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Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus
canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform
strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays,
technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of
individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It
is based on the combination of a feature selection method and a classifier that has been trained on quar-
antine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were eval-
uated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The
proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for
all classes, even when using a small subset (14) of all the available features (90). The results obtained
show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in partic-
ular, quarantine diseases recognition in fruits.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Three diseases have currently quarantine restrictions for the
European Union (EU) and the United States of America citrus mar-
kets: citrus canker, black spot and scab. Despite this severe limita-
tion, many regions continue to export to these markets by
following the guidelines of the so-called System Approach, individ-
ually agreed with the EU (SENASA, 2001), which includes different
methods to provide the quarantine security required by the citrus
trade with the EU and to certify citrus quarantine with minimal
risk. A key point to the success of these programs is the effective-
ness of the audit work carried out in the field by inspectors, both in
the packaging area where the items are processed as well as at the
boarding ports. Since tolerance to the presence of symptoms of
these diseases is zero, it is essential the early detection of items
with such symptoms, especially when they can reach detectable
levels in the ports and markets of arrival.

At present, the diagnosis of these diseases, both in field and
packing points, depends on the visual method based on the pres-
ence of symptoms. Due to the characteristics of the harvest and ex-
port operations in the case of having the dubious presence of
symptoms, the diagnosis must be realized immediately. However,
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the visual diagnosis presents a number of disadvantages including
the fact that the accuracy and reliability of the diagnostic proce-
dure is subject to the personal capacity of those who make it
(Gomez-Sanchis et al., 2012). Moreover, the decision-making
process frequently involves subjective factors that provide some
degree of variability to the result (Peres, Harakava, Carroll,
Adaskaveg, & Timmer, 2007). There is a clear need for computa-
tional tools to identify situations in which the value of an entire
production is compromised.

The literature currently available on the symptoms of diseases
affecting citrus fruits is abundant (Bernal, 2000; Canteros, 2009;
Dewdney & Timmer, 2011). However, symptoms of each quaran-
tine infection are described based on a small number of very char-
acteristic attributes (Gottwald, Graham, & Schubert, 2002; Kotze,
2000). This helps in identifying and solving the diagnoses of the
most typical symptoms of each disease, but are insufficient to diag-
nose those that are less frequent and/or share similar attributes
and variants with symptoms of other non quarantine diseases.
Alternative diagnostic techniques can be used, such as the incuba-
tion of fruits under temperature and light controlled conditions, or
practices of isolation of the causal agent of dubious symptoms.
However, they have proved to be very slow and subject to method-
ological and experimental errors (Peres et al., 2007).

In recent years, highly sensitive biochemical techniques have
been developed, which allow diagnosis within hours. However,
they are highly expensive and require instrumental and specific
training. Thus, they are not yet available today for the in situ use
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required in the field and packaging areas (Baayen, 2002; Gottwald
et al., 2002; Meyer, Sanders, Jacobs, & Korsten, 2006). For these
reasons, efforts are needed in order to improve the current proce-
dure of visual diagnosis for early detection of diseases (Brosnan &
Sun, 2002; Sankaran, Mishra, Ehsani, & Davis, 2010), such as
technological strategies using machine learning to achieve
intelligent farming (Pydipati, Burks, & Lee, 2006). Current
proposals study the problem of post-harvest processing of citrus
(Gomez-Sanchez et al., 2012), in particular, visual detection defects
through image analysis to classify the fruit depending on appear-
ance (texture and color, Bianconi, Gonzalez, Fernandez, & Saetta,
2012) in an unsupervised way (Lopez-Garcia, Andreu-Garcia,
Blasco, Aleixos, & Valiente, 2010; Sankaran et al., 2010).

This paper presents a classifier able to distinguish among the
three quarantine diseases mentioned, based on a binary descrip-
tion of the presence or absence of disease symptoms. Such classi-
fier could be stored in a central server that could be accessed
online through a simple portable device, without special equip-
ment nor computational processing requirements. An inspector
could check the symptoms that he can see on the suspected fruits,
send the data to the server and receive a response from it, indicat-
ing whether the fruit may have the quarantine disease or not.

