization approach is applied. The weighted sum
is a traditional method in the multiobjective optimization literature which has
extensively been used in many applications, including for the energy household
related problems [1]. Applying this approach, Eqs. (1) and Eqs. (2) are jointly
optimized with Eq. (12), where wF and wG are the relative weights given to each
criteria by the decision-maker.

maxH = wF
F − F best

F best − Fworst
− wG

G−Gbest

Gworst −Gbest
(12)

One of the main drawbacks of this method is to know the actual best and
worst values of each objective within the set of non-dominated solutions which
are used for normalization (i.e., F best and Gbest, Fworst and Gworst in Eq. (12),
respectively). In this work, for addressing this issue, the procedure proposed in
Rossit [24] and applied in Rossit et al. [25] is used. This is a two step procedure.
In the first step, the best and worst values of each objective are approximated
by solving the single objective problem of each of the criteria involved. These
values, which are likely to be dominated [2], are improved in the second step of
the procedure. In this second phase, these best and worst values are used in the
weighted sum formula (Eq. (12)) along with a biased combination of weights.
This is, two different problems are solved, one problem using wF >> wG > 0
and the other problem using wG >> wF > 0. Finally, from the solutions of these
last two multiobjective problems, the new best and worst values are obtained.
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Simulation-optimization approach for energy planning with uncertainty 7

4.2 Sample Average Approximation method for considering
stochastic users preferences

Formally, in a stochastic optimization problem with a probabilistic objective
function, the expected value of this function should be optimized. In the case of
the formulation described in Section 3, if parameters UP are considered stochas-
tic, Eq. (1) should be replaced by Eq. (13).

e = EP [F (∆,UP)] . (13)

In Eq. (13), UP is the random vector of the stochastic users preferences
and ∆ is the vector of decisional variables δ described in Section 3. In order
to optimize Eq. (13), all the possible realizations of vector UP with its corre-
sponding probability should be considered. Taking into account that the model
of Section 3 uses a finite set of time slots, the set of possible realizations of
UP is also finite. Particularly, there are |T |

∑
u∈U |Lu| realizations of this vector,

each one constituting a possible scenario for the stochastic problem. For exam-
ple, consider an instance in which the day is split in intervals of 30 minutes,
i.e., |T | = 48, there two users (households) and each user has only two appli-
ances (|Lu1 | = |Lu2 | = 2). Then, the number of possible scenarios would be
484 = 5, 308, 416.

For the cases in which the large number of scenarios of real-world instances
makes impractical to compute the exact expected value of Eq. (13), the ex-
pected value can be approximated with an independently and identically dis-
tributed (i.i.d.) random sample. This technique is called the ”sample-path op-
timization” [23] or ”sample average approximation” [26]. Thus, Eq. (14) is an
estimator of the expected value of Eq. (13).

ê =
1

N

N∑
j=1

F
(
∆,UPj

)
(14)

As aforementioned, the set of values UP 1, ..., UPN , is an i.i.d. random sam-
ple of N realizations of the stochastic vector parameter UP. The optimization
problem obtained when Eq. (14) is used instead of Eq. (13), is the sample average
approximation optimization problem (hereafter SAA) and can be solved deter-
ministically with commercial solvers. Clearly, the solution of the SAA problem
depends on the realizations UP that are included in the random sample. More-
over, the larger the size of the sample (N), the smaller is the difference between
Eq. (13) and its estimator Eq. (14). Particularly when N → ∞, ê → e [14].

