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ABSTRACT - !is year, 2020, marks the 150th anniversary of the seminal work by Giulio Curioni (1870), representing 
the "rst published scienti"c contribution on tetrapod footprints from Italy. We took this opportunity to discuss the 
current state of the art on tetrapod ichnology in our country, with a jubilee volume, titled “Tetrapod ichnology in Italy: 
the state of the art”. !e volume involves the scholars who "rst pioneered this discipline in Italy in the seventies of the 
last century, along with all the authors who have worked on the topic in recent decades, and younger generations who 
have just started to enthusiastically contribute to vertebrate ichnology. A#er brie$y introducing the idea at the base of the 
Special Volume, as well as some aspects of the discipline and the current methodologies involved in ichnological studies, 
we present each of the contributions to serve the Italian ichnological heritage.
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1. RATIONALE
150 years ago, Giulio Curioni (1796-1878) published 

the "rst scienti"c contribution on tetrapod ichnology 
based on material from Italy (Curioni, 1870). We felt that 
the thirtieth lustre represents an excellent opportunity 
to summarize the current state of the art on tetrapod 
ichnology in Italy, highlighting classic contributions as 
well as the numerous new studies conducted in recent 
years on the subject. !e jubilee volume, entitled “Tetrapod 
ichnology in Italy: the state of the art”, results from e%orts 
of the scholars who "rst pioneered this discipline in Italy 
and of all the subsequent Authors, including those of the 
latest generations, who have joined working on the topic 
in recent decades.

A#er its introduction during the early 1950s by the 
Venetian Piero Leonardi, founder of the school of Geology 
of the Ferrara University, tetrapod ichnology in Italy has 
developed in several principal schools, starting with the 
‘School of Rome’ during the seventies that was composed 
by Umberto Nicosia, Maria Alessandra Conti, Nino 
Mariotti and Giuseppe Leonardi of Sapienza University 
of Rome. !e fruitful seeds thrown by these early Authors 
were collected by several generations of ichnologists, and 
despite the fragmented nature of the current academic 
system, which rewards mobility all around the world, 
we can say that these schools have come to this day and 

continue.
!e main idea at the base of the volume was to propose 

a trans-generational approach. We "rmly think, and 
we know it is a globally shared thought, that science 
represents a collective enterprise, and that we sit on the 
shoulders of giants, as already stressed and understood 
in the twel#h century by the French philosopher Bernard 
of Chartres. In total, 36 authors are involved and have 
actively collaborated in the dra#ing of this special volume, 
referable to at least six generations of ichnologists. !e 
Journal of Mediterranean Earth Sciences immediately 
turned out to be the natural place to host the volume, 
considering that several of the "rst contributions 
highlighting the geological and paleobiogeographical 
importance of the Italian Mesozoic footprints have been 
published exactly in this Journal (under the former 
original name of ‘Geologica Romana’, founded in the 
Department of Earth Sciences of Sapienza University of 
Rome by prof. Bruno Accordi in 1962; see Romano and 
Nicosia, 2018).

!e volume is composed of 10 contributions. Except 
for the present editorial and the historical note by Conti 
et al. (2020), each of the subsequent eight papers deals 
with the state of the art about the tetrapod ichnological 
record from Italy, namely from the Carboniferous 
(Marchetti et al., 2020a), Cisuralian (i.e. early Permian; 
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Santi et al., 2020), Lopingian (i.e. late Permian; Marchetti 
et al., 2020b), Triassic (Mietto et al., 2020), Jurassic 
(Petti et al., 2020a), Cretaceous (Petti et al., 2020b), 
Pleistocene (non-human footprints; Pillola et al., 2020), 
and Pleistocene and Holocene (human footprints; 
Avanzini et al., 2020). Each contribution illustrates all the 
ichnological sites, providing the interpretations proposed 
by the various Authors during the years concerning 
putative trackmakers and, when available, the possible 
biochronological and paleobiogeographical inferences 
(see below for further details). !e Volume ends with 
the updated Italian general reference list (Antonelli et al., 
2020), following the one published by D’Orazi Porchetti 
et al. (2008).