The symptomatological descriptions available in the current lit-
erature are rather general in nature, aiming to allow the diagnosis
of the most typical symptoms only and described using few attri-
butes. Besides, some symptoms are common to symptoms of other
non quarantine diseases. In this work, an accurate data set of
symptoms has been created through careful observations and
descriptions of different types and variations of symptoms caused
by the quarantine diseases of interest. After that, a feature selec-
tion analysis on the attributes of diseases and their variants has
been performed to select the most representatives ones. This al-
lows to minimize the number of features needed to be loaded into
a portable device. Several classifiers have been trained with the se-
lected features that better represent each of the three quarantine
infections of interest. Results for each classifier have been obtained
using cross-validation. Then, the best classifier has been selected
for further study, calculating specific performance metrics to dee-
ply analyze its results, class by class.

This paper is organized as follows. Section 2 presents the mate-
rials used in this study. Section 3 explains in detail the proposed
approach for quarantine diseases recognition, which includes a fea-
ture selection step and a classifier training. The performance mea-
sures used in this work are presented in Section 4. Section 5 shows
the results obtained and their discussion. Finally, the conclusions
and future work can be found in Section 6.
2. Materials

Data set used in this study includes citrus canker, black spot and
scab symptoms on a group of 212 Nova mandarins grown along the
Uruguay River citrus growing area. The database of symptoms of
each quarantine disease was manually built because, while a num-
ber of the studied diseases symptoms are described in Kotze
(2000), the variability observed in them is large in practice. Symp-
toms described in the data set were those ones that represent vari-
ants with respect to typical symptoms, for example the four typical
symptoms of black spot (Kotze, 2000): freckle spot, hard spot, vir-
ulent or spreading spot and speckle blotch, and that are observed
less frequently.

The data recollection period lasted one week on May 2011,
where the fruits were all mature. Although infections mainly occur
during the early growth of the fruits, new symptoms can be ob-
served several months later, when the fruits reach their final color
and commercial maturity (Garran & Garin, 2005). This long
incubation period hampers the effectiveness of both field and
packaging site monitoring inspections for the detection of the dis-
ease. The number of samples of each class (quarantine disease) was
quite balanced, according to the following detail: 54 citrus canker,
43 black spot, 45 scab and 70 other (non quarantine) diseases. The
whole set was randomly divided into two subsets: data set 1 (DS1)
having 25% (71 samples) of the total data for feature and model
selection; data set 2 (DS2) having the remaining 75% (141 samples)
for training and cross-validation testing.
3. Quarantine diseases recognition

3.1. Feature selection

Feature or attribute selection is an active research area in pat-
tern recognition, statistics, and data mining. Its main idea is to
eliminate features with little or no predictive information and se-
lect only a subset of relevant features for building robust learning
models. Feature selection can significantly improve the perfor-
mance of learning models by removing most irrelevant and redun-
dant features from the data, thus achieving better generalization to
test points. Besides, it can help to improve model interpretability
and comprehension (Guyon & Elisseeff, 2003).

The problem of feature subset selection is that of finding a sub-
set of the original features of a dataset, such that an algorithm that
is run on data containing only these features be able to generate a
classifier with the highest possible accuracy. Given an algorithm I
that will be used for classification and a dataset D with features
F1, F2, . . .,Fn, from a distribution over the labeled instance space,
an optimal feature subset, F opt , is a subset of the features such that
the accuracy of the classifier C ¼ IðDÞ is maximal (Kohavi & John,
1997).

Techniques for feature selection can be divided in two ap-
proaches: feature ranking, where features are ranked by some cri-
teria and then features above a defined threshold are selected; and
subset selection, where one searches a space of feature subsets for
the optimal subset. Such approach works by using a function (for
example, classifier accuracy) that takes a subset and generates an
evaluation value for that subset.

