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Highlights 

 Liolaemus gununakuna, L. elongatus, and L. shitan lizards differ in colouration. 

 Sprint speed performance curves are similar for the three species. 

 The darkest species (L. shitan) gains heat and runs faster than the lighter-coloured ones. 

 Support was found for the thermoregulatory function of melanism in lizards. 

 Behaviour plays a key role in less-melanic species. 
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ABSTRACT 

Body temperature affects various aspects of ectotherm biology. Reptiles, as ectotherms, gain 

and control their temperature mainly through behavioural adjustments, although some body 

traits may also be advantageous. According to the thermal melanism hypothesis (TMH) dark 

colour may be thermally advantageous in cold environments. Additionally, differences in 

thermoregulatory capacity may also affect performance. We analysed the role of melanism in 

the thermoregulation and sprint speed performance of three species of Liolaemus lizards from 

Argentinean Patagonia. Liolaemus shitan, L. elongatus and L. gununakuna are phylogenetically 

close, with similar body sizes and life history traits, but differ in their melanic colouration, L. 

shitan being the darkest and L. gununakuna the lightest species. We estimated sprint speed 

performance curves and heating rates, and recorded final body temperature and sprint speed 

achieved after a fixed heating time, from two different initial body temperatures, and with and 

without movement restriction. Performance curves were similar for all the species, but for L. 

gununakuna the curve was more flattened. Darker species showed faster heating rates, ran faster 

after fixed heating trials at the lowest temperature, and reached higher body temperatures than 

L. gununakuna, but this was compensated for by behavioural adjustments of the lighter lizards. 

Similarity of sprint speed performance may be due to the conservative nature of this character in 

these species, while variation in heating ability, particularly when starting from low 

temperatures, may reflect plasticity in this trait. The latter provides support for the TMH in 

these lizards, as melanism helps them increase their body temperature. This may be especially 

advantageous at the beginning of the day or on cloudy days, when temperatures are lower. 

 

Keywords: Cold climate, Patagonia, reflectance, sprint speed performance, thermal melanism 

hypothesis. 

 

1. Introduction 

Body temperature is a variable of major influence in biological processes of ectotherms 

(Angilletta et al., 2006). As it affects different aspects such as digestion, muscle performance, 

and developmental time (Angilletta, 2001), a significant deviation from their optimal body 

temperatures may compromise performance in these organisms (Angilletta et al., 2002). Body 

temperature in ectotherms depends both on the magnitude of thermal environment variation and 

on the organism’s ability to regulate heat exchange (Belliure and Carrascal, 2002). This  

thermoregulation ability is possible due to a set of physiological and behavioural strategies, plus 
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different morphological traits that evolved according to their combined influence on fitness 

(Angilletta, 2009). These attributes, together with the life history of a species, may be subjected 

individually or collectively to environmental selective forces, or they may respond to 

evolutionary restrictions (Andrews, 1998; Angilletta, 2009). Therefore, the evolution of 

behavioural and/or morphological characters does not occur in isolation, but may rather be 

associated with the evolution of physiological aspects of the organisms, particularly in 

ectotherms (e.g. Forsman et al., 2002; Angilletta et al., 2004; Tulli et al., 2011; Vanhooydonck 

et al., 2014; Zamora-Camacho et al., 2015). At the same time, certain morphological attributes 

may directly or indirectly affect different performance characters, and may in turn influence 

fitness (Arnold, 1983). 

As ectothermic animals, reptiles gain and control heat mainly through behavioural adjustments 

(Bartholomew, 1982; Huey, 1982; Stevenson, 1985). Certain body traits may also be adaptive 

for thermal regulation; for example, a melanic (dark coloured) individual with low reflectance 

should gain heat faster than one with high reflectance (light colouration) at the same body size 

and environmental conditions (Watt, 1969). Thus, melanism is expected to be advantageous in 

cold climates, as proposed by the thermal melanism hypothesis (TMH; Watt, 1968; Clusella-

Trullas, et al., 2008). However, previous studies regarding the influence of melanism on heating 

rates of reptiles reported different, sometimes contradictory, results for the TMH ( Tanaka, 

2005, 2007; Clusella-Trullas et al., 2009; Geen and Johnston, 2014; Moreno Azócar et al., 

2016). From these studies we can hypothesize that if melanism does have a thermoregulatory 

function, it may be more likely at lower temperatures. As light and dark animals are able to 

adjust thermoregulation via behaviour, such a difference would vanish once body temperature 

reached the thermal preferendum, and after this, lizards start shuttling between different thermal 

sources to thermoregulate. 

Combining behavioural and morphological adjustments for thermoregulation may result in a 

better performance of the individual. An ecologically and socially-relevant performance 

function is locomotion, essential for escaping from predators, feeding, mating and territorial 

defence (Domenici, 2001; Blumstein et al., 2004; Husak et al., 2006; Husak, 2006; Husak et al., 

2008; Mowles et al., 2010; Pruitt, 2010; Irschick and Higham, 2016). Multiple studies analysed 

variation in locomotor capacities between species in relation to ecological, environmental, or 

morphological traits (e.g. Angilletta et al., 2002; Bonino et al., 2011; Zamora-Camacho et al., 

2015; Irschick and Highman, 2016). Comparison of sprint speed performance curves, or speed 

achieved after an equal amount of heat exposure, may reflect the effect of behaviour and/or 

morphology on the individuals.  
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In the present study we analysed the effects of melanism on the thermoregulation and sprint 

speed performance of three Liolaemus lizard species from Patagonia, Argentina. Liolaemus 

shitan, L. elongatus and L. gununakuna are phylogenetically close (they belong to the L. 

elongatus group; Lobo et al., 2010). These species show similar body size and shape (see 

Supplementary Material, Tables S1 and S2), ecological and life history traits (the three species 

are viviparous and insectivorous), but they differ in their melanic colouration. While Liolaemus 

shitan is completely black, L. gununakuna has a striped pattern with an iridescent green 

background colour, and L. elongatus is brownish and darker to the naked eye than L. 

gununakuna. Our data on these species come from rocky areas located at similar latitudes in 

Northern Patagonia (Fig. 1). Regardless of the colour observed by the naked eye, the differences 

in skin reflectance must be verified using spectrophotometry. It is important to evaluate whether 

species’ heating rates differ under experimental conditions, and determine the basal information 

from performance curves of sprint speed, because they will later be related to melanism. Taking 

these performance curves as a reference, we studied which species was able to draw closest to 

their optimum temperature after a fixed heating time, starting at equal initial temperatures. 

