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Abstract. Industry 4.0 is a modern approach where the connectivity between dif-
ferent stages of the production process and the consumers is enhanced. In this 
paper a relevant problem for both Industry 4.0 and flow shop literature is ad-
dressed: an operation skipping flow shop scheduling problem. A solution method 
to optimize total tardiness, which is novel to the related literature, is presented. 
The solution approach consists of two stages. In the first stage, a genetic algo-
rithm is applied to obtain an efficient solution in a permutation fashion. In the 
second stage, the solution obtained in the previous stage is improved with a sim-
ulated annealing algorithm considering a non-permutation strategy. Results show 
that NPFS solutions outperform PFS solutions for this problem. Furthermore, if 
the percentage of skipping operations increases the impact of the NPFS approach 
increases too. 

Keywords: Industry 4.0, Non-Permutation Flow Shop, Skipping Operations, 
Cyber-Physical System. 

1 Introduction  

The conceptual model Industry 4.0 enhances connectivity between the different com-
ponents of the production systems, as well as among the components and the decision-
making centers [1] [2]. This allows production planners to manage information in real 
time from the shop floor [3]. This communication increases the flexibility of the pro-
duction system since the machines have the capacity to communicate with each other 
and with the decision-making centers [4], allowing designs of innovative products with 
increasing adaptability. Moreover, given the high level of digitalization and through 
IIoT (Industrial Internet of Things), it is possible to offer mass customization of prod-
ucts as a business strategy, i.e., the production process can be adjusted so that the final 
products meet the specific customer requirements. In other words, for a given product 
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each customer can choose among different combinations of optional features, configu-
rations or characteristics in such a way that the final product is highly personalized [5]. 
However, these personalized products are translated into specific production activities 
in the production line. Therefore, efficient scheduling techniques that can manage this 
variability should be applied in the production line to meet the specifications of each 
customer in the Industry 4.0 production environment [6].  

Currently, one of the most widespread and efficient production configurations is the 
manufacturing cell. The manufacturing cell represents a set of production resources or 
machines that are grouped by the type of products they produce and organized in se-
quential mode [7]. The resulting output of a machine is transformed into the input of 
the next machine, and this happens with each of the machines in the cell. Generally, 
this type of configurations is considered within the flow shop scheduling family of 
problems [8] [9]. Product customization powered by Industry 4.0 will have a significant 
impact on this type of problem [5]. Given the freedom provided to the customer when 
customizing a product, it is very likely that, when following the customer specifica-
tions, the operations that must be performed to produce this product imply different 
uses of the machines in the cell. Thus, some of the operations introduced in the cell 
design may not be required to achieve the specifications requested by customers [9], 
these are the missing or skipping operations.  

In the related literature, problems of flow shop with skipping operations for many 
productive environments have been studied [10]. In the vast majority of these works, 
the problems are solved by considering only permutation solutions (PFS) [11], meaning 
that the works are processed by each machine in the same order. In terms of search 
space, this entails finding the best solution in a universe of n! possible solutions, being 
n the number of jobs to be processed. However, this condition of permutativity is not a 
technological constraint of the production process, since, in general, machines can pro-
cess works in any order. It is only a condition introduced for reducing the complexity 
of the scheduling process. Therefore, another approach to solve these problems is based 
on relaxing this condition of permutativity, which involves solving the problem under 
the non-permutation approach (NPFS) [12]. In this approach, the job sequence for each 
machine can be modified, increasing the search space considerably from n to n!m solu-
tions, where m is the number of machines [13]. Since NPFS solutions include PFS so-
lutions as a particular case, NPFS solutions are at least as efficient as PFS if not more 
efficient, and it has been demonstrated that PFS are usually outperformed by NPFS in 
regard to the objective function values [10] [13]. Despite the industrial interest in this 
problem, NPFS has not yet been addressed for systems that contemplate Industry 4.0 
production environments [3]. This article applies metaheuristics to solve PFS and 
NPFS, following the aforementioned approach. 

Although results in the related literature show that NPFS solutions tend to outper-
form PFS solutions when considering objective functions related to delivery dates [13], 
the NPFS with skipping operations considering such optimization criteria has not been 
studied until now [14]. Therefore, this work makes a contribution and aims at providing 
a solution approach for considering PFS and NPFS solutions in this kind of problem. 
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2 Problem Definition 

In this section, we properly introduce the problem studied in this work. Firstly, we an-
alyze the impact of Industry 4.0 in manufacturing cells and how this influences the 
exchange with the customer. Then, we define our conception of the problem, relating 
our approach to the scheduling literature. 