A search is performed in the subsets space until the best solu-
tion can be found. For example, best-first search is a commonly
used search algorithm which explores a state space by expanding
the node with the best score first (Russell & Norvig, 2009). An eval-
uation function is used to assign a score to each candidate node.
The algorithm maintains two lists, one containing a list of candi-
dates yet to explore, and one containing a list of visited nodes. This
algorithm always chooses the best of all unvisited nodes, rather
than being restricted to only a small subset, such as immediate
neighbors. Other search strategies, such as depth-first and
breadth-first, have this restriction. In this work we have used the
best-first search method for feature selection, which searches the
attribute subset space by finding low-dimensional projections of
the data that score highly. The features that have the largest pro-
jections in the lower dimensional space are then selected (Witten,
Frank, & Hall, 2011).
3.2. Classification

A classifier is a mapping from the space of feature values to the
set of class values. Each technique uses a learning algorithm to
identify a model that best fits the relationship between the attri-
bute set and the class labels in the training data. The models should
fit the training data well and also correctly predict the class label of
points not seen during the training process (Witten et al., 2011).
After the feature selection step explained above, using only the
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selected attributes, we have trained three different classifiers
(decision trees, neural networks and naive Bayes).

3.2.1. Classification and regression tree (CART)
CART is a classification method that uses data to construct a so-

called decision-tree, which is then used to classify new data. The
goal of CART is to create a model that predicts the value of a target
variable based on several input variables. CART can handle numer-
ical as well as categorical variables.

Decision trees are formed by a set of rules, based on variables in
the training set, selected to get the best split to differentiate obser-
vations based on the independent variables (the classes). Once a
rule is selected and splits a node into two, the same process is ap-
plied to each child node of the resulting tree, recursively, until no
further changes can be made. That is to say, until a node has the
same value of the target variable, or when splitting no longer adds
value to the predictions. Each branch of the tree ends in a terminal
node. Each observation falls into one and exactly one terminal
node, and each terminal node is uniquely defined by a set of rules
(Breiman, Friedman, Olshen, & Stone, 1984).

In summary,

1. Take all of the data in the training set.
2. Consider all possible values of all variables.
3. Select the variable/value that produces the greatest separation

in the target (x = ti is called a split).
4. If x < ti then send the data to the left part of the tree; otherwise,

send data point to the right branch of the tree.
5. Repeat same process from 3 on these two nodes of the tree and

the data in each node, until no further changes can be made.

3.2.2. Naive Bayes (NB)
The naive Bayes model for joint distributions has been studied

extensively in the pattern recognition literature (Duda & Hart,
1973). A naive Bayes classifier is a simple probabilistic classifier
based on applying Bayes’ theorem with strong (naive) indepen-
dence assumptions. The naive Bayes model assumes the condi-
tional independence of all effect variables, given a single cause
variable. In this model, the class variable (which is to be predicted)
is the root and the attribute variables are the leaves. The model is
naive because it assumes that the attributes are conditionally inde-
pendent of each other, given the class. Once the model has been
trained, it can be used to classify new examples for which the class
variable is unobserved. A deterministic prediction can be obtained
by choosing the most likely class (Russell & Norvig, 2009).

The probability model for a classifier can be stated as a condi-
tional model p(CjF1, . . ., Fn) over a dependent class variable C with
a small number of outcomes or classes, conditional on several fea-
ture variables F1 through Fn. Using Bayes’ theorem, we can write

pðCjF1; F2; . . . ; FnÞ ¼
pðCÞpðF1; . . . ; FnjCÞ

pðF1; . . . ; FnÞ
: ð1Þ

In practice we are only interested in the numerator of that fraction,
since the denominator does not depend on C and the values of
the features Fi are given, so that the denominator is effectively
constant. The numerator is equivalent to the joint probability model
p(C, F1, . . .,Fn). Under the conditional independence assumption, we
assume that each feature Fi is conditionally independent of every
other feature Fj for j – i. This means that p(FijC,Fj) = p(FijC) for j – i
and so the joint model can be expressed as

pðC; F1; F2; . . . ; FnÞ / pðCÞ
Yn

i¼1

pðFijCÞ: ð2Þ

The training of a naive Bayes model is computed by simple frequen-
cies (maximum likelihood estimate). The class distribution is
estimated by pðCÞ ¼ #ðCÞ=jDj, where #(C) is the number of times
the class C shows up in the training data D, with the denominator
being the total number of training instances (each instance has a
unique class).