Although ichnology as independent "eld of study has 
been introduced relatively late in our country (see Conti 
et al., 2020), some of the "rst pioneers to deal with animal 
traces preserved in rocks and sediments should be sought 
exactly in the Italian panorama of the "#eenth century. 
First of all, as for many other "elds of Earth Sciences 
sensu lato (De Lorenzo, 1920; Accordi, 1984; Vai, 1986, 
1995, 2003a, 2003b, Romano, 2018a, 2018b; Coccioni, 
2019), the genius of Leonardo da Vinci stands alone and 
giant in his time, and in the centuries to come. In the 
fortunate words of Rodolico (1963), Leonardo da Vinci 
represents the perfect Renaissance fusion of discovery 
at the same time aesthetic and scienti"c. Concerning 
ichnology, in Leonardo da Vinci we "nd the "rst ever 
illustration of Paleodictyon (Baucon, 2010), a hexagonal 
three-dimensional burrow system, one of the most 
common ichnofossil in the Neogene Apennine foredeep 
deposits. But we also "nd clear traces of tubular and 
elongated bioturbations in the wonderful painting “!e 
virgin of the rocks” (Vai, 1995; Baucon, 2010) exhibited at 
the Louvre in Paris.

!e demonstration that Leonardo da Vinci correctly 
interpreted and understood the geological processes and 
products, and then masterfully represented them in his 
paintings, is testi"ed by the writings of the Tuscan genius. 
In this regard, Leonardo da Vinci wrote in sheet 10, recto 
of the Leicester Code: “As in the strata, between one and 
other, there is still the route of earthworms, which walked 
between them, when [the sediments] were not yet dry” 
(“Come nelle falde, infra l’una e l’altra, si trova ancora li 
andamenti delli lombrici, che camminavano infra esse, 
quando non era ancora asciutta”).

It is evident from these words how the traces drawn 
in the paintings were not accidental, or a mere hyper-
realistic representation of nature. Leonardo da Vinci had 
already understood the concept of sediment bioturbation 
by living organisms, and he explained these processes 
on canvases with an almost didactic attitude. Concepts 
that will be expressed with the same clarity only in the 
nineteenth century.

Last year marked 500 years since Leonardo da Vinci’s 
death. Today, with our research and this Volume, we 
humbly carry on the furrow marked by the Italian genius 
over "ve centuries ago.

2. ICHNOLOGY: WHAT BONES DON’T SAY
Ichnology, from the Greek ichnos (trace) and logos 

(discourse), is that branch of geology and natural sciences 
sensu lato which deals with the study of the traces le# by 
organisms both extant (i.e. ‘neo-ichnology’) and of the 
past (i.e. ‘palaeo-ichnology’). In the context of vertebrate 
ichnology, the discipline obviously includes the study of 
footprints and trackways, but also the analysis of burrows, 
coprolites, eggs, nests and entire nesting sites.

When compared with other branches of palaeontology, 
and in particular with the classic studies of body fossils, 
ichnology is able to provide a ‘vivid’ and unique image 
of the organisms that have le# their traces, with the 
possibility of making important inferences about the 
behaviour and various other elements of the biology and 
physiology of putative trackmakers; all elements and 
inferences o#en not obtainable from the sole anatomical 
study of bones.

Several aspects of extinct tetrapod general biology, 
including for example static and dynamic posture, 
locomotion, social behaviour, interspeci"c interactions, 
and related inferences about metabolism and general 
physiology, have been greatly improved and better 
understood thanks to ichnological studies (e.g. !ulborn 
and Wade, 1979; Farlow, 1981; !ulborn, 1981, 1982; 
Lockley, 1994; Avanzini, 1998; Lockley et al., 1998, 2003; 
Gierliński et al., 2009; Bernardi and Avanzini, 2011; 
Avanzini et al., 2012; Citton et al., 2012, 2018; Petti et 
al., 2014; Sacchi et al., 2014; Bernardi et al., 2015; Hatala 
et al., 2016; Romano et al., 2016a; 2019a; Romano and 
Citton, 2017; Lallensack et al., 2018; Reolid et al., 2018; 
Ahlberg, 2019; Bennett et al., 2019; Duveau et al., 2019; 
Lee et al., 2019; de Valais et al., 2020; Díaz-Martínez et al., 
2020; Mujal and Schoch, 2020).