2.1 Industry 4.0 Environment 

Industry 4.0 proposes a digital transformation of traditional production systems [2]. 
This transformation is based on the implementation of cyber-physical systems (CPS), 
which integrate virtual and physical processes in the same system [15]. Moreover, 
through IoT, CPS can communicate with each other and with the Decision Support 
Systems, which in terms of production planning, means to allow directly linking the 
shop floor with the support systems for production decision making [15] [4]. On the 
other hand, CPS allows generating a digital twin of the physical system [16], to analyze 
situations and making decisions more agilely and with more information than in a tra-
ditional production system. This results in a much more flexible production system, 
better adapted to different scenarios [17]. This way, the manufacturing system becomes 
smart, being able to provide an improved service to the customer, satisfying its needs 
in a personalized way [1]. This allows bringing the final product closer to the true re-
quirements of the customer, who is actively involved in the design of the product [17]. 

The customer expresses his/her preferences by specifying different variants of a base 
product belonging to a given family of products, configuring what is known as a per-
sonalized variant of the product [18]. In this way, by making the production system 
more flexible, and making it smart, Industry 4.0 allows to offer to the customer a much 
higher level of personalization than in traditional production systems [19] [20]. 

The problem addressed in our work responds to these conditions imposed by Indus-
try 4.0 in manufacturing cell systems. Given that the focus when solving the problem 
is on providing the best possible level of service to the customer, it is appropriate to 
study scheduling performance metrics related to service level, such as total tardiness. 

2.2 Flow shop Scheduling in Manufacturing  

The problem considered in this work can be described as to schedule production for a 
set of products that share production resources, with the feature that all products use 
the same resources maintaining the same technological sequence, i.e., a flow shop 
scheduling problem [8]. However, considering the scenario of intensive personalization 
promoted by Industry 4.0 [2], each product will have its particularities, a fact that will 
imply a different use of resources, which is generally expressed in varying processing 
times. This difference in use can even imply that, directly, the product does not use one 
of the resources of the manufacturing cell, which means that the product skips that op-
eration (skipping operations flow shop scheduling problem) [21]. Therefore, the objec-
tive is to schedule production in such a way that the highest service level is achieved, 
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complying with the delivery dates. For this, we will seek to minimize the cumulative 
delays in the delivery of the products.  

On the other hand, this problem can be addressed by considering only permutation 
solutions (Permutation Flow Shop, PFS), or by considering non-permutation solutions 
(Non-Permutation Flow Shop, NPFS) [9] [14]. In the first case, PFS, the solution search 
space includes those sequences represented by the possible permutations of the n jobs, 
that is, a total of n! feasible solutions. Whereas if the job ordering is allowed to be 
modified for each stage of the flow shop, i.e. NPFS, the space of solutions grows to n!m, 
where m is the number of machines. These problems are identified in the classic nota-
tion for scheduling problems [22] as F|prmu/missing|TTard and F|missing|TTard, re-
spectively. 

Therefore, the problem to be solved is to sequence the jobs in such a way that, com-
plying with the precedence relationships among the operations, the objective function 
is minimized. If π is a permutation sequence, that implies that once job j was processed 
before job j´, then, j will precede job j´ on all machines. Therefore, to minimize the 
objective function, the permutation version seeks that the order π of the jobs, allows the 
completion times of each job, 𝐶𝐶𝑗𝑗, to exceed as little as possible the delivery date of each 
job 𝑑𝑑𝑗𝑗. In other words, the tardiness for each job j is as small as possible. Where the 
tardiness for job j is: 𝑇𝑇𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗, 0}. Then the objective function can be ex-
pressed as: 

 𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋

∑ 𝑇𝑇𝑗𝑗(𝜋𝜋)𝑗𝑗      (1) 

For the non-permutation case, the objective function is the same, but the order π´ is 
considered, which allows changes of precedence relationships among jobs. For in-
stance, for π´, job j can precede job j´ up to machine i, and from machine i + 1 onwards, 
j´ can precede j. 