Different samples of size N (i.e., different set of realizations of the stochastic
vector parameter UP) will shape different forms of Eq. (14). Therefore, the
algorithms based on sample average solve the SAA problem several times with
different samples [14, 27] and then select the most promising solution according
to some predefined criteria as the final solution.
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In this article the procedure proposed in Norkin et al. [21] and implemented
in Verweij et al. [27] is applied. This is described as follows. Let ê1N , ê2N , ..., êMN
be the values of Eq. (14) when solving M SAA problems, each one with a dif-
ferent sample of size N . Moreover, considered that ŝ1N , ŝ2N , ..., ŝMN are the solu-
tion (values of decision values) obtained when each of the aforementioned M
SAA problems. An intuitive criteria for selecting the best solution among the
M possibilities, would be to pick the solution with the best êN value. A more
sophisticated idea is to build an independent sample of size N ′, with N ′ >> N ,
and evaluate the solutions using this sample. Then, select the solution with the
best value as it is expressed in Eq. (15) for a maximization problem.

ŝ∗N ∈ argmax{êN ′(ŝN ) : ŝN ∈ ŝ1N , ŝ2N , ..., ŝMN } (15)

This idea takes advantage from the fact that even though using the large
sample size N ′ for the optimization phase can be very time consuming (specially
in NP-hard problems as the one addressed in this paper), using it for just for
evaluation of the objective function Eq. (14) can be achievable in reasonable
computing time [14].

5 Computational Experiments

This section describes the instances and methodology used for the evaluation of
the proposed approach, and reports quantitative and qualitative results.

5.1 Problem instances

The instances construction is based on information from the REDD dataset [15].
As performed in Colacurcio et al. [7], instances with different sizes were consid-
ered. One of the key parameters to estimate was the users preferences. For esti-
mating this parameter, information about the power consumption of the selected
appliances on each household was analyzed. This involved cleaning the data from
comparatively very small power consumption which are related to stand-by con-
sumption of each appliance, for example, small screen leds. After this, for each
combination of user and appliance, a probability of usage for each time slot
was estimated (pult). With this probability, M instances were constructed for
each sample size N as is described in Section 5.2. Additionally, from REDD
dataset the mean power consumption of each appliance in KW (Pu

l ) and the du-
ration of the average time of utilization of each appliance (Du

l ) were estimated.
When performing this noticeable differences were identified during the weekend,
a behaviour that is usual for household users [8]. Therefore the instances were
classified in weekdays and weekends.

Parameters Eu (maximum electric power contracted for each household) and
Ct were obtained from the website of the Electric Company of Montevideo,
Uruguay (https://portal.ute.com.uy/). Two instances size were considering,
each one with two variations: weekdays (wd) and weekend (we):
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Simulation-optimization approach for energy planning with uncertainty 9

– small (s.wd and s.we). It has one household with seven deferrable appliances.
– large (l.wd and l.we). It has two households with six and seven deferrable

appliances respectively.

In the instances that corresponds to the small size Eq. (7) is not used since
there is only one household and, thus, Eqs. (5) and (6) are enough for limiting
the maximum consumed energy.

5.2 Experiment design

After some preliminary experimentation, the following sample sizes were chosen
N = 50,200,500, 1000, 2000, 3000 and 10000. Within each sample size, the num-
ber of independent samples (M) was set to 100. The evaluation sample size (N ′)
was set to 100000. The estimation of the ideal and nadir value for the weighted
sum function were estimated with the procedure introduced in Section 4.1. This
is performed within each N value. Additionally, five different weights configu-
rations are used for exploring different trade-off between energy cost and user
satisfaction (wf ,wg): (0.99,0.01), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25) and (0.01,
0.99). The SAA problems were solved with Gurobi [9] through Pyomo as mod-
elling language [11].

Algorithm 1 Schema of a the Simulation-optimization (SO) approach.