Taking the dinosaur clade as a paradigmatic example, 
also representing the bulk of the Italian Mesozoic 
ichnological record, from the seventies of the last century, 
"rst seminal studies published in leading journals began to 
use footprints to study locomotion and inferred speed in 
dinosaurs (e.g. Alexander, 1976; Farlow, 1981; !ulborn, 
1981, 1982, 1984). !ese researches helped to eliminate 
the old concept of dinosaurs as slow and heavy lizards, 
providing a very di%erent image which presupposed 
a much more active metabolism, more similar to that 
characterizing birds and mammals. In the following 
decades, several contribution have been published to 
analyse both bipedal and quadrupedal locomotion, 
identifying the average or maximum speed in several 
dinosaurs group and reconstructing the postures, type of 
locomotion and general structure (e.g. Dantas et al., 1994; 
Lockley et al., 1994a, 2002; Irby, 1996; Gatesy et al., 1999; 
Wilson and Carrano, 1999; Day et al., 2002; Henderson, 
2003; Mossman et al., 2003; Wilson, 2005; Ezquerra et al., 
2007; Wilson et al., 2009; Kim and Huh, 2010; Avanzini et 
al., 2012; Sellers et al., 2013; Bishop et al., 2017; Lallensack 
et al., 2018).

Evidences of parallel dinosaur trackways from several 
sites, depicting a consistent number of individuals of 
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di%erent sizes and ages moving in groups or ‘herds’, 
suggested a marked gregarious behaviour in di%erent 
dinosaur clades (e.g. Bakker, 1968; Currie, 1983; Ostrom, 
1985; Leonardi, 1989; Pittman and Gillette, 1989; Barnes 
and Lockley, 1994; Lockley et al., 1994b; Lockley, 1995; 
Matsukawa et al., 1997, 1999; Cotton et al., 1998; Day et al., 
2004; Castanera et al., 2012; Lockley et al., 2012; Piñuela 
et al., 2016; Heredia et al., 2020). !is interpretation 
seems to be indirectly reinforced by large shared nesting 
sites in some species (Horner and Makela, 1979; Horner, 
1982, 2000; Sander et al., 2008; Reisz et al., 2012; Romano 
and Farlow, 2018).

Considering that the trace of the tail is extremely rare 
in the dinosaur traces record, the study of footprints 
highlighted how the tail was kept in such animals aligned, 
straight and raised from the ground, and not resting on 
the ground with a ‘tripod’ posture as found in many 
classic reconstructions of both bipedal and quadrupedal 
dinosaurs (see Romano et al., 2016b). Similarly, the study 
of elongated traces related to the metatarsal impression in 
both ornithopod and theropod dinosaurs allows to infer 
a really peculiar crouching behaviour, including both 
resting and locomotion phase that have been linked to 
both feeding posture, prey stalking or to simply walk very 
cautiously on waterlogged so# substrates (e.g. Lockley 
et al., 1998, 2003; Nicosia et al., 2007; Gierliński et al., 
2009; Milner et al., 2009; Wilson et al., 2009; Citton et al., 
2015a; Romano and Citton, 2017).

Still in the "eld of behaviour, Lockley et al. (2016) 
recently described physical evidence of substrate scraping 
by large theropods (largest scrapes up to 2 m in diameter) 
from several Cretaceous sites in Colorado. Scraping has 
been interpreted as a very interesting “display arenas” 
in the framework of “nest scrape display” behaviour, 
which characterizes several extant ground-nesting birds. 
!e described scrapes thus indicate for the "rst time a 
clear evidence of stereotypical avian behaviour not yet 
proved for Cretaceous theropods, very likely connected 
to territorial activity close to nesting sites during the 
breeding season (Lockley et al., 2016; see also Hone, 
2016; Kim et al., 2016; Lockley et al., 2018).

