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Abstract – The non-integrability of quantum systems, often associated with chaotic behavior, is
a concept typically applied to cases with a high-dimensional Hilbert space. Among different indi-
cators signaling this behavior, the study of the long-time oscillations of the Out-of-Time Ordered
Correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a
small number of degrees of freedom. Using such an approach, we consider the oscillations observed
after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain
on a nuclear magnetic resonance quantum simulator (Li J. et al., Phys. Rev. X, 7 (2017) 031011).
We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with
only 4 spins, the integrability-to-chaos transition inherited from the infinite chain.

Copyright c© EPLA, 2020

Introduction. – The Bohigas-Giannoni-Schmit (BGS)
conjecture [1,2] set a milestone in the study of quan-
tum chaos by linking the fluctuation properties of the
spectrum of a quantum system with the chaotic nature
of the underlying classical dynamics. The initial numeri-
cal calculations supporting this universal connection em-
ployed restricted energy spectra. High-energy states were
not considered because of numerical limitations, while the
lowest-energy ones (typically the first 10th or 50th lev-
els) were discarded from the statistical analysis on the
premise that chaos signatures were not expected for levels
close to the ground state. Analyzing large subsets of the
Hilbert space that leave aside the sector associated with
the ground state has been a common practice for later
work generalizing the study of level statistics to systems
without classical analogue or to many-body systems [3].
Such a restriction was also adopted when considering other
indicators of quantum chaos, like the Loschmidt echo [4],
the Eigenstate Thermalization Hypothesis (ETH) [5], and
the Out-of-Time Ordered Correlator (OTOC) [6].

A question that naturally emerges is whether there
are Quantum Chaos indicators for which it is possible
to detect chaos signatures within the usually discarded

low-energy sector. Or alternatively, when a small subsys-
tem is selected from a large chaotic system, whether or not
some “memory” of the universal nature of the latter sur-
vives. In the case in which the small subsystem remains
connected with the large one, the ETH provides a way
to address the previous question [5]. The case of isolated
small systems, where the whole spectrum is necessarily
close to the ground state, constitutes the purpose of this
work.

The issue concerning the persistence (or memory) of
chaos signatures in small isolated systems is not only in-
teresting from a fundamental point of view, but also for
its experimental relevance. Often, meaningful experimen-
tal results involving time-reversal protocols are obtained
in systems which are considerably smaller than the ones
for which the universal behavior is expected. And more-
over, a reduced range of parameters could be imposed by
the experimental conditions (i.e., relatively short times in
order to keep quantum coherence) [7–9]. In the case of
ref. [7] a nuclear magnetic resonance quantum simulator
has been developed in order to measure the OTOC of lo-
cal operators for a four-site Ising spin chain. The observa-
tion that the OTOC behaves differently according to the
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integrability or non-integrability of the unrestricted chain
stresses the importance of the previously stated question.
Using a spin chain with similar parameter values than the
experimental ones, we numerically show that the transi-
tion to chaos can be effectively described, despite the small
number of degrees of freedom, as well as the restriction
to the small times (and time-windows) attainable in the
laboratory.

The transition studied in ref. [7] was characterized from
the time behavior of the OTOC. Such a quantum chaos
indicator can be defined [6] as the product of the commu-
tator of two operators V̂ and Ŵ (t) through

C(t) = 〈[Ŵ (t), V̂ ]†[Ŵ (t), V̂ ]〉. (1)

The Heisenberg picture is assumed, and the angular brack-
ets denote the average over the initial state. Thus,
C(t) can be interpreted as the result of the operator
V̂ probing the spread of Ŵ , when the latter evolves in
time. This quantity, first considered in a semiclassical
theory of superconductivity [10], has recently been es-
tablished as a measure of quantum information spread-
ing and scrambling [11–20] that can be experimentally
addressed [7–9,21].