The naive Bayes classifier combines the naive Bayes probability
model with a decision rule, such as selecting the hypothesis that is
most probable; this is known as the maximum a posteriori rule.
The corresponding classifier is a function that can be defined as
follows:

ĉðf1; f2; . . . ; f nÞ ¼ arg max
c

pðC ¼ cÞ
Yn

i¼1

pðFi ¼ fijC ¼ cÞ: ð3Þ

This means that for each possible class label, the conditional prob-
ability of each feature has to be multiplied together, given the class
label. The label for which the largest product is obtained is the label
returned by the classifier.

3.2.3. Multilayer perceptron (MLP)
MLP is a type of artificial neural network model, which can be

loosely defined as a large set of interconnected units (neurons) that
are executed in parallel to perform a common global task. The units
undergo a learning or training process in response to input signals,
adjusting the internal parameters of the neural model (weights be-
tween neurons).

The MLP model, which is the most widely used for classification
problems (Zheng et al., 2011), has distinct layers such as input, hid-
den and output, with no connections among neurons belonging to
the same layer. The number of layers and neurons in each layer is
chosen a priori, as well as the type of activation functions for the
neurons. Each neuron j in each layer computes a weighted sum
of its inputs and then applies an activation function to produce
an output, as follows:

yj ¼ /j

Xn

i¼1

wjixi

 !
; ð4Þ

where yj is the neuron output, n is the number of inputs, wji is the
synaptic weight connecting the input signal xi to the neuron j and
/j is the activation function, which will provide a nonlinear map-
ping between input and target signals (Haykin, 2008).

In the MLP model, learning is supervised and the basic learning
algorithm used is backpropagation, which uses gradient descend to
minimize a cost function. The cost function is generally defined as
the mean square error

E ¼ 1
2

Xp

k¼1

ðtk � ykÞ
2 ð5Þ

between the desired or target output (tk) and each actual network
output (yk), for p output neurons.

During learning, the error propagates backwards through the
network and the model parameters are changed according to the
so-called delta rule (Haykin, 2008):

dwji ¼ �g
@E
@wji

: ð6Þ
4. Performance measures

The objective in supervised learning is to approximate an un-
known function, using a set of data, searching for the model that
better predicts the outputs of the unknown function. To fit the
parameters of the different models, their performance is compared
on a dataset not used during training, to evaluate the generaliza-
tion capability of each model. This is named cross-validation and
it is an effective method for estimating the prediction error of a



Table 1
Accuracy (A %) for 5-fold cross-validation without feature selection (90 features) in
both datasets.

Data set CART NB MLP

DS1 (25% data) 54.93 76.06 60.56
DS2 (75% data) 68.43 79.43 73.76
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classifier to an independent data set. To reduce variability, multiple
folds of cross-validation can be performed using different parti-
tions, and the validation results are averaged over the folds.

In k-fold cross-validation, the original data set is randomly par-
titioned into k subsets: k � 1 subsets are used as training data and
the remaining single subset is used for testing the model. The
cross-validation process is then repeated k times (the folds), with
each of the k subsets used exactly once. The k results from the folds
can then be averaged to produce a single estimation (Haykin,
2008).

In classification problems, the primary source of performance
measurements in classification is the overall accuracy of a classifier
estimated through the classification rate or accuracy (A), which is
the proportion of correctly classified examples, calculated as

A ¼ tpþ tn
M

; ð7Þ

where M is the total number of samples, tp (true positives) is num-
ber of correct predictions of a class sample; and tn (true negatives)
is the number of correct predictions of a no-class sample.