In the last decades tetrapod footprints have played 
a key role in palaeobiogeographic reconstructions. A 
paradigmatic example, extensively discussed in this 
Special Volume, is represented by the Italian panorama, 
were the discovery of several sites with dinosaur 
footprints leads to a consistent review of traditional 
geodynamic interpretations for the peri-Mediterranean 
Mesozoic carbonate platforms (Dalla Vecchia, 1994, 
2001, 2003, 2008; Nicosia et al., 1999, 2007; Bosellini, 
2002; Petti, 2006; Petti et al., 2008a, 2010; Sacchi et al., 
2009; Zarcone et al., 2010; Citton et al., 2015b; Romano 
and Citton, 2017).

3. NEW APPROACHES AND FUTURE RESEARCH 
DIRECTIONS

In the last decade new methodologies coupled with 
advances in technological tools have allowed to develop 

new interesting approaches to tetrapod ichnology. A "rst 
interesting contribution is provided by the use of Principal 
Component Analysis and geometric morphometry in 
general for the study of both single footprints and entire 
trackways (e.g. Moratalla et al., 1988; Rodrigues and 
Santos, 2002; Tucker and Smith, 2004; Clark and Brett-
Surman, 2008; Castanera et al., 2013, 2015; Romano and 
Citton, 2015, 2017; Lallensack et al., 2016, 2020; Buchwitz 
and Voigt, 2018; Costa-Pérez et al., 2019; Romano et al., 
2019a). In fact, while PCA and geometric morphometry 
have been used for several decades for the study of the 
classic body fossils, their heuristic power has been applied 
only recently being in the study of the traces le# by 
vertebrates. !is approach allows to identify and highlight 
those characters most crucial for describing the shape of 
the footprints, also providing a useful indication of what 
the variability of the single portions of the footprints 
may be. !is aspect can then be connected either to the 
trackmaker peculiar behaviour, functional prevalence in 
locomotion, or variability in the physical conditions of 
the substrate. !e obtained results are useful to limit the 
fundamental characters to those related to the anatomy 
and locomotion of the trackmaker, rather than to variable 
boundary conditions. !e method can have considerable 
ichnotaxonomic relevance, studying the variability or 
‘morphospace’ occupied by a particular ichnogenus 
or ichnospecies, thereby allowing more quantitative 
decisions on the use of a more lumping or splitting 
approach. In particular cases, as the study of footprints 
referable to human groups, the method can be used to 
understand how many individuals le# the footprints and 
therefore which was the social composition of clans in the 
Paleolithic (see Citton et al., 2017a; Avanzini et al., 2018; 
Romano et al., 2019a).

Another powerful, cheap, and fast-developing approach 
to ichnology is represented by photogrammetry, which 
despite being known for a long time, only recently has 
gone into the limelight thanks to a greater accessibility 
in terms of available digital technologies. !is easily 
accessible technique allows to obtain high-de"nition 
3D models starting from simple photos taken around 
the model, therefore with much lower costs than other 
techniques such as the laser scanner (Petti et al., 2008b; 
Falkingham, 2011; Cipriani et al., 2016; Romano et al., 
2019b). !e obtained 3D models make possible to observe 
the traces from all possible angles, and to study the 
di%erential depth of impression through cross sections 
and false colour images with contour lines. Footprint 
three-dimensional models can represent an objective 
form of communication and illustration of tetrapod 
traces, greatly complementing interpretations o#en 
linked to the knowledge and experience of the researcher. 
In parallel, the development of drone technology has 
allowed the "rst experimental 3D reconstruction of 
surfaces located in inaccessible or di'cult to access 
sites, and to reconstruct large model of huge ichnosites 
(e.g. Citton et al., 2017b; Mazin et al., 2017; Romilio et 
al., 2017; Petti et al., 2018; Xing et al., 2018; Wiseman 
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et al., 2020). Digital models are of central importance 
also for geoconservation, at least digitally preserving 
unique trampled surfaces, o#en subject to erosion and 
rapid deterioration linked to both human activities (e.g. 
caving) and natural processes, and for dissemination and 
evaluation of the geological (ichnological) heritage (e.g. 
Petti et al., 2008b, 2018; Cipriani et al., 2016; Romano et 
al., 2019b).