3 Solution approach 

To solve the problem under study two metaheuristic algorithms were used in a sequen-
tial fashion. First, a Genetic Algorithm (GA) is used to optimize this problem consid-
ering only PFS solutions. Then, the best solution obtained by the genetic algorithm is 
used as the initial solution for the second algorithm. This second phase is a Simulated 
Annealing Algorithm (SA) that aims at improving the solution by considering NPFS 
solutions. The main characteristics of both algorithms are presented below. 
3.1 Genetic Algorithm 

For solving the PFS problem introduced in Section 2, a steady state Genetic Algorithm 
(ssGA) is proposed. ssGA is known to be a valid choice in problems where fitness 
evaluation is computationally expensive [23] and, thus, in flowshop problems (see, e.g., 
[24]). The proposed algorithm was implemented in Java, by using JMETAL framework 
[25] version 4.5.2. This algorithm has the following features. 
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Solution representation. Solutions are encoded as a permutation of integers of 
length equal to the number of jobs n. Each index in the vector represents the processing 
order in the (first) machine and the corresponding integer value represents the job. 

Initialization. The population of size #P is initialized by applying a random proce-
dure to generate the permutations using a uniform distribution. 

Genetic operators. The recombination operator is the Partially Mapped Crossover 
(PMX) applied over two selected individuals with probability pc. The mutation operator 
is based on Swap Mutation and interchanges two elements of the permutation. The Mu-
tation operator is applied to an individual with probability pm. The proposed operators 
guarantee the feasibility of the solution. 

Selection, replacement, and fitness assignment. Tournament selection is applied, 
with tournament size of two solution representations. The tournament criterion is based 
on the fitness, and if two compared individuals have the same fitness, either of the two 
is chosen with equal probability. The new individual replaces the worst individual in 
the population if it has better fitness. 

Parameters setting. The parametrization was performed with a statistical analysis 
considering three main parameters: population size #P, crossover probability pc and 
mutation probability pm. The values considered were 100 and 200 for #P; 0.7, 0.8, 0.9 
and 1 for pc; and 0.05 and 1 for pm. The maximum number of evaluations used for the 
parametrization was 5000. The parameter setting analysis was made using three in-
stances of size n =15 and m = 20, different from the scenarios used for the computa-
tional experimentation of Section 5. For each instance and each parametric combination 
(#P, pc, and pm), 30 independent runs where performed. Shapiro-Wilk test was applied 
to assess if the fitness values follow a normal distribution. Since several of the runs did 
not adjust to the normal distribution, the medians were analyzed and the final paramet-
ric combination that was selected was #P = 100, pc = 0.7 and pm = 0.05. 

3.2  Simulated Annealing algorithm 

In this section, the simulated annealing algorithm used to solve the problem presented 
previously is described.  

Simulated Annealing (SA) is a local search-based method that was developed from 
an analogy with the phenomenon of annealing [26] to solve complex optimization prob-
lems. Local search methods look for the solution with the best value of the chosen cri-
terion in the neighborhood of the current solution, accept it as the current solution, and 
repeat this step until it is not possible to improve the solution in the explored neighbor-
hood. By systematically applying this procedure, in general, a local optimum for the 
problem is obtained. To avoid getting trapped at a local optimum, a diversifying mech-
anism should be incorporated with the aim of exploring the entire solution space. In the 
simulated annealing metaheuristic, the diversifying strategy allows moves, with a cer-
tain probability, toward solutions that worsen the current value of the objective func-
tion. SA has shown competitiveness in handling regular flow shop environments [13] 
and also NPFS with missing operations [8]. 

In a minimization problem, the simulated annealing algorithm evolves from one can-
didate solution to the next, considering the behavior of the objective function value 

ICPR-Americas 2020  -  SPECIAL SESSION: Production Planning and Industry 4.0
OPERATION SKIPPING FLOW SHOP SCHEDULING  AND INDUSTRY 4.0. Daniel Alejandro Rossit et al.

1216



6 

   
 

following to the subsequent procedure. If the newly generated candidate solution (SC) 
which is in the vicinity of the current solution (SC  V(SA)] has a smaller objective 
function value than the current solution, i.e., z (SC) ≤ z (SA), the candidate solution is 
accepted as the current solution. Conversely, if z (SC) > z (SA), a probabilistic test known 
as the Metropolis criterion is used to determine the probability of accepting a relatively 
lower quality solution. This means, that this sequence can be accepted with a certain 
probability 𝑃𝑃(𝐴𝐴) = 𝑒𝑒−∆𝑧𝑧 𝑇𝑇⁄ . Thus, 𝑃𝑃(𝐴𝐴) decreases as the difference between the objec-
tive function values of both solutions increases. T is the control parameter that simulates 
the role of the temperature in the physical process of annealing. If the candidate solution 
is not accepted, another sequence is selected randomly and the procedure is repeated. 