According to our prediction, if melanism accelerates heat gain, the darkest species (L. shitan) 

will show faster heating rates (Clusella Trullas et al., 2007); additionally, this species will show 

higher body temperature and a speed closer to its maximum after a fixed heating time than the 

other two paler species (Zhang et al., 2008). These results may be considered evidence for the 

influence of melanism on species performance (Grigg et al., 1979), and as a consequence, 

demonstrate the advantage gained when inhabiting cold climates. 

2. Material and methods 

2.1. Study species, collection sites and specimen housing 

We studied three lizard species of the Liolaemus genus. Liolaemus shitan (Abdala et al., 2010, 

Fig. 1A), has a uniform, deep black dorsal colour, and ventral colour is grey. Scapular or 

paravertebral spots are absent, as are dorsolateral and vertebral lines. Average snout-vent length 

(SVL) is 88.1 mm ± 6.7, (Abdala et al., 2010). The collection site is located in El Cuy 

department, Río Negro province, at Estancia Piedras Blancas (39 ° 55 ’ 38 ” S; 68 ° 20 ’ 43 ” 

W). Liolaemus elongatus (Cei, 1974, Fig. 1B) ground colour is greyish or pale brownish with 

three black, irregular, longitudinal stripes, one vertebral and two lateral, interconnected by 

irregular transverse dark bars; its belly is greyish and unspotted (Cei, 1974). SVL range is 85-90 

mm (Scolaro, 2005). Specimens were collected 20 km west of Comallo town, beside National 

highway 23, in Río Negro Province (41 ° 02 ’ 00 ” S; 70 ° 16 ’ 00 ” W). Finally, L. gununakuna 

(Ávila et al., 2004, Fig. 1C) ground dorsal colour is iridescent yellow-green, with a series of 

transversal, irregular, partially fused dark bars along the vertebral line (‘‘tigroid pattern’’, Ávila 
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et al., 2004). Average SVL is 93 mm (Scolaro, 2005). This species was collected near Piedra 

Grande, Zapala Department, Neuquén Province (38 ° 54 ’ 10 ” S; 70 ° 03 ’ 54 ” W, Fig. 2). All 

three species are saxicolous, insectivorous and viviparous (L. gununakuna: Ávila et al., 2004, L. 

elongatus: Scolaro, 2005, L. shitan: Abdala et al., 2010; reproductive mode: Moreno Azócar 

unpublished data). 

Specimen collection was carried out on consecutive days during the active season (November- 

March). Only adult males and non-pregnant adult females were collected, to avoid ontogenetic 

and reproductive differences in thermal biology and locomotor performance (Fernández et al., 

2017). Lizards were carried to the laboratory in cloth bags; they were then fed periodically with 

Tenebrio molitor larvae and water was provided ad libitum. 

2.2. Reflectance measurements 

In order to verify differences in species colouration observed by the naked eye, we measured 

spectral reflectance for at least three individuals per species. These measurements were taken on 

9 different patches of the dorsal body of the specimens (Fig. 3) using a JAZ EL200-XR1 

spectrophotometer (Ocean Optics, Inc.). Although the spectrophotometer gives reliable 

reflectance from 240 to 850 nm, for our purpose we analysed only the visible spectra (from 400 

to 700 nm) at 0.42 nm intervals, which is related to melanism coloration and the supposedly 

higher solar radiation absorption. A bifurcated fibre optic cable was used with illumination 

provided by a PX-2 pulsed xenon light source, collecting data at 45 ° with respect to the body 

surface. The probe was covered with a black rubber tube so as to maintain a distance of 5 mm 

between the probe and the skin, and avoid the incidence of ambient light. As the end of the tube 

is cut at an angle of 45 °, the resulting patch is elliptical, covering an area of 10 mm2. 

Reflectance measures were obtained by setting 10 averages and Boxcar width 5, using Ocean 

View program (Corbalán et al., 2018). Calibration was carried out with a WS-1 diffuse 

reflectance standard, and both white and black measurements were taken every 20 minutes. 

Dorsal patch measurements were head, nape, inter-scapular region, mid-dorsum, posterior 

region (between the hind legs), and tail proximal portion. Dorsolateral measurements were taken 

of the flank, cheek, and shoulder (anti-humeral spot, Fig. 3). 

We analysed the spectral curves, taking the average of all the patches (dorsal and dorsolateral) 

measured for each individual. We quantified colour using the segment classification method 

proposed by (Endler, 1990). Segments correspond to the blue (400-475 nm), green (475 -550 

nm), yellow (550-625 nm) and red (626-700 nm) part of the visible spectrum. The shape and 

height of reflectance spectra are described by three variables: brightness (the total area under the 

curve), chroma (or saturation, the slope of the curve as it approaches peak reflectance) and hue 
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(the location of the wavelength with the greatest reflectance value). All these variables were 

calculated following the Smith protocol (2014). Typically, melanic individuals have lower skin 

reflectance than non-melanic individuals (Clusella Trullas et al., 2009; Geen and Johnston, 

2014). In our study then, the variable of major interest is brightness, since the area under the 

curve determines the difference between dark animals (less reflective curves) and light animals 

(more reflective curves). 

2.3. Heating rates 

Heating rates between body temperatures of 15 °C and 35 °C were measured for a minimum of 

six individuals per species, in a walk-in chamber with controlled temperature and luminosity. 

Individuals were immobilized by fixing their limbs and the base of the tail to a cork plate, using 

3M Micropore® tape. We then placed the plate, with the animal, in a bucket of 30 cm diameter 

and 35 cm height in order to prevent escape, and an incandescent 100 W daylight lightbulb 

(Philips Inc.) was placed 45 cm above this. Body temperatures were registered from 15 °C to 35 

°C by taking thermographic images with a Testo 735-1 thermal image camera (resolution 160 

by 120 pixels, Testo, Germany) located 40 cm above the specimen and at a 45 ° angle; images 

were taken every 30 seconds, and timing was controlled with a digital chronometer (Modena 

MS302, precision 1/100s). Although we observed that the lizards did not try to move or to 

escape within this temperature range, which could have been considered a sign of stress, 

immobilization may induce stress and therefore alter body temperature. Every time we observed 

a lizard trying to escape from the immobilization device or moving continuously, we removed it 

from the sample. We determined external body temperature at the same spots used to evaluate 

skin reflectance, using the software Testo IRSoft (Testo, 2016), which allows us to set different 

points and to transfer them from one image to the next, in order to determine temperature over 

time always in the same spot for the same individual. These measurements allowed us to 

determine heating rates for each animal as the average of all the measured spots. 