Another interesting approach is represented by 
actualistic (sensu Romano, 2015) studies of neo-ichnology, 
with extant tetrapods walking on di%erent substrates or 
on baropodometric platform (e.g. Milàn, 2006; Milàn 
and Bromley, 2008; Genise et al., 2009; Jackson et al., 
2009, 2010; Marty et al., 2009; Kubo, 2010; Milàn and 
Hedegaard, 2010; Schaller et al., 2011; Platt et al., 2012; 
Hasiotis and Hirmas, 2012; Bates et al., 2013; Curth et 
al., 2014; Falk et al., 2017; Gatesy and Falkingham, 2017; 
Pasenko, 2017; Farlow et al., 2018). !ese studies allow 
to analyse in detail the process of impression as well as 
the formation of the traces, with the great advantage of 
being able to control and to vary all the di%erent variables 
and parameter for the experiments (e.g. type of substrate 
and sediments, substrate water content, substrate tilting, 
animal speed). !ese studies are also supported by new 
so#ware and computer simulations, which allow for more 
quantitative modelling of the trace formation processes 
(e.g. Falkingham et al., 2009, 2011, 2014; Falkingham and 
Gatesy, 2014a, 2014b).

Finally, another promising approach regards the 
attempt to reconstruct the locomotion and particular 
biomechanics of the trackmakers starting from the 
di%erential depth of the footprints. In the last decades it 
has become clear that reducing the tetrapod footprints 
to a simple two-dimensional outline leads to the loss 
of a large number of useful information, both from an 
ichnotaxonomic point of view and for possible inferences 
on locomotion. Di%erently, considering the process of 
footprint formation as a dynamic process, with pioneers 
in this sense since the second half of the last century 
(e.g. Baird, 1957; Padian and Olsen, 1984; !ulborn and 
Wade, 1989; !ulborn, 1990), allows access to a much 
greater amount of information, regarding functionality, 
biomechanics, static or moving posture, interaction and 
registration of complex movements. Such approach, 
considering a footprint as a complex object developed in 
four dimensions as stressed clearly by !ulborn (1990, 
2013), with a multiple and in continuum interaction 
between foot and substrate (e.g. Gatesy et al., 1999; Gatesy, 
2003), has been accepted and used by several ichnologists 
to better understand the impression processes and to 
reconstruct locomotion and biomechanics in putative 
trackmakers (e.g. Farlow, 1992; Avanzini, 1998; Gatesy et 
al., 1999; Milàn et al., 2006; Sacchi et al., 2014; Citton et 
al., 2016, 2019; Romano et al., 2016a, 2020; Romano and 
Citton, 2017; Díaz-Martínez et al., 2018).

All these technologies and approaches are highly 
promising for the present and future of vertebrate 
ichnology both for reconstructing locomotion and 

biomechanics, and for identifying solid ichnotaxonomic 
characters. !e speci"c osteological pattern of the axial 
skeleton, girdles, limbs and autopods, and the resulting 
di%erential functionalities in locomotion, have been 
irreversibly acquired by a particular tetrapod group 
through evolutionary processes, and in a unique node 
of the “bush of life”. As already stresses by Carrano and 
Wilson (2001) and Romano et al. (2016a), the recognition 
of these phylogenetic characters mirrored in tetrapod 
footprints has as "nal goal the identi"cation of ‘natural’ 
ichnotaxa or ichnotaxonomic units based on phylogeny 
and not on simple two-dimensional outlines, as found in 
the classic approach of the old typological philosophy of 
the last century.