Another usual performance measures commonly used in pat-
tern recognition are precision and recall (Olson & Delen, 2008), de-
fined as:

P ¼ tp
tpþ fp

; ð8Þ

R ¼ tp
tpþ fn

; ð9Þ

where fp (false positives) is the number incorrect predictions of a
class example; fn (false negatives) corresponds to the number of
incorrect prediction of a no-class example. Precision for a class
can be defined as the ratio between samples correctly classified
and the total number of samples assigned to a class. That is to
say, it is a measure of the fraction of classified samples that are rel-
evant. Recall for a class is the ratio between samples correctly de-
tected over the total number of samples that actually belong to a
class.

Precision can be seen as a measure of exactness (fidelity), recall
is a measure of completeness, and the F-score is a measure that
combines precision and recall through their harmonic mean as
follows:

F ¼ 2 � P � R
P þ R

: ð10Þ

Relative operating characteristic (ROC) curves can be used to visu-
alize the achieved trade-offs between correctly classifying positive
and negative cases. A ROC curve is a graphical plot of the true posi-
tive rate also known as sensitivity, versus the false positive rate or
one minus the specificity, for a classifier system as its discrimina-
tion threshold is varied. Each point on the ROC curve represents a
classifier with a particular trade-off between sensitivity and speci-
ficity. Comparing the performance of multiple classification
schemes with statistical tools requires the information represented
by the ROC curve to be collapsed into a single response variable
(Pietersma, Lacroix, Lefebvre, & Wade, 2003). To this end, the area
under the entire ROC curve (AUC) was proposed as a suitable per-
formance index (Bradley, 1997) since it is a value between 0 and
1 and makes easier the comparison of classifiers among them.
When AUC is close to 1, it means that most of the positive class
samples have been assigned a score higher than any no-class sam-
ple, meaning that there is a threshold that perfectly separates the
classes.
5. Results and discussion

This section reports the results obtained on the data set de-
scribed in Section 2. First of all, the feature selection step has been
performed. Classification rates for three classifiers are reported be-
fore and after the feature selection step. After that, using only the
selected features, the three classifiers have been tuned and com-
pared in order to select the most adequate for the recognition of
the three quarantine diseases of interest. The results on global, as
well as per class classification rates are reported and discussed.
5.1. Feature and model selection

The feature selection, as well as the classification models tun-
ing, have been performed through cross-validation on the smaller
subset only, as suggested in the pattern recognition literature
(Demsar, 2006). The data set 2 was used for model testing and dis-
cussion of results.

First of all, all of the features (90) of the quarantine diseases of
interest in this study were used to train and test three classifiers.
Table 1 shows the global classification rate obtained with each of
the studied classifiers (in columns) after a 5-fold cross-validation
procedure performed on each subset (in rows).

It can be seen that for each partition of the original dataset, the
global classification rate is higher than 60% for both NB and MLP,
being significatively lower in the case of CART for the data set 1.
In the case of the data set 2, accuracies higher than 70% are
achieved. Note that these rates are obtained if all the 90 features
(symptoms) are used for the classification task. This implies that,
at the moment of diagnosis, for example at a packaging site, an
inspector having a mobile device would have to fulfill 90 boxes
in a form in order to send all of the required information to a re-
mote server and get a classifier response. However, if a feature
selection procedure is performed over the original 90 features, only
the most important features would be used. This would significa-
tively speed the in situ diagnosis task, by reducing the amount of
information to be provided to the classifier. This approach, how-
ever, implies that less information is given to the classifier, which
could reduce its performance. We will show, however, that the
performance of the classifier can be maintained, and even, in-
creased, if only the relevant features to discriminate between clas-
ses is provided, and noisy and redundant features are not
considered for the classification.