Heating rates were calculated as thermal time constants (; Bell, 1980; Cossins and Bowler, 

1987), following Labra et al. (2009). We estimated the constants for individuals as  = -

0.4343/b, where b is the slope of ln(Ti-Ta) against time; Ti is the body temperature of the 

experimental animal recorded at different time points and Ta is ambient (air 1cm above the 

substrate) temperature, which was held constantly at 35 °C. τ values vary from 0 to infinite; the 

smaller the value, the faster the heat exchange. 

2.4. Thermal sensitivity of sprint speed and thermal performance curves (TPC) 
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To determine the thermal tolerance range, we also measured both critical minimum (CTmin) 

and critical maximum temperatures (CTmax) for each species. The critical temperature is 

defined as the temperature at which an organism loses motor coordination, failing to get back to 

its normal posture after being set in a supine position (Carothers et al., 1997; Cruz et al., 2005). 

We determined the thermal tolerance range following protocols proposed by Cruz et al. (2005) 

and Bonino et al. (2011). These critical thermal measurements later constituted the edges of the 

TPC. 

We estimated the thermal sensitivity of sprint speed by conducting races for each lizard on a 

horizontal racetrack 1.2 m in length, with 10 cm-high side panels to prevent escape. It was 

equipped with seven LED sensors arranged every 15.5 cm, connected to a timer circuit and to a 

data collector (personal computer). The base of the racetrack was covered with a cork sheet to 

provide grip and traction. For each run a lizard was placed at one end (start) of the track and 

then released; gentle taps on the sacral region were used as stimuli until the entire track was 

completed (Angilletta et al., 2002; Aguilar and Cruz, 2010; Bonino et al., 2015). Speed was 

measured between consecutive sensors (15.5 cm). Lizards’ runs were performed at five discrete 

body temperatures within the species thermal tolerance ranges (22 °C, 26 °C, 30 °C, 34 °C and 

38 °C). Lizards were heated to the desired test body temperatures in an incubation chamber 

(Semedic FT 290; Semedic, Buenos Aires, Argentina). Runs were conducted on consecutive 

days, and temperatures were assigned randomly. When a lizard refused to run or escaped before 

the end of the run the race was considered a failure and discarded from the analyses. Each 

specimen completed six runs on the track for each of the five temperatures, following Losos et 

al. (2002); thus, each lizard ran 30 times within a period of 5 days. No more than six runs per 

day were made per individual, and they were divided into three series of two races, with an 

interval of at least 2 h between them for the lizards to rest. Body temperature of the specimens 

was recorded (prior to each race) with an ultra-thin K-type thermocouple connected to a digital 

thermometer (Extech 421502; Extech Instruments, Waltham, MA, USA). From the six runs for 

each discrete temperature we retained the highest speed value recorded between two of the 

seven consecutive LED sensors (15.5 cm intervals), which was considered the maximum speed 

(m/s) at each temperature. This method has been considered valid when sprint speed is 

measured in relation to escape behaviour (Gomes et al., 2017), although the same authors 

pointed out the advantages of instantaneous speed measurements in terms of precision and 

repeatability, as maximum speed measurements may be influenced by strategies which differ 

between species (e.g., short bursts vs. long runs), racetrack length, and by the stimuli used (food 

search vs. escape from predators). In our study we used maximum speed following Cruz et al. 

(2005), Tulli et al. (2011), Bonino et al. (2011, 2015) to make data comparable with other 

Liolaemus. 
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To estimate the thermal sensitivity of sprint speed we used the series of speed/temperature 

points obtained for the individuals of each species. We also included those obtained after fixed 

time heating runs (see below), as these were obtained with the same protocol. From all of these, 

we constructed the TPCs with the species’ CTmin and Ctmax as extreme values (with null 

speed), and by using TableCurve 2D Demo (© SYSTAT Software Inc., 2002). While Angilletta 

(2006, 2009) proposed that the simple Gaussian function provides a more acceptable description 

than other more complex models under the Akaike criterion, we based model selection on the 

Bayesian approach. Under these criteria we used a set of the asymmetric functions with left 

skewness and biological significance, among them the Gaussian model from Angilletta (2006). 

The best fit was selected from AIC values, and then used to estimate performance parameters. 

From the curves we obtained for each lizard a maximum sprint speed (Vmax) and optimum 

temperature (To), defined as the temperature at which the individual reaches its maximum 

speed. We then standardized the performance for each of the three lizard species, obtaining the 

relative velocity at each temperature (instantaneous velocity at each temperature/maximum 

speed reached). Following this, for each species we calculated the optimal temperature range 

and thermal performance breadth, defined as the body temperature range over which the lizard 

can run at 95 % of the optimal temperature (B95) or 80 % (B80) of the Vmax, respectively 

(Hertz et al., 1983). 

2.5. Body temperature and sprint speed after fixed heating time  

We aimed to evaluate the capacity of the species to run after heating under similar conditions. 

We selected two initial temperatures: to simulate a situation where the environment has low 

thermal quality (as occurs at the beginning of the day, and/ or during cloudy days) the initial 

body temperature of lizards was set to 15 °C; to simulate a more favourable situation (a 

temperature at which lizards may already be active in the day), the initial body temperature of 

the animals was set to 25 °C. These body temperatures were achieved by placing the lizards 

individually in cloth bags, in an incubator chamber (Semedic FT 290; Semedic, Buenos Aires, 

Argentina), set 0.5 °C above the target temperature. Once lizards achieved the target 

temperature, they were placed in a bucket (20 cm diameter, 20 cm high), with the bottom 

covered by a thin layer of sand in order to prevent overheating. Heat was provided by an 

incandescent light bulb (Philips daylight 100 W) placed 40 cm above the base of the bucket, for 

a fixed time of 10 min. We also tested for behavioural adjustments by setting the individuals 

with restricted movement at an initial temperature of 15 °C. We decided not to test heating with 

restricted movement at an initial temperature of Ti = 25 °C, as we considered it could imply a 

high overheating risk. After this time, lizards were removed and final body temperature was 

immediately measured in their flanks with a thermometer connected to an ultrathin 
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thermocouple (Moreno Azócar et al., 2013). The lizard then ran three races on the same 

racetrack, following the protocol explained above for TPC. Every lizard repeated the sequence 

twice at each initial body temperature (15 °C and 25 °C), but no more than one series of each 

temperature per day. On completing a trial, each lizard was transferred to a terrarium and 

allowed to recover, and water was provided ad libitum. From each series we obtained the 

maximum sprint speed, calculated as explained before.  