4. SPECIAL VOLUME COMPOSITION
Contributions to this Special Volume cover almost 

the entire tetrapod ichnological record from Italy, by 
recapping all the studied ichnosites and synthesizing 
interpretations proposed by the Authors.

Conti et al. (2020) narrate the origins of Vertebrate 
Ichnology in Italy and the $ourishing of di%erent 
schools through the vicissitudes behind discoveries and 
trackers. !e manuscript, which deliberately has the 
style of an anecdotal tale, consider the "rst hundred 
years of history of the discipline in Italy, introducing 
and discussing the development of methodologies and 
applications in the "eld of Earth Sciences and the striking 
contribution that tetrapod tracks provided, up to date, 
for regional and global reconstructions. By ‘getting lost’ 
in reading the paper, one might have the vivid feeling 
of Vertebrate Ichnology as a discipline ‘in the $esh’, and 
that the current, almost completely shared approach to 
the inherent epistemology takes root in the work of our 
pioneering colleagues. Well, one might say “!e past is 
the key to the future”.

Marchetti et al. (2020a) present the state of the art about 
the oldest tetrapod track record from Italy, described 
from the Pennsylvanian of Sardinia and Carnian Alps. 
!e ichnoassociation is represented by anamniote tracks, 
and their occurrence is crucial for palaeocological and 
biochronological reconstructions.

Santi et al. (2020) report the current state of knowledge 
about the Cisuralian (i.e. early Permian) tetrapod track 
record. Since the "rst discoveries in the 19th Century, 
and particularly a#er a renaissance during the second 
half of the 20th century, Cisuralian footprints from 
northern Italy depicted an abundant, highly rich and 
diverse tetrapod ichnoassociation. !e record also 
bene"ts of several geochronological constraints derived 
from radiometric dating of footprint-bearing units, thus 
playing a major role in the formulation of hypothesis 
about global evolutionary changes that took place in the 
late Palaeozoic.

Marchetti et al. (2020b) summarize the state of the art 
about the Lopingian tetrapod track record of Italy from 
the continental red beds of the Arenaria di Val Gardena 
formation-rank unit. !e record comes from di%erent 
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localities of the Venetian Prealps and Carnian Alps, 
but especially (and historically) from the Bletterbach 
gorge in the Dolomites. !e Lopingian ichnoassociation 
from northern Italy is, still to date, the most diverse and 
abundant known at global level. Since the systematic 
studies in the seventies and eighties of the 20th Century, 
which followed the seminal studies during the 19th 
Century and the pioneer work of Piero Leonardi (see 
Conti et al., 2020), the Permian record immediately 
turned out to be of remarkable signi"cance for the 
understanding of evolutionary rates and changes in 
latest Palaeozoic tetrapods. A disruptive and detonating 
example was the recognition of the strong Triassic a'nity 
of the ichnoassociation. It dates back to the systematic 
collection of tetrapod footprints started during the 
second half of the 20th Century and opened the way for 
all the future studies on late Permian ichnology in Italy, 
in addition to being the reference for ichnological studies 
abroad.

Mietto et al. (2020) begin with the discussion of the 
Mesozoic ichnological record, presenting the current 
state of knowledge about Triassic footprints. !e bulk of 
the track-bearing localities belong to the Southern Alps 
domain, in addition to several ichnosites in Western and 
Maritime Alps, and Northern Apennines. In reporting 
the updated census, the Authors discuss major changes in 
the composition of the ichnofaunas, highlighting the shi# 
from chirotheriid-dominated to dinosaur-dominated 
ichnoassociations triggered by the early Late Triassic 
global climate perturbation known as Carnian Pluvial 
Event.