4 Results 

The experimental evaluation was aimed at evaluating appropriately the PFS and NPFS 
approaches to solve the skipping operations flow shop scheduling problem. This Sec-
tion presents the instances and the experimental design that were used to assess the 
algorithms and describes the results obtained by applying both algorithms, making a 
comparison between the PFS and NPFS solution approaches. 
 
4.1 Instances and Experiment design 

For generating the test instances, we have taken as reference previous works that have 
considered NPFS with missing operation [8] and those that considered due-date related 
objective functions [27] [28]. The main parameters of the instances are the processing 
times of each job in each machine (pi,j). In general, pi,j values are simulated using a 
uniform distribution within the interval [1; 99]. However, since this paper considers the 
possibility of job skipping machines (or operations), it is necessary to incorporate the 0 
within that distribution. Furthermore, since this experiment aims at testing the algo-
rithms in instances with a significant proportion of missing operations, a pseudo-uni-
form distribution is implemented where the probability assigned to pi,j = 0 is greater 
than the probabilities for the rest of the possible interval values. Thus, by defining dif-
ferent values for the probability of occurrence of pi,j = 0 within this pseudo-uniform 
distribution, it is possible to generate diverse instances with different proportions of 
zeros [8]. In this paper we have considered two values of probability of occurrence of 
pi,j = 0: 5% and 10%. Additionally, for the calculation of the objective function it is 
necessary to calculate the due-date of each job j (dj). In this case, literature guidelines 
presented in [27] were followed, where the due-dates are calculated according to the 
following formula for a job j: 𝑑𝑑𝑗𝑗 = ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗𝑖𝑖∈𝐼𝐼 ∙ (1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 ∙ 3), where random is uni-
formly distributed value between 0 and 1. 

To evaluate the experimental results, we have used the Relative Percentage Devia-
tion (RPD) to measure the performance of the algorithms. The RPD is obtained using 
the following formula: 

 𝑅𝑅𝑃𝑃𝑅𝑅 = 𝑆𝑆−𝐵𝐵
𝐵𝐵 ∙ 100% (2) 
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Where S is the solution to be evaluated and B is the best known solution for that in-
stance. For the assessment of the algorithms 30 runs where performed for each instance. 
Thus, we will report the average and standard deviation of the RPD. These values are 
computed for both algorithms, ssGA and SA. Then, the indicators are identified as 
𝐴𝐴𝐴𝐴𝐴𝐴. 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑅𝑅𝐴𝐴𝐴𝐴. 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, which represent the average values of RPD and its 
standard deviation for the ssGA algorithm, and, 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑠𝑠 and 𝑅𝑅𝐴𝐴𝐴𝐴. 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑠𝑠 in the 
case of SA, respectively. In order to compare NPFS and PFS solutions, the average 
relative improvement of the NPFS solution over the PFS solution, 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁, is cal-
culated. This improvement is measured with the following formula: 

 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁 =  𝑠𝑠𝑠𝑠𝑠𝑠.𝑃𝑃𝑃𝑃𝑆𝑆−𝑠𝑠𝑠𝑠𝑠𝑠.𝑁𝑁𝑃𝑃𝑃𝑃𝑆𝑆
𝑠𝑠𝑠𝑠𝑠𝑠.𝑃𝑃𝑃𝑃𝑆𝑆 ∙ 100% (3) 

Where sol.PFS represents the best PFS solution obtained by means of ssGA, and 
sol.NPFS represents the best solution obtained by means of SA for the same problem. 
𝐴𝐴𝐴𝐴𝐴𝐴. 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁 expresses the average value of that difference for the 30 runs. In turn, the 
standard deviation of these differences (between sol.PFS and sol.NPFS) was also com-
puted, which is indicated as 𝑅𝑅𝐴𝐴𝐴𝐴. 𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁. 

4.2 Experiments results 

The values of Ave.RPD and Dev.RPD for the ssGA and SA algorithms are presented 
in Tables 1 and 2, respectively. Comparing both algorithms, it can be seen that they 
have similar performances, both in terms of the RPD average and standard deviation. 
In the case of RPD and problems with 5% skipping operations, the range of values for 
both algorithms goes from 4%, for problems with 20 machines and 80 jobs, up to around 
40%, for problems with 10 machines and 40 jobs. In regard to the instances with 10% 
skipping operations, the range of values for both algorithms is around 6% for instances 
with 20 machines and 80 jobs. In the cases of 20 machines and 40 jobs, the RPDs differ 
between both algorithms, being 34.7% for ssGA and 39.4% for SA.  