2.6. Statistical analyses 

We measured 81 individuals of the three Liolaemus species (L. shitan, L. elongatus, and L. 

gununakuna). Reflectance was measured for 19 individuals, heating rates for 26 individuals, and 

sprint speed for 59 individuals; 34 were heated for a fixed time (10 min) from both initial 

temperatures (15 °C and 25 °C) without restriction of movement, while 26 where heated from 

15 °C initial body temperature with movement restriction. Some specimens were used in more 

than one experiment, because of collection permit restrictions on sample size. Before running 

the statistical analyses we examined the data and discarded all the outliers observed, according 

to the Tukey method, which identifies values outside the IQR 1.5 (Interquartile range approach), 

the IQR being the difference between Q75 and Q25. 

To analyse species colour brightness, we first searched for differences between sexes within 

each species, using the T-test, then compared brightness between species with ANOVAs using 

the ‘aov’ function from the ‘stats’ package in R (R Core team, 2019). Significant differences 

were then analysed using a Tukey post-hoc comparison (function ‘TukeyHSD’ from the ‘stats’ 

package as well). 

Prior to any statistical analysis, we tested each variable for homoscedasticity of variances 

through Levene’s tests. To analyse differences between species in each of the response variables 

considered (heating rates, TPC variables, final body temperature and sprint speed after fixed 

heating time), we used ‘gls’ function in ‘nlme’ package (Pinheiro et al., 2019) to perform 

generalized least squares models from an inferential perspective (Garibaldi et al., 2017), and to 

take into account the heterogeneity of variance plus covariables. We compared models with 

homogeneous and heterogeneous variance, including all models derived from the two full 

models: gls (Vardep ~ Species + SVL, weights = varIdent (form = ~1|Species)), and (Vardep ~ 

Species + BM, weights = varIdent (form = ~1|Species)), where weights denote estimation of 

different variances between groups. We then chose the best fitted model according to AICc 

values for each group of models; that is, either including SVL or BM (Burnham and Anderson, 

2004). We analysed intergroup differences by using ‘glht’ function from the ‘multcomp’ 

package (Hothorn et al., 2008), using Tukey’s all pairs comparison.  
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3. RESULTS  

3.1. Reflectance 

In agreement with our visual observation, we detected that the three studied species differed in 

colour and brightness (Fig. 4). The mean brightness values were 361.71 for Liolaemus shitan, 

671.76 for L. elongatus and 1271.15 for L. gununakuna, which was significantly lighter 

(ANOVA Brightness: F (2, 17) = 60.5, p < 0.001; Chroma: F (2, 17) 21.85, p < 0. 001; Hue: F (2, 17) = 

73.88, p < 0.001). All levels of the ‘species’ factor were homogeneous and significantly 

different from each other according to TukeyHSD posthoc analysis (Fig. 4, supplementary 

material Table S3). Because we were not able to test all the individuals collected we did not use 

reflectance or any of the component variables as continuous; we used this information to ratify 

the differences in colour between species observed with the naked eye, and therefore used 

species as a group factor in further analyses. 

3.2. Heating rates 

Homoscedasticity fails for TAU values between species (Supplementary Material, table S4). We 

observed no influence of body length on heating rates within the species (lineal model SVL * 

Species: R2 = 0.1854, F (5, 22) = 1.002, p = 0.4399), but we did find a significant effect of body 

mass (lineal model BM * Species: R2 = 0 .4949, F (5, 20) = 3.919, p = 0.01223, Fig.5A), mainly 

for L. gununakuna, which showed faster heating rates at larger body mass.  

The best gls model to describe differences in heating rates between species was the one 

modelling TAU (with respect to species, including the heterogeneous variance between 

species factor (Table 1). Post hoc analysis showed that L. shitan had lower values of TAU 

(faster heating rates) and smaller variance, and it differed significantly from L. gununakuna 

(Table 1, Fig. 5B). Mean thermal time constants for the species were 6.353 (± 1.087) for L. 

shitan; 8.302 (± 1.480) for L. elongatus, and 10.231 (± 3.462) for L. gununakuna (Fig. 5B). 

3.3. Thermal sensitivity of sprint speed. 

Before estimating TPC for sprint speed, we obtained thermal critical minimum and maximum 

values for L. gununakuna and L. shitan, to be used as the extremes of the thermal sensitivity 

curves. CTmin and CTmax for each species were: L. gununakuna, 7.42 ºC (± 1.57) and 43.49 ºC 

(± 0.46); L. shitan, 8.12 ºC (± 2.24) and 43.66 °C (± 0.50); L. elongatus, 7.42 ºC (± 1.98) and 

44.32 ºC (± 0.63) (data obtained from Bonino et al., 2015). After adjusting the sprint speed 

registered for all individuals of the three species, the best model to adjust a thermal sensitivity 
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curve to the data after AIC selection, for all species, was the Asymmetric Logistic (#8043) 

function.  

Among TPC variables, only Vmax lacks homogeneity of variance (Supplementary material 

table S1). The TPC of the lizards showed no significant differences between species other than 

in Vmax, as Liolaemus elongatus runs significantly faster than L. gununakuna, while L. shitan 

runs similarly to both species (Fig. 6, Table 2). 

In most of the variables analysed, the best models were those including the interaction of 

‘species’ and ‘SVL’, with or without heterogeneous variance (Table 2). BM was not significant 

for any model. GLS and ANOVAs indicated differences between species only for Vmax 

(posthoc: L. gununakuna- L. elongatus z value = -2.503; p = 0.032), and for B80L (Low B80 

value in the curve), but the latter was not recovered by the posthoc analysis (Fig. 6, Table 2).  

3.4. Fixed-time heating experiments 

In this experiment we aimed to test whether species reached different body temperatures and/or 

responded differently in their sprint speed after exposure to the same amount of time under a 

heating source, using SVL and BM as co-variables, due to the possible influence they may have 

on heat gain and speed. 