Petti et al. (2020a) report the state of the art about 
Jurassic footprints from Italy. Except for the upper 
Pliensbachian Burano river ichnosite, where a trackway 
of a marine reptile was described from pelagic sediments, 
the Jurassic record is mostly represented by dinosaur 
footprints in marginal marine environments. Almost all 
of the ichnosites were found in Lower Jurassic deposits 
of Southern Alps and occur at di%erent stratigraphic 
levels encompassing the Hettangian-Pliensbachian time 
interval. !is record proved to be of great signi"cance 
in the European ichnological panorama with regard to 
palaeonvironmental changes, paleogeography of the 
south Alpine sector and palaeobiology of trackmakers. 
As the manuscript title suggests, many young researchers 
trained with Early Jurassic footprints from di%erent 
localities, orbiting around the well-known Lavini di Marco 
ichnosite, re"ning and deepening di%erent methodologies 
(e.g. digital photogrammetry and laser scanning) that 
today can be considered a standard in ichnological 
investigations. !e Jurassic record is also represented 
by the Mattinata ichnosite in Apulia (Southern Italy), 
which is provisionally assigned to the Kimmeridgian-
Tithonian. !e Apulian site provides important clues to 
the understanding of the palaeogeographic evolution of 
the peri-Adriatic sector during the Mesozoic.

!e state of the art about the Cretaceous tetrapod track 
record is presented by Petti et al (2020b) that summarize 

the current knowledge and interpretations of twelve 
ichnosites scattered in Northern, Central and Southern 
Italy. !e bulk of the record is reported from Aptian-
Cenomanian carbonate platform deposits, to which are 
added few Lower Cretaceous sites and the mega-tracksite 
of Altamura (Upper Cretaceous), where thousands 
of dinosaur footprints occur. Also in this case the 
Cretaceous dinosaur track record, which is characterized 
by a high diversity of trackmakers, turned out to be 
dramatically signi"cant for improve our understanding 
of the palaeogeographic and geodynamic evolution of the 
Mediterranean area during the late Mesozoic, binding 
new interpretations contrasting previous reconstructions.

Pillola et al. (2020) discuss the current knowledge about 
the non-hominid Pleistocene vertebrate record, which 
comes from two ichnosites in Sardinia and the well-
known Foresta ichnosite in the Roccamon"na volcano 
(Campania). Even if ‘scarce’ in terms of abundance, this 
record appears characterized by a high producer diversity. 
!e Authors analyse the record on the light of the huge 
amount of data regarding Pleistocene body-fossils, 
geology and biochronologic framework pointing to the 
palaeonvironmental reconstruction for the di%erent 
ichnosites.

Avanzini et al. (2020) summarize the state of the 
art about the human track record of Pleistocene and 
Holocene ages, which recently takes advantage of new 
cutting edges methodologies. !e Middle Pleistocene 
‘Devil’s Trails’ ichnosite from Foresta area (Roccamon"na 
volcano, Campania), constituting the oldest occurrence 
of human traces from Italy, is reported and discussed 
on the light of recent ichnological and archaeological 
"ndings. !e Holocene record is constituted by the 
recently revised Upper Palaeolithic Grotta della Bàsura 
site (northern Italy), which contributed to improve our 
knowledge about individual and group level behaviour, 
social relationship and mode of exploration of a human 
group exploring a deep cave, and by the protohistoric 
sites of Afragola, Nola, Palma, Pompei (southern Italy) 
and Aosta (northern Italy). !e contribution ends with 
the discussion of the ichnological "ndings reported from 
tunnel and trench $oors of di%erent military structures 
disseminated in Trentino Alto-Adige region (northern 
Italy) during the First World War.

5. CONCLUDING REMARKS
!e "rst scienti"c contribution on tetrapod ichnology 

by Giulio Curioni, dated back to a century and a half 
ago, marks the beginning of this discipline in Italian 
academies, even if a deeper root in time is clearly testi"ed 
already in the work of Leonardo da Vinci. Approximately 
from the mid-twentieth century, tetrapod ichnology 
began to sprout in Italy until the thriving growth of 
di%erent schools, which are still very active, counting 
many ichnosites from the late Paleozoic to the Holocene 
to date tracked. !e Special Volume we present covers 
the record of the ichnoassociations from Italy and it 
wants to be not a point of arrival, but a new starter line. 
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We hope that this volume will o%er a trans-generational 
perspective to the researchers who are today engaged in 
wonderfully observing extinct animals in motion, and to 
those of tomorrow.
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