For the feature selection step, a 5-fold cross-validation proce-
dure has been performed to decide which features to use. In this
step, DS1 was used for feature and model structure selection, and
DS2 for estimation of the final error (Arlot & Celisse, 2010). Once
the feature selection step was completed by performing a classical
best-first search, 14 of a total of 90 features were selected (see
Table 2). For CART, the minimal number of observations at the ter-
minal nodes was two and minimal cost-complexity pruning has
been used (Breiman et al., 1984). For the MLP model, the best re-
sults have been obtained after 100 training epochs with a topology
of five hidden neurons and using a 10% of the training set for mon-
itoring the generalization peak.



Table 2
Selected features. All features are binary.

Feature Description

Shape Circular spot Shape of the symptom in the infected area
Topography of the surface Depressed or Prominent Topography of the symptom on the surface of the infected area
Deepness Shallow Deepness reached by the necrotic tissue within the infected area
Transition zone Constellation or Aureole Kind of transition zone between healthy and necrotic tissue
Color of the transition zone Oily-water-soaked Color-aspect of the transition zone between healthy–ill tissue
Central color White Predominant color of the symptom central zone
Ruggedness of the central surface Eruptive or Edge perimeter Type of the surface of the central zone of the symptom
Pattern of the central zone Flat and smooth External aspect of the central zone
Central texture Corky & granular or scabby Texture of the tissue in the central zone of the symptom
Presence of fruiting bodies Pycnidia present Presence of pycnidia on the central zone of the symptom

Table 3
Accuracy (A %) for 5-fold cross validation on DS2 after the feature selection step
performed on DS1 (14 features selected).

Class CART NB MLP

Citrus canker 83.80 91.90 94.60
Black spot 70.00 83.30 80.00
Scab 72.40 82.80 86.20
Global 70.92 78.72 83.69

Table 4
Detailed performance by class of the MLP (best) model.

Class P R F AUC

Citrus canker 0.92 0.95 0.93 0.99
Black spot 0.80 0.80 0.80 0.94
Scab 0.93 0.86 0.89 0.95

Table 5
Confusion matrix for the best classification model (MLP) – multiclass problem.

Classified as ? a b c d

a = citrus canker 35 0 0 2
b = black spot 0 24 0 6
c = scab 0 0 25 4
d = other 3 6 2 34

Table 6
Confusion matrix for the best classification model (MLP) – two class problem.

Classified as ? a b
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5.2. Classifiers training and testing on selected features

After the feature and model selection steps, the classifiers were
trained using the WEKA software1 by performing 5-fold cross-vali-
dation on DS2 (Bouckaert et al., 2010). With this approach, the data
set was divided into five mutually exclusive folds with approxi-
mately the same class distribution as the original data set. Each fold
was used once to test the performance of the classifier that was gen-
erated from the combined data of the remaining folds, leading to five
independent performance estimates (Pietersma et al., 2003).

Table 3 reports the classifiers performance obtained on DS2
using the 14 main features previously selected. It can be seen that,
while NB has maintained its classification rate, both CART and MLP
have even increased their performance. In fact, the MLP model has
reached a very high classification rate (almost 84%) on the 5-fold
test partitions of the larger data subset. This result can be ex-
plained with the fact that, once only the most informative features
haven been considered for classification, removing noisy and
redundant information, the generalization capability of the models
has been improved. Moreover, by using the best features for class
discrimination, we are performing a better training of the models
because there is a better relationship between data size and num-
ber of parameters to estimate.

Once the better classifier was obtained, per class performance
has been analyzed. Table 4 shows the detail of the performance
measures used in this study (columns) for each of the classes
(quarantine diseases) included (rows). It can be noticed that the
best classifier found (the MLP model) has very high values, almost
all of them are near the optimum (1.0). In particular, for the ROC
area index (AUC), the values obtained assure a very high perfor-
mance for the automatic recognition of any of the quarantine dis-
eases under study, since the obtained values are, in all cases, higher
than 0.90.