1: initialize SO(pult, N,M,α, β)
2: initialize list S of size M
3: for m ← 0,m++,m ≤ M do
4: for n ← 0, n++, n ≤ N do
5: for all u ∈ U do
6: for all l ∈ Lu do
7: for all t ∈ T do
8: initialize t ← random(0, 1)
9: if t ≤ pult then UPu

lt = 1
10: else UPu

lt = 0
11: end if
12: end for
13: end for
14: end for
15: end for
16: S [m] ← Solve MDR(α, β,UP))
17: end for
18: return S

5.3 Experimental results

The experimental results are reported in Tables 1-2, for the small and large
instances considering weekday and weekend usage conditions, respectively. These
Tables report for each instance, sample size (N) and weight vector values the
following results: the mean and standard deviation of the runtime, the user
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satisfaction function F evaluated over N ′, the mean and standard deviation of
the cost functionG evaluated overN ′ (for theM different runs), and the values of
F andG of the best compromising solution, i.e., the solution that has the minimal
value of function H (Eq. (12)). It should be highlighted that since the cost
function G (Eq. (2)) is deterministic, it is not affected by the sample size after
the optimization process. In other words, for evaluation purposes: GN = GN ′

.
All the solutions of the SAA problems were solved to optimality since Gurobi

was able to find solutions with 0%MIPGap for the compact mathematical formu-
lation presented in Section 3 in relatively short computing times. The different
combinations of weights were able to effectively explore the trade-off of the prob-
lem. Something interesting is that schedules that are biased towards minimizing
the cost objective (with higher values of β) are more difficult to solve for Gurobi
(computing times are as much of three times higher).

As expected, in general the larger the sample size N the higher the average
the user satisfaction function value, since the expected value is better approx-
imated by Eq. (14). Additionally, another important feature is that increasing
sample size N led to a remarkable reduction of the variability of the results
(measured through the standard deviation). Fig. 1 exemplifies this behavior,
reporting the average and standard deviation of function F for the M inde-
pendent samples for the three combinations with larger α, i.e., in which F has
preponderance over the cost, in the large instance for the weekday patron.
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Fig. 1: Sensitivity analysis of average and standard deviation of F in l.wd
instance.
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Table 1: Results of small instance.

N (α, β)
Time(sec) FN′

GN′

F (HN′
best) G(HN′

best)Avg Std Avg Std Avg Std

Small instance weekday (s.wd)

50

(0.99,0.01) 0.04 0.07 0.5065 0.0405 115.91 8.65 0.5761 103.73
(0.01,0.99) 0.13 0.09 0.2245 0.0192 89.39 0.00 0.2468 89.39
(0.50,0.50) 0.08 0.08 0.4128 0.0464 96.84 2.36 0.4592 93.37
(0.75,0.25) 0.05 0.07 0.4849 0.0476 103.63 4.40 0.5062 98.75
(0.25,0.75) 0.11 0.08 0.3104 0.0478 90.99 0.95 0.2455 89.39

200

(0.99,0.01) 0.05 0.09 0.5445 0.0302 115.10 6.94 0.5877 104.83
(0.01,0.99) 0.13 0.09 0.2342 0.0151 89.39 0.00 0.2462 89.39
(0.50,0.50) 0.09 0.07 0.4270 0.0401 94.38 2.05 0.4608 93.37
(0.75,0.25) 0.08 0.11 0.4835 0.0400 99.14 1.58 0.5170 98.20
(0.25,0.75) 0.14 0.12 0.3036 0.0355 90.50 0.37 0.3048 89.74

500

(0.99,0.01) 0.06 0.11 0.5590 0.0251 113.08 2.86 0.5869 104.84
(0.01,0.99) 0.14 0.10 0.2404 0.0088 89.39 0.00 0.2463 89.39
(0.50,0.50) 0.11 0.11 0.4854 0.0266 98.07 0.72 0.4503 93.37
(0.75,0.25) 0.10 0.13 0.5138 0.0432 100.75 2.82 0.5866 102.63
(0.25,0.75) 0.14 0.13 0.3380 0.0301 90.86 0.44 0.3034 89.95