We did not find differences in variance between groups for the variables analysed here 

(Supplementary material, Table S4). According to the AICc values, the best model analysing 

final body temperatures included species as a factor, and homogeneous variance (Table 3). This 

was true in all three cases studied (Ti = 15 °C with unrestricted movement, Ti = 15 °C with 

restricted movement, and Ti = 25 °C with unrestricted movement). With unrestricted movement 

inside the bucket, L. elongatus reached significantly higher body temperatures than the other 

two species, independently of the initial body temperature (Table 3, Fig. 7A and 7C). In 

contrast, when lizards were unable to adjust their body postures (that is with movement 

restricted), L. gununakuna final body temperatures were significantly lower than L. shitan body 

temperatures, while L. elongatus showed intermediate values (Table 3, Fig. 7B).  

Regarding sprint speed, at Ti = 15 °C, the best model considered heterogeneous variance and 

species as factors, excluding covariables, while at Ti = 25 °C the best model included 

homogeneous variance between species levels, also excluding covariables (Table 3). We 

observed similar responses for the two temperature settings studied: L. gununakuna was the 

slowest species, whereas L. elongatus ran at an intermediate speed and L. shitan was the fastest 

(Table 3, Fig. 8A). However, although at 15°C the lighter species was significantly different 

from the other two, at 25°C it differed significantly only from L. shitan (Table 3, Fig. 8B). We 

Jo
ur

na
l P

re
-p

ro
of



12 
 

were unable to test sprint speed after the restricted movement trial, as the manipulation needed 

to release the lizards greatly affected their body temperature. 

4. DISCUSSION  

Up to now, evidence for the thermal melanism hypothesis in ectothermic animals has been 

contradictory, reporting either a clear relationship between colour and heat flux or a lack of 

influence ( Harris et al., 2013; Geen and Johnston, 2014; Yin et al., 2015; Zamora-Camacho et 

al., 2015; Moreno Azócar et al., 2016; Köhler et al., 2017; De Souza et al., 2017; Kuyuku et al., 

2018; among others). We aimed to clarify the relevance of this hypothesis by comparing a study 

system that would allow us to reduce the noise produced by differences in traits such as body 

size, diet, and reproductive mode (for further details see Moreno Azócar et al., 2016), as well as 

colour polymorphism. Here we studied three clearly different species in terms of colouration 

and reflectance, which allowed us to test thermal melanism. The three lizard species inhabit 

similar latitudes, share several ecological and biological characteristics but clearly differ in 

colour. The body shape of the species is similar, mainly cylindrical, without significant 

differences in external measurements related to the locomotor system or thermoregulation (see 

supplementary material Tables S1 and S2). First, spectrometry confirmed the differences in 

colouration between the species as we had visually observed; as expected, higher brightness 

indicated the highest reflectance in L. gununakuna (the lightest coloured species) and the lowest 

reflectance in L. shitan (the darkest one). These differences, in accordance with our predictions, 

agree with the observed heating rates, where the darkest species gained heat significantly faster 

than the lightest (paler) one. In view of this, we found support for the prediction that suggests 

melanism helps ectothermic animals to gain heat faster, and probably enables them to maintain 

their optimal body temperatures for a longer time (Clusella-Trullas et al., 2008; Harris et al., 

2012; De Keyser et al., 2015; Mathews et al., 2016). 

Previous studies failed to find differences in heat gain between dark and pale morphs of the 

lizard Podarcis dugesii (Crisp et al., 1979), the snake Thamnophis sirtalis (Bittner et al., 2002), 

and the Cordylus genus (Clusella Trullas et al., 2009). However, other studies found support for 

the TMH in vipers, lizards, snakes and frogs (Gibson and Falls, 1979; Forsman, 1995a, 1995b; 

Vences et al., 2002; Tanaka, 2005; Geen and Johnston, 2014), while others observed mixed 

results when studying the distribution of several Cordylus species to test the association of 

melanistic species with cold climates (Janse van Rensburg et al., 2009). Therefore, the nature of 

dark colouration cannot be linked universally to thermoregulation in cold climates, nor can it be 

considered in isolation. Despite our promising results, there is still a number of other aspects in 

which dark colouration may play a role; such as sexual communication (Protas and Patel, 2008), 
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immunology (Getting, 2006), camouflage, intraspecific communication, and UV protection 

(Porter, 1967; Gunn, 1998; Böhm et al., 2005). 

In a series of studies, Tanaka (2005, 2007, 2009) observed differences in heating of the rat 

snake (Elaphe quadrivirgata) between laboratory and wild experiments, probably associated 

with behavioural adjustments. In the case of Liolaemus species, a previous study in the L. 

goetschi group also reported mixed results; for example, live animals did not show differences 

in heat gain due to melanism, but inanimate ones showed a positive relationship between 

melanic colour and heating rates (Moreno Azócar et al., 2016). It is therefore possible that 

behavioural or physiological aspects compensate for colour differences, suggesting the 

importance of behaviour during experimental trials. Additionally, the species of Liolaemus 

previously studied by Moreno Azócar et al. (2016) may correspond to polymorphic species with 

regard to melanism (e.g. Liolaemus xanthoviridis; Escudero, et al., 2016). Therefore, the search 

for good study systems is fundamental in order to clarify the role of melanism-based colouration 

in reptile thermoregulation. Comparing natural morphs within a single species (Geen and 

Johnston, 2014), or between closely-related species with clear differences in colour but 

similarities in size or other life history traits (present study) helps to control for variability 

caused by biological or ecological traits, as well as genetic variation. While studies within the 

same species imply gene flux between different morphs and therefore genuine adaptive 

responses, inter-specific genetic isolation may obscure these adaptive responses; however, 

studying different species (although morphologically similar and closely related) under similar 

environmental conditions may constitute a good study system to help us analyse the adaptive 

role of a trait, in this case melanism. 