The link of OTOC with quantum chaos has been devel-
oped through different steps. For systems with a large
number of degrees of freedom, the initial exponential
growth of C(t) led to a definition of a “quantum Lyapunov
exponent”, which was shown to have a bound directly re-
lated to the system temperature [11]. The exponential
growth of the OTOC can be traced, in the case of systems
with a classical analogue, to the exponential separation
of trajectories in phase space [22–24]. Even if this ini-
tial exponential growth of the OTOC has been used as a
signature of quantum chaos [20,25–31], it has been shown
that it is not a universal feature. Counterexamples appear
in the case of non-integrable systems without a classical
counterpart, like in certain spin chains [20,32].

Concomitant with the limitations of focusing on the
short-time behavior of the OTOC to characterize chaos,
the long-time properties have been shown to exhibit the
signatures of integrability and non-integrability [24,27]. In
particular, a new way to gauge the transition from inte-
grability to chaos in a given system was proposed [33], by
quantifying the amplitude of the OTOC fluctuations be-
yond the scrambling time. This characterization is based
on the observation that the fluctuations of the OTOC af-
ter its initial short-time growth, are very large for systems
were the corresponding classical dynamic is regular. And
on the contrary, systems with a chaotic classical counter-
part exhibit, for long times, very small amplitude oscilla-
tions that remain close to a saturation value. For systems
without a classical analogue, the same systematic behav-
ior can be established by juxtaposing the amplitude of the
fluctuations to level spacing statistics and related quan-
tum chaos indicators. The fluctuation approach has been
tested for very different systems which share the common
feature of a parametric transition of the dynamics from

Fig. 1: Two examples of the renormalized OTOC c(t) as a
function of time for the case of the spin chain Hamiltonian of
eq. (3) with a transverse field hx = 1, choosing single-site Pauli
operators σ̂z at sites 0 and 3. The longitudinal field is hz = 0
(top panel) and hz = 0.5 (bottom panel). In the top panel,
we indicate a possible time window used to extract the value
the standard deviation σ, which is the key parameter for the
characterization of the integrability-chaos transition through
eq. (2). The number of spins in the chain is L = 4.

chaos to integrability, and has been shown to be success-
ful for large times and large Hilbert space sizes [33]. In
the sequel, we apply such a method to the case of short
spin chains, towards our quest for the signatures of chaos
in isolated small systems.

OTOC fluctuations to signal quantum chaos. –

We start our analysis by briefly describing the typical
time behavior of the OTOC. For two initially commuting
operators [V̂ , Ŵ ] = 0, the time evolving-operator spreads
over the (arbitrary) operator basis and the OTOC grows.
The specific law of this growth depends on the dynamics.
As mentioned above, an exponential growth has been re-
lated to chaos and quantum Lyapunov exponents. This
is, however, not universal, e.g., for spin chains it is a
power law even in the non-integrable cases [33,34]. Af-
ter the initial growth and a transient regime, the OTOC
oscillates around a constant value. For some paradigmatic
systems it has been observed [24,27,33] that, deep in the
chaotic regime, the large time behavior is approximately
constant with negligibly small fluctuations. The oppo-
site behavior —very large fluctuations, with small num-
ber of frequencies— is observed deep in the integrable
regime [22,34]. In fig. 1 we show a graphical example
of each extreme case —integrable on the top panel and
chaotic on the bottom panel for the spin chain defined
by eq. (3). The two possible behaviors above described
are clearly present after the initial sharp growth occurring
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up to the scrambling time ts (marked with a circle). For
chaotic systems ts (see, e.g., [12]) is approximately the
time it takes for the operator to spread over the whole
basis, and for the OTOC to approach an approximately
constant value. For systems with a classical counterpart
it is directly related to the Ehrenfest time [26,27]. After
that the OTOC sets around a constant average value, and
the fluctuation width depends on the dynamical features.
Very large amplitude oscillations can be observed in the
integrable (non-chaotic) case.