1000

(0.99,0.01) 0.02 0.01 0.5699 0.0229 112.93 1.11 0.5318 104.28
(0.01,0.99) 0.10 0.01 0.2419 0.0073 89.39 0.00 0.2497 89.39
(0.50,0.50) 0.07 0.01 0.5016 0.0235 98.15 0.50 0.4353 93.37
(0.75,0.25) 0.05 0.07 0.5192 0.0324 99.54 2.00 0.5150 98.20
(0.25,0.75) 0.09 0.01 0.3402 0.0236 90.80 0.12 0.3432 90.57

Small instance weekend (s.we)

50

(0.99,0.01) 0.03 0.08 0.5271 0.0446 41.49 11.05 0.6095 29.66
(0.01,0.99) 0.05 0.08 0.2725 0.0305 23.18 0.00 0.3160 23.18
(0.50,0.50) 0.05 0.09 0.4864 0.0448 26.53 1.69 0.5298 25.41
(0.75,0.25) 0.02 0.01 0.5348 0.0349 30.88 3.60 0.6003 28.81
(0.25,0.75) 0.03 0.01 0.4163 0.0499 24.36 0.65 0.3334 22.05

200

(0.99,0.01) 0.03 0.08 0.5748 0.0358 38.37 9.51 0.5907 28.81
(0.01,0.99) 0.05 0.09 0.2955 0.0152 23.18 0.00 0.3157 23.18
(0.50,0.50) 0.08 0.12 0.4842 0.0280 25.08 0.48 0.5412 25.41
(0.75,0.25) 0.04 0.08 0.5612 0.0242 28.95 0.88 0.5984 28.81
(0.25,0.75) 0.08 0.11 0.3976 0.0346 23.67 0.28 0.3013 21.76

500

(0.99,0.01) 0.04 0.08 0.6048 0.0234 37.03 3.77 0.6005 28.81
(0.01,0.99) 0.08 0.13 0.3011 0.0053 23.18 0.00 0.3157 23.18
(0.50,0.50) 0.09 0.14 0.4783 0.0203 24.73 0.19 0.4809 23.33
(0.75,0.25) 0.04 0.09 0.5611 0.0275 28.22 1.18 0.5316 25.41
(0.25,0.75) 0.07 0.10 0.3174 0.0300 23.23 0.14 0.2948 22.76

1000

(0.99,0.01) 0.01 0.00 0.6176 0.0155 36.92 2.03 0.5901 28.82
(0.01,0.99) 0.03 0.00 0.3027 0.0024 23.18 0.00 0.3054 23.18
(0.50,0.50) 0.03 0.00 0.5467 0.0368 26.94 1.78 0.5321 25.41
(0.75,0.25) 0.02 0.03 0.5845 0.0092 28.89 0.11 0.6084 28.81
(0.25,0.75) 0.04 0.00 0.4665 0.0298 24.38 0.48 0.4355 23.76
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Table 2: Results of large instance.

N (α, β)
Time(sec) FN′

GN′

F (HN′
best) G(HN′

best)Avg Std Avg Std Avg Std

Large instance weekday (l.wd)

50

(0.99,0.01) 0.07 0.07 0.9626 0.0606 200.60 15.23 1.0071 170.06
(0.01,0.99) 0.40 0.15 0.3721 0.0350 131.41 0.00 0.4312 131.41
(0.50,0.50) 0.21 0.10 0.8650 0.0622 144.47 2.86 0.7668 136.91
(0.75,0.25) 0.19 0.15 0.9439 0.0621 160.94 9.52 1.0695 151.33
(0.25,0.75) 0.24 0.08 0.7078 0.0886 135.99 1.62 0.6876 133.36

200

(0.99,0.01) 0.09 0.12 1.0262 0.0470 197.83 11.94 0.9115 165.68
(0.01,0.99) 0.33 0.11 0.3890 0.0295 131.41 0.00 0.4322 131.41
(0.50,0.50) 0.19 0.09 0.9230 0.0384 144.78 1.39 0.9230 140.15
(0.75,0.25) 0.17 0.11 0.9901 0.0508 152.26 5.89 1.0213 145.69
(0.25,0.75) 0.28 0.10 0.7248 0.0428 134.90 0.81 0.7450 134.03