From the data in Tables 1 and 2 it can be suggested that, at least for the instances 
considered in this analysis, when the number of machines is closer to the number of 
jobs in absolute terms (in these cases, it would be 20 machines and 40 jobs), the RPD 
is maximum for both algorithms and both percentages of skipping operations. Thus, 
these instances are more difficult to solve for the algorithms. Another supporting argu-
ment of this inference is related to standard deviations. These are larger for instances 
of 20 machines and 40 jobs, those problems whose matrix of processing times tends to 
be more square when compared to the other problem sizes (15 machines and 40 jobs, 
and 20 machines and 80 jobs). However, a larger experimental work is required to draw 
a thorough conclusion regarding this aspect.  

Table 3 presents the results of the solution comparison between the PFS and NPFS 
approaches. In Table 3 it can be seen that in the majority of cases NPFS solutions are 
better than PFS, as evidenced in the "Improvement Freq." columns, since this percent-
age is larger than 96% for all the instances. In regard to the effect of the probability of 
skipping operations, when it is 10%, it is evident that NPFS is superior in all the cases 
except for the case of 20 machines and 40 works (in which NPFS is better in 98.7% of 
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the time). Regarding the improvement in terms of the objective function, on average 
NPFS is better than PFS, since all the values of the “Ave.NPFS” columns are positive. 
These improvements range from 0.5% for 20 machines and 80 jobs and 5% of skipping 
operations, to 2.8% for 20 jobs and 40 machines. When considering the instances with 
10% of skipping operations, it is observed that this improvement increases, since in-
stead of the 0.5% improvement in the problem of 20 machines and 80 jobs, it goes to 
0.9% improvement. For 20 machines and 40 jobs, the improvement goes from 2.8% for 
5% of skipping operations, to 3.97% for 10% of skipping operations. The standard de-
viations of NPFS improvements over PFS (“Dev.NPFS” column) also increases going 
from 5% to 10% of skipping operation. 

 

Table 1. Average and Deviation RPD values for ssGA. 

m n Ave. RPDssGA Dev. RPDssGA 
5% 10% 5% 10% 

15 40 20.0% 15.5% 8.6% 9.5% 

20 40 38.7% 34.7% 25.4% 20.0% 
80 4.3% 6.0% 2.3% 3.2% 

 

Table 2. Average and Deviation RPD values for SA. 

m n Ave. RPDSA Dev. RPDSA 
5% 10% 5% 10% 

15 40 17.9% 17.3% 10.4% 10.0% 

20 40 40.2% 39.4% 25.6% 22.9% 
80 4.6% 6.4% 2.4% 3.3% 

 

Table 3. Solution improvement of NPFS approach over PFS approach. 

m n Ave.NPFS Dev.NPFS Improvement Freq. 
5% 10% 5% 10% 5% 10% 

15 40 1.83% 3.53% 1.73% 2.20% 96.7% 100% 

20 40 2.80% 3.97% 3.36% 3.74% 96.0% 98,7% 
80 0.50% 0.95% 0.43% 0.50% 99.3% 100% 

 

5 Conclusions 

This work addressed a scheduling problem in Flow shop systems that arises in Industry 
4.0 manufacturing environments. This is the scheduling problem with skipping opera-
tions that takes into account the increase in personalization of products to meet the 
specific requirements of customers. To address this problem, this work proposes an 
innovative way to consider NPFS solutions to find efficient production schedules, seek-
ing to minimize the total tardiness. Two meta-heuristic algorithms are presented that 
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allow to tackle realistic size instances, a steady state Genetic Algorithm (ssGA) and a 
Simulated Annealing algorithm (SA). Both algorithms were effective in addressing the 
instances considered in the experimental study. Specifically, the ssGA was used to op-
timize the PFS approach, and SA was used to optimize the NPFS. When comparing 
solutions, it was observed that NPFS tends to outperform PFS solutions in the vast ma-
jority of cases. Even when considering different proportions of skipping operations, it 
was observed that NPFS tends to increase its dominance over PFS when increasing the 
percentage of skipping operations. 

To continue advancing in this line of research, it is proposed to approach problems 
that consider other types of objective functions, for example, objective functions of the 
regular type (e.g. makespan), as well as multi-objective problems. Additionally, another 
future research avenue would be to expand the experimentation by considering in-
stances with larger percentages of skipping operations.  
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