As we proposed, it is expected that if darker individuals heat up faster than lighter ones, and this 

represents an advantage for lizards living in cold climates, such an advantage should be 

reflected in their performance and ultimately, their fitness (Arnold, 1983). We found evidence to 

support this prediction when behavioural adjustments were prevented during heating rates (in 

the case of impaired mobility). In these trials, L. shitan showed a consistently faster heating rate, 

reaching a higher final body temperature than the other two species. This species also shows the 

most homogeneous colouration of the studied species, which could also explain the lower 

variation observed. However, in the fixed-time heating experiments where the lizards were able 

to move inside the bucket and change posture, we found different results; although L. shitan did 

show a higher mean final temperature than L. gununakuna when heating started at 15 °C, L. 

elongatus showed even higher final body temperatures. Furthermore, L. shitan showed the 

lowest final temperatures when heating started at 25 °C (Fig. 6C). These findings show the 

importance of melanism for these lizards in terms of heat gain, but also how relevant 
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behavioural adjustments are, evidenced by movements and postures that allowed the lighter 

species to reach similar temperatures to the darkest one; however, this result may also show that 

L. shitan controls its body temperature above a certain threshold, to avoid overheating. Thus, 

dark colour may help to increase temperature, but behaviour is key to controlling the rate of 

heating and prevent undesireable consequences. 

Our results from the sprint speed performance tests to evaluate the potential adaptive advantages 

of melanism show that the darker species (L. shitan and L. elongatus) perform better after 

heating at a cold initial temperature (15 °C) than the lighter one (L. gununakuna). These results 

suggest an improved response when animals need to flee from predators or capture prey in the 

early hours of the day, when activity begins. However, we observed increased dispersion of the 

data at higher temperatures, suggesting that the temperature achieved when heating began at 25 

°C was warm enough to allow all lizards to perform close to their optimal temperatures. This 

data dispersion may also be due to the action of different factors (such as physiological status, 

body wellness, stress, behavioural adjustments, etc.) plus the effect of melanism on sprint speed 

performance. Few studies have considered the influence of melanism on fitness (the final step of 

Arnolds, 1983 paradigm) in ectothermic vertebrates, or provided support for the TMH. Castella 

et al. (2013) found that the body condition of two colour morphs (patterned light and melanistic 

individuals) of Vipera aspis differed between sexes and sites, and observed increased predation 

on males of the melanistic morph; thus resulting in enhancement of body condition associated 

with melanism only for females. Similar results were reported by Forsman (1995a, 1995b) for 

the adder Vipera berus. For this species, Capula and Luiselli (1994) reported advantages of 

possessing melanism that were positively related to higher litter frequency and survivorship in 

darker females. Our study, although using a common performance measurement (sprint speed), 

does not enable us to make generalizations about the influence of melanism. However, our 

results allow us to infer that melanism is in fact advantageous in cold weather, enhancing speed 

in lizards that may be advantageous for escaping from predators or capturing prey, particularly 

at the beginning of daily activity, when temperatures are lower.  

According to Arnold’s Paradigm (Arnold, 1983), which states a correlation between the 

phenotype, performance and fitness of an organism, we expected to observe that differences in 

heat gain after the same amount of time under a heat source would translate into enhanced 

locomotor performance for the darkest (in terms of morphology) species (L. shitan) compared to 

the lighter coloured ones, as a result of faster heating rates (better performance). However, we 

found only partial support for this prediction. What we actually found was that the lightest 

coloured species (L. gununakuna) was slower than the darker ones, while L. shitan was as fast 

as L. elongatus; therefore, our results show the disadvantage of light colouration in cold 
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climates when lizards are exposed to a heat source for a limited time, but not a clear advantage 

for the darkest (or even totally black) species. Other aspects, such as behaviour and 

physiological flexibility, may be involved in the final success of a species. 

5. CONCLUSIONS 

The present study provides evidence to support the thermal function of dorsal melanistic 

colouration and its influence in reaching near-optimal temperatures from a starting point of 15 

°C (a low temperature, typical of early morning in spring-summer in Patagonia), thus favouring 

the thermal melanism hypothesis. Our results also indicate that paler species reach reasonable 

body temperatures, at which they can sustain activity either by behavioural or physiological 

strategies or by choosing short distances from shelter, as is the case of L. gununakuna (Moreno 

Azócar, unpublished data). For these reasons, it remains unclear if melanism is crucial for 

lizards inhabiting cold habitats. In addition to the thermal advantages for dark lizards (or the 

disadvantage of being too pale in cold regions), other functions of melanism such as sexual 

selection, camouflage, UV protection, and disease protection may be related to the colour 

patterns observed in the species studied here, and future studies may help to elucidate these 

questions. 
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Table 1. Differences in heating time thermal constants (TAU) between three Liolaemus species studied. Statistical values for gls, anova and post-hoc glht 

corresponding to the best model are shown, according to AICc values. Species are abbreviated by the initials (LG: L. gununakuna; LE: L. elongatus; LS: L. 

shitan). Significant values are shown in bold (α = 0.05). 

TAU ~ Species, weights = varIdent (form = ~ 1|Species) 

gls coefficients    anova    glht posthoc   

 Value S.E. t p  DF F p  Estimate S.E. z pr (>|z|) 

(Intercept) 8.302 0.523 15.862 0.000 (Intercept) 1 630.412 <.0001 LG-LE 1.929 1.507 1.280 0.388 

Species: LG 1.929 1.507 1.280 0.214 Species 2 7.4475 0.0036 LS-LE -1.949 0.626 -3.113 0.004 

Species: LS -1.949 0.626 -3.113 0.005 DF: 2,23    LS-LG -3.879 1.454 -2.667 0.018 

Table 2. Comparison of sprint speed performance variables for the studied species. Vmax: Maximum sprint speed; To; Temperature at which the species 

reaches Vmax; B80L; B80U; B80range: inferior, superior and temperature range at which lizards reach 80% of Vmax; B95L: B95U: B95 range: inferior, 

superior and temperature range at which lizards reach 95% of Vmax; Table shows statistical values for gls, anova and post-hoc glht corresponding to the best 

model according to AICc values for every variable. Species are abbreviated by the initials (LG: Liolaemus gununakuna; LE: L. elongatus; LS: L. shitan). 

Significant values are shown in bold. 

Vmax ~ Species, weights = varIdent (form = ~ 1|Species)                 

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 2.478 0.079 31.239 0.000 (Intercept) 1 2583.504 <.0001 LG -LE -0.388 0.155 -2.503 0.032 

SpLG -0.388 0.155 -2.503 0.015 Species 2 3.746 0.030 LS - LE -0.203 0.100 -2.026 0.103 

SpLS -0.203 0.100 -2.026 0.048 DF: 2,54       LS -LG 0.184 0.147 1.258 0.412 

To~Species*SVL                         
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gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 73.707 17.979 4.100 0.000 (Intercept) 1 7754.558 <.0001 LG -LE -24.489 97.790 -0.250 0.962 

SpLG -30.518 18.932 -1.612 0.115 Species 2 1.862 0.169 LS - LE -31.446 97.708 -0.322 0.937 

SpLS -39.758 19.383 -2.051 0.047 SVL 1 4.795 0.035 LS -LG -6.957 7.651 -0.909 0.600 

SVL -0.666 0.241 -2.760 0.009 Species:SVL 2 0.690 0.508       

SpLG:SVL 0.436 0.252 1.728 0.091 DF: 2, 44          

SpLS:SVL 0.589 0.257 2.295 0.027                   

B80i ~ Species * SVL, weights = varIdent (form = ~ 1|Species)                 

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 73.707 17.979 4.100 0.000 (Intercept) 1 11426.217 <.0001 LG -LE -30.518 18.932 -1.612 0.229 

SpLG -30.518 18.932 -1.612 0.115 Species 2 9.675 0.000 LS - LE -39.758 19.383 -2.051 0.093 

SpLS -39.758 19.383 -2.051 0.047 SVL 1 12.242 0.001 LS -LG -9.240 9.359 -0.987 0.572 

SVL -0.666 0.241 -2.760 0.009 Species:SVL 2 2.925 0.065       

SpLG:SVL 0.436 0.252 1.728 0.091 DF: 2, 48          

SpLS:SVL 0.589 0.257 2.295 0.027                   

B80i ~Species * SVL                         

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 73.707 133.855 0.551 0.585 (Intercept) 1 2865.446 <.0001 LG -LE -30.520 134.110 -0.228 0.968 

SpLG -30.518 134.106 -0.228 0.821 Species 2 4.307 0.020 LS - LE -39.760 134.000 -0.297 0.947 

SpLS -39.758 134.000 -0.297 0.768 SVL 1 4.709 0.036 LS -LG -9.240 10.310 -0.896 0.609 

SVL -0.666 1.796 -0.371 0.713 Species:SVL 2 0.769 0.470       
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SpLG:SVL 0.436 1.799 0.242 0.810 DF: 2,48          

SpLS:SVL 0.589 1.798 0.328 0.745                   

B80s ~ Species * SVL                      

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 55.852 45.543 1.226 0.229 (Intercept) 1 42689.600 <.0001 LG -LE -11.870 45.643 -0.260 0.959 

SpLG -11.870 45.643 -0.260 0.796 Species 2 0.750 0.479 LS - LE -14.874 45.595 -0.326 0.936 

SpLS -14.874 45.595 -0.326 0.746 SVL 1 4.150 0.050 LS -LG -3.004 3.711 -0.810 0.667 

SVL -0.241 0.611 -0.395 0.696 Species:SVL 2 0.510 0.606       

SpLG:SVL 0.167 0.612 0.273 0.786 DF: 2,39          

SpLS:SVL 0.212 0.612 0.346 0.732                   

B80s ~ Species * SVL, weights = varIdent (form = ~ 1|Species)                 

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 55.852 7.586 7.363 0.000 (Intercept) 1 162132.780 <.0001 LG -LE -11.870 7.900 -1.503 0.273 

SpLG -11.870 7.900 -1.503 0.143 Species 2 2.750 0.079 LS - LE -14.874 7.983 -1.863 0.138 

SpLS -14.874 7.983 -1.863 0.071 SVL 1 9.140 0.005 LS -LG -3.004 3.324 -0.904 0.623 

SVL -0.241 0.102 -2.369 0.024 Species:SVL 2 2.220 0.125       

SpLG:SVL 0.167 0.106 1.587 0.122 DF: 2, 39          

SpLS:SVL 0.212 0.106 1.994 0.055                   

B80Rango ~ Species * SVL                       

Coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) -17.855 93.047 -0.192 0.849 (Intercept) 1 1112.017 <.0001 LG -LE 23.809 93.222 0.255 0.960 
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SpLG 23.809 93.222 0.255 0.800 Species 2 2.629 0.084 LS - LE 25.266 93.149 0.271 0.955 

SpLS 25.266 93.149 0.271 0.788 SVL 1 1.685 0.202 LS -LG 1.457 7.174 0.203 0.975 

SVL 0.425 1.249 0.340 0.735 Species:SVL 2 0.115 0.891       

SpLG:SVL -0.349 1.251 -0.279 0.782 DF: 2, 47          

SpLS:SVL -0.382 1.250 -0.306 0.761           

B95i ~ Species * SVL                        

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) -51.914 107.139 -0.485 0.631 (Intercept) 1 5262.575 <.0001 LG -LE 96.636 107.349 0.900 0.606 

SpLG 96.636 107.349 0.900 0.374 Species 2 3.478 0.041 LS - LE 88.949 107.259 0.829 0.653 

SpLS 88.949 107.259 0.829 0.412 SVL 1 5.624 0.023 LS -LG -7.688 8.398 -0.915 0.596 

SVL 1.061 1.438 0.738 0.465 Species:SVL 2 1.004 0.376       

SpLG:SVL -1.258 1.440 -0.873 0.388 DF: 2, 44          

SpLS:SVL -1.138 1.439 -0.791 0.434                   

B95s ~ Species * SVL                        

gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) 63.604 71.891 0.885 0.382 (Intercept) 1 15406.423 <.0001 LG -LE -18.289 72.032 -0.254 0.961 

SpLG -18.289 72.032 -0.254 0.801 Species 2 1.666 0.204 LS - LE -26.263 71.987 -0.365 0.920 

SpLS -26.263 71.987 -0.365 0.717 SVL 1 3.033 0.090 LS -LG -7.975 5.837 -1.366 0.320 

SVL -0.383 0.965 -0.397 0.694 Species:SVL 2 1.321 0.280       

SpLG:SVL 0.252 0.966 0.261 0.796 DF: 2, 41          

SpLS:SVL 0.366 0.966 0.379 0.707                   

B95Rango ~ Species * SVL                       
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gls coefficients:       anova       glht posthoc       

  Value S.E. t p   DF F p   Estimate S.E. z pr (>|z|) 

(Intercept) -47.945 246.920 -0.194 0.847 (Intercept) 1 838.2199 <.0001 LG -LE 50.014 246.939 0.203 0.974 

SpLG 50.014 246.939 0.203 0.841 Species 2 2.2838 0.115 LS - LE 51.408 246.931 0.208 0.973 

SpLS 51.408 246.931 0.208 0.836 SVL 1 1.6755 0.203 LS -LG 1.395 3.862 0.361 0.921 

SVL 0.727 3.280 0.222 0.826 Species:SVL 2 0.165 0.848       

SpLG:SVL -0.681 3.280 -0.208 0.837 DF: 2, 46          

SpLS:SVL -0.707 3.280 -0.215 0.831                   

 

Table 3. Final body temperature and sprint speed after fixed heating time. Differences between the three Liolaemus species studied in final body 

temperature without (Tf15, Tf25) and with restricted movement (Tf15r), and sprint speed (Vmax15, Vmax25), after fixed heating for all initial body 

temperatures,. Statistical values for gls, anova and post-hoc glht corresponding to the best model according to AICc values are shown. Species are abbreviated 

by the initials (LG: L. gununakuna; LE: L. elongatus; LS: L. shitan). Significant values are shown in bold (α = 0.05). 

Tf15 ~ Species 

gls coefficients: anova glht posthoc 

  Value S.E. t p   DF F p   Estimate S.E. z  pr (>|z|) 

(Intercept) 24.852 0.226 109.745 0.000 (Intercept) 1 12144.430 <.0001 LE - LG 3.222 0.566 5.698 <.0001 

SpeciesLG 0.589 0.369 1.596 0.121 Species 2 16.770 <.0001 LS - LG 0.833 0.522 1.596 0.247 

SpeciesLS -2.291 0.414 -5.533 0.000 DF: 2, 31       LS - LE -2.389 0.575 -4.154 <.0001 

Tf25~ Species 

gls coefficients: anova glht posthoc 

  Value S.E. t p   DF F p   Estimate S.E. z  pr (>|z|) 
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(Intercept) 29.147 0.144 201.813 0.000 (Intercept) 1 40789.080 <.0001 LE - LG 0.723 0.351 2.058 0.099 

SpeciesLG -0.305 0.248 -1.229 0.228 Species 2 5.290 0.011 LS - LG -0.432 0.351 -1.229 0.436 

SpeciesLS -0.766 0.252 -3.042 0.005 DF: 2, 31       LS - LE -1.155 0.359 -3.218 0.004 

Tf15r~ Species 

gls coefficients: anova glht posthoc 

  Value S.E. t p   DF F p   Estimate S.E. z  pr (>|z|) 

(Intercept) 24.049 0.306 78.574 0.000 (Intercept) 1 12690.220 <.0001 LG-LE -1.141 0.515 -2.214 0.068 

SpeciesLG -1.141 0.515 -2.214 0.039 Species 2 3.690 0.043 LS - LE 0.356 0.515 0.691 0.768 

SpeciesLS 0.356 0.515 0.691 0.498 DF: 2, 31       LS - LG 1.497 0.586 2.554 0.029 

Vmax15~ Species 

gls coefficients: anova glht posthoc 

  Value S.E. t p   DF F p   Estimate S.E. z  pr (>|z|) 

(Intercept) 1.777 0.109 16.358 0.000 (Intercept) 1 408.799 <.0001 LE - LG 0.582 0.170 3.420 0.002 

SpeciesLG 0.515 0.210 2.445 0.020 Species 2 7.334 0.003 LS - LG 0.728 0.298 2.445 0.036 

SpeciesLS -0.178 0.163 -1.095 0.282 DF: 2, 31       LS - LE 0.145 0.308 0.472 0.881 

Vmax25~ Species 

gls coefficients: anova glht posthoc 

  Value S.E. t p   DF F p   Estimate S.E. z  pr (>|z|) 

(Intercept) 1.994 0.098 20.411 0.000 (Intercept) 1 412.829 <.0001 LE - LG 0.390 0.238 1.642 0.228 

SpeciesLG 0.495 0.168 2.946 0.006 Species 2 4.374 0.021 LS - LG 0.700 0.238 2.946 0.009 

SpeciesLS -0.033 0.170 -0.193 0.848 DF: 2, 31       LS - LE 0.310 0.243 1.276 0.409 Jo
ur

na
l P

re
-p

ro
of



30 
 

Fig. 1. Lizard species studied. A) Liolaemus shitan, B) L. elongatus, C) L. gununakuna. 

Fig. 2. Collection sites of the studied species. 

Fig. 3. Dorsal and Dorsolateral spots where colour measures were taken; head (1), nape (2), 

inter-scapular region (3), mid-dorsum (4), posterior region (between hind legs, 5), and tail base 

(6), cheek (7) shoulder (anti-humeral spot, 8), and flank (9).  

Fig. 4. Reflectance curves averaged for the three Liolaemus species studied (LG: L. 

gununakuna, N = 7; LE: L. elongatus, N = 9; and LS: L. shitan, N = 3), showing the percentage 

reflectance measured for every wavelength value in nanometers (nm) within the visible spectre 

range. ANOVA results are shown in the left upper corner of the figure.  

Fig. 5. A) Scatterplot of thermal time constants (TAU) for heating rates of the three Liolaemus 

species studied here and their variation in relation to body mass. Grey shadow represents 95% 

confidence interval. B). Boxplot of thermal time constants of heating rates measured for the 

three studied species. Different letters show significant differences between groups in the post 

hoc analysis. Sample size was 6 L. gununakuna, 10 L. elongatus and 10 L. shitan. 

Fig. 6. Sprint speed curves of performance against temperature, for the three Liolaemus species 

studied here (LG: L. gununakuna, N = 19; LE: L. elongatus, N = 13; and LS: L. shitan, N = 27). 

Fig. 7. Boxplot of final body temperature reached after 10 min heating for the three Liolaemus 

species studied, A) Initial temperature, Ti = 15 °C, free movement, N/Species: 13 L. 

gununakuna, 9 L. elongatus and 12 L. shitan., B) Ti = 15 °C, restricted movement, N/Species: 6 

L. gununakuna, 11 L. elongatus and 6 L. shitan. C), Ti = 25 °C, free movement, N/Species: 12 

L. gununakuna, 11 L. elongatus and 11 L. shitan. 

Fig. 8. Maximum sprint speed of the studied species measured after 10 min heating. A) Initial 

temperature is 15 °C, N/Species: 13 L. gununakuna, 9 L. elongatus and 12 L. shitan. C) . B) 

Initial temperature is 25 °C, N/Species: 12 L. gununakuna, 11 L. elongatus and 11 L. shitan. 

Different letters show significant differences between groups. 
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