500

(0.99,0.01) 0.08 0.12 1.0361 0.0373 195.71 8.13 1.0370 180.96
(0.01,0.99) 0.31 0.09 0.3883 0.0277 131.41 0.00 0.4332 131.41
(0.50,0.50) 0.22 0.14 0.9557 0.0299 145.26 0.33 1.0302 145.69
(0.75,0.25) 0.16 0.11 1.0133 0.0411 151.98 5.51 1.0880 150.11
(0.25,0.75) 0.29 0.12 0.7860 0.0441 136.49 1.26 0.7368 134.19

1000

(0.99,0.01) 0.08 0.07 1.0336 0.0277 195.49 8.24 1.0852 191.66
(0.01,0.99) 0.32 0.08 0.3892 0.0263 131.41 0.00 0.4281 131.41
(0.50,0.50) 0.19 0.08 0.9581 0.0245 145.21 0.22 0.9714 144.67
(0.75,0.25) 0.13 0.05 1.0195 0.0398 151.37 5.50 1.0582 149.76
(0.25,0.75) 0.27 0.09 0.7879 0.0364 136.46 0.96 0.7436 134.62

Large instance weekend (l.wd)

50

(0.99,0.01) 0.10 0.13 1.0007 0.0620 287.69 13.86 1.1515 277.16
(0.01,0.99) 0.33 0.12 0.4020 0.0190 197.55 0.16 0.3935 195.93
(0.50,0.50) 0.17 0.12 0.8944 0.0620 209.69 2.72 0.9664 207.08
(0.75,0.25) 0.15 0.11 0.9592 0.0693 222.08 9.62 1.0140 211.18
(0.25,0.75) 0.22 0.12 0.7009 0.0834 201.07 1.49 0.6986 199.33

200

(0.99,0.01) 0.07 0.10 1.0614 0.0417 280.86 7.46 1.1160 271.33
(0.01,0.99) 0.32 0.13 0.4091 0.0174 197.57 0.00 0.4347 197.57
(0.50,0.50) 0.15 0.11 0.9796 0.0470 212.28 0.98 1.0626 211.73
(0.75,0.25) 0.15 0.11 1.0018 0.0458 251.5656 13.567 1.1007 216.66
(0.25,0.75) 0.22 0.13 0.8277 0.0563 204.74 1.33 0.7558 200.77

500

(0.99,0.01) 0.10 0.12 1.0944 0.0333 278.59 3.21 1.1403 268.53
(0.01,0.99) 0.32 0.10 0.4139 0.0152 197.57 0.00 0.4345 197.57
(0.50,0.50) 0.17 0.12 1.0065 0.0356 211.98 0.43 1.0541 211.73
(0.75,0.25) 0.16 0.11 1.0171 0.0419 249.10 11.78 1.1226 216.16
(0.25,0.75) 0.21 0.11 0.8301 0.0464 204.57 1.25 0.8179 202.28

1000

(0.99,0.01) 0.05 0.00 1.1060 0.0279 278.80 2.26 1.1365 271.58
(0.01,0.99) 0.29 0.01 0.4129 0.0136 197.57 0.00 0.4319 197.57
(0.50,0.50) 0.12 0.01 1.0155 0.0289 211.84 0.23 1.0491 211.73
(0.75,0.25) 0.11 0.01 1.0347 0.0365 251.14 7.83 1.1169 216.16
(0.25,0.75) 0.18 0.03 0.8362 0.0330 204.48 1.21 0.8124 202.19
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6 Conclusions

This article studied the household energy planning problem, a relevant optimiza-
tion problem that arises in the context of modern smart cities.