Table 5 shows the performance of the MLP classifier for the rec-
ognition of each of the diseases, through a confusion matrix. Look-
ing at the detail of the confusion matrix, it can be seen that the
higher mis-classification occurs with the other class, not the classes
of interest. That is to say, at the presence of a sample of a quaran-
1 http://www.cs.waikato.ac.nz/ml/weka/.
tine disease the classification will be correct. However, at the pres-
ence of a sample of a non-quarantine disease, there are 11 samples
that would be indicated as quarantine, and 13 quarantine samples
that would be indicated as other disease.

It is important to highlight the fact that the model has no con-
fusion among the three classes of interest. That is to say, for the
quarantine diseases of interest in this study, there are no misclas-
sified elements: each sample of each quarantine disease has been
correctly identified.

For the classification problem stated as binary, that is to say, if
only two classes are considered: quarantine disease and not quaran-
tine disease, the corresponding confusion matrix is shown in Ta-
ble 6. The classification rate corresponding to the binary problem
and the MLP model is of 83%, which maintains the result obtained
with this classifier in the multiclass problem.

If the confusion matrix is analyzed in detail, it can be seen that,
as stated before, the quarantine diseases samples of interest are
correctly recognized in most cases: in 92 out of 96 examples of
quarantine disease class are correctly classified. The other class
has less examples and the confusion if higher. This fact should be
tackled in future works, increasing the number of non quarantine
diseases samples or through a better classifier design. Furthermore,
existing proposals for visual detection of citrus defects through
images and machine vision (Wen & Tao, 1999), that is to say,
depending on the texture and colour of the fruit (Lopez-Garcia
a = quarantine disease 92 4
b = not quarantine disease 20 25

http://www.cs.waikato.ac.nz/ml/weka/


G. Stegmayer et al. / Expert Systems with Applications 40 (2013) 3512–3517 3517
et al., 2010; Sankaran et al., 2010), could be used as a preliminary
step to our classifier, obtaining the features automatically through
image analysis.
6. Conclusions and future work

It has been explained how citrus exports to foreign markets are
limited today, mainly, by fruit diseases. Some of them are quaran-
tine for the markets and have zero-tolerance at the destination
market. For this reason, it is important to perform good controls
before fruits are exported. Nowadays, technical decisions are
highly dependent on the degree of individual skills on human
experts, with previous experience in visual diagnosis. This work
has presented a model capable of recognizing three quarantine
diseases (citrus canker, black spot and scab) in an automatic way
and achieving high classification rates, by using barely a bit more
than a dozen of characteristics or symptoms that can be seen in
a fruit.

The proposed approach is based on the combination of a feature
selection method and a classifier that has been trained on the ill-
ness symptoms. Experimental work was performed on 212 Nova
mandarins. The proposed approach achieved a classification ratio
of quarantine/not-quarantine samples of 83% for all classes, even
when using a small subset (14) of all the available features (90).
When the problem was stated as multiclass, also high classification
rates of 84% was achieved and AUC values higher than 95%, very
close to the optimum. Since only the most informative features
have been considered, removing noisy and redundant information,
the generalization capability of the models has been improved,
with a direct impact on the model performance.

The high classification rates that have been obtained on the task
of automatic recognition of quarantine citrus diseases show the
usefulness of the proposed approach. Another advantages of the
proposed method is the significant reduction of the number of fea-
tures that have to be used in order to obtain a high classifier re-
sponse, which could be very helpful for visual inspection on the
field, if, for example, the classifier was implemented in a mobile
device used at field and packaging site monitoring inspections for
the detection of the diseases.

The results obtained show that the proposed method can be
suitable for helping the task of citrus visual diagnosis, in particular,
quarantine diseases recognition in fruits in the field. All of the
quarantine diseases samples are correctly recognized into each
corresponding class. As future work, it would be very interesting
to design a hierarchical classifier, for the not quarantine class only,
capable of better discerning with which quarantine disease the
sample is being confused.
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