Two measures were introduced in order to quantify
the analogous fluctuations found in the case of long spin
chains [33]. A first one is based on the inverse of the

standard deviation σ =

√

〈c(t)
2
〉 − 1 of the renormalized

OTOC c(t) ≡ C(t)/〈C(t)〉, with the brackets standing for
the time average over a time window ∆t (see fig. 1). When
the fluctuations are small, σ−1 is large indicating that the
system is more chaotic. On the other hand for integrable
systems, fluctuations are large, yielding a small value of
σ−1. The second method is based on the localization in
Fourier space, measured by the corresponding participa-
tion ratio. Both methods were shown to yield equivalent
results [33]. For the simplicity of the presentation, we
only discuss in this work the results obtained by using the
first measure. And moreover, instead of considering the
standard deviation σ, we compute the measure

χ =
σ−1 − σ−1

min

σ−1
max − σ−1

min

. (2)

We assume that the dynamics of the system can be contin-
uously driven from regular to chaotic by changing one pa-
rameter and σ−1

min (σ−1
max) is the minimal (maximal) value

obtained when sweeping over the parameter range. There-
fore, χ → 0 in the integrable limit and χ → 1 in the chaotic
limit. The averages and standard deviations are computed
within a time window ∆t ≡ tf − ti, with ti taken equal to
or larger than the scrambling time ts.

OTOC-based chaos measure for local operators

in short spin chains. – We consider an Ising spin chain
described by the Hamiltonian

Ĥ(J, hx, hz) = −J

L−2
∑

i=0

σ̂z
i σ̂z

i+1 +

L−1
∑

i=0

(hxσ̂x
i +hzσ̂

z
i ), (3)

where L denotes the number of spin-1/2 sites in the chain,
σ̂µ

i represents the spin operator at site i = 0, 1, . . . , L − 1
with the corresponding Cartesian direction µ = x, y, z.
We set � = 1, such that energies are measured in units of
the interaction strength J , and times in units of J−1 [35].
The parameters hx and hz are, respectively, the strength
of the magnetic field in the (transverse) x direction, and in
the (parallel) z direction. A nearest neighbor (NN) inter-
action has been adopted and an open boundary condition
is chosen for the chain.

We now compute the OTOC and χ for the spin chain.
Selecting the Pauli spin operators σ̂µ

i for the definition of

the OTOC, eq. (1) can be written, in the infinite temper-
ature limit, as

Cµν
ij (t) =

1

2
〈[σ̂µ

i (t), σ̂ν
j ]2〉

= 1 − Re{Tr[σ̂µ
i (t)σ̂ν

j σ̂µ
i (t)σ̂ν

j ]}/D, (4)

where D is the dimension of the Hilbert space.
The OTOC for the system of eq. (3) has been suc-

cessfully measured in an experiment in an NMR quan-
tum simulator that uses the iodotrifluro-ethylene (C2F3I)
molecule [7], where the number of active spins is L = 4,
and the maximum operation times for the quantum evo-
lution are quite short. The time evolution of c(t) shown
in fig. 1, corresponds to realistic experimental values. Dif-
ferent choices of the OTOC operators and strengths of
the applied magnetic fields yield traces that, in agreement
with the results of ref. [7], have a different character for
the integrable and the non-integrable cases. Under a fixed
transverse field hx = 1, the difference in the long-time
behavior of c(t) between the regular case of hz = 0 (top
panel) and the chaotic one of hz = 0.5 (bottom panel) is
very clear. It is important to remark that, in our simu-
lations, the previous difference persists well beyond times
of the order of the ∆t indicated in fig. 1 (which has been
set as to correspond to the experimental case).

Using the parameter χ to characterize the transition
to chaos has been proven successful in the limit of a
large Hilbert space and a big ∆t [33]. As stated be-
fore, our approach is to adapt this analysis for realis-
tic parameter values that are similar to those of ref. [7].
In tackling this enterprise, we first notice that, as hz

increases, the energy spectrum spreads out. Therefore,
to compare equivalent temporal windows ∆t for different
hz we need to rescale ∆t. From the hz-dependent gap
Egap(hz) = max[E(hz)] − min[E(hz)] , we define a scaled

temporal window as ∆τ(hz , ∆t) ≡
Egap(hz)
Egap(0) ∆t.

In fig. 2 we show the results of χ when using different
time windows ∆τ for the OTOCs Czx

0,L−1 (top panel (a))
and Czz

0,1 (bottom panel (b)). The smallest ∆t