A novel bi-objective mathematical formulation of the problem was presented,
accounting for uncertainty in the preferences of using each appliance. In this for-
mulation, the aim is to schedule on a daily basis the usage of deferrable appliances
while optimizing two conflicting objectives: the cost of the electricity–based on
time-of-use tariff–and the users satisfaction. The users satisfaction is estimated
through historical data of when (which part of the day) users prefer to use
each appliance. However, since there is considerable variation of these prefer-
ences, a stochastic resolution approach was used to include the randomness of
this parameter. The proposed problem was solved using the Sample Average Ap-
proximation method, which is a simulation-optimization approach that combines
Monte Carlo simulation and deterministic mixed integer programming. Different
real-world instances were considered and solved with different parametric com-
binations. The approach was able to propose different solutions that explore the
trade-off between the two criteria in reasonable computing times. Particularly,
for larger values of sample size the standard deviation of the results given by the
method was significantly reduced.

Additionally, the initial tests performed in this work were execute in relatively
small computing times even for the large instance. This shows the validity of
the proposed integer mathematical formulation and the simulation-optimization
approach as useful tools to perform practical load scheduling in smart homes.
However, for enhancing performance of the model in a particular household, it is
important to first gather specific data of that household to accurately estimate
the key parameters of the model, such as the stochastic user preferences.

For future work, a crucial research line is to expand the computational exper-
imentation. This should include using larger sample sizes and number of inde-
pendent samples within each size (M) for exploring whether the accuracy of the
solutions can be enhanced. Also, to study the competitiveness of the approach
for larger instances in which buildings with more than two households are con-
sidered. Another way the instances can be enlarged is to include other kinds of
appliances, such as non-deferrable loads, and renewable power generators within
the household, e.g., solar or wind power generators.
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Resumo. O uso da Tecnologia da Informação (TI) tem sido fator-chave para que 
empresas alcancem um nível de serviço adequado às expectativas de seus clien-
tes, gerando um processo mais ágil e enxuto. Este artigo abordou as fragilidades 
nos processos de uma empresa do setor educacional cuja área de Logística ainda 
não emprega um sistema informatizado que auxilie no planejamento, na progra-
mação, no controle e na execução do transporte. Para tanto, analisou-se, com base 
em orientações técnico-teóricas relacionadas à TI e com suporte do método de 
tomada de decisão multicritério Analytic Hierarchy Process (AHP) acoplado ao 
modelo Benefícios, Oportunidades, Custos e Riscos (BOCR), a melhor alterna-
tiva para a seleção de um software Transportation Management System (TMS) 
considerando a realidade da empresa. A avaliação das alternativas software pró-
prio e software de mercado, foram efetuadas por uma equipe de especialistas. O 
resultado indicou software de mercado como a melhor alternativa, obteve a maior 
prioridade global, destacando-se como a melhor solução.  

Palavras-chave: Sistema de Gerenciamento de Transportes, Fatores Críticos de 
Sucesso, Modelo AHP-BOCR, Empresa do Setor Educacional. 

1 Introdução  

O suporte de Tecnologia da Informação (TI) aplicado a diversos processos é o que tem 
garantido a organizações crescimento e visibilidade em um mercado cada vez mais 
competitivo. Assim, empresas que não lançam mão de tal suporte têm perdido oportu-
nidades de negócio e de crescimento. De acordo com [1], as empresas devem investir 
em tecnologia e inovação para garantir a sua sobrevivência. 

A melhoria da qualidade do serviço logístico – alcançada pela aplicação da TI –  leva 
a maior satisfação do cliente e, desse modo, aumenta suas chances de fidelidade à em-
presa [2]. Considerando, portanto, que o resultado da aplicação das Tecnologias da In-
formação nos processos empresariais significa uma gestão mais eficaz e veloz na ad-
ministração de recursos humanos e de equipamentos, é compreensível que as empresas 
busquem, constantemente, atualização tecnológica. Pois, como bem pontuam [3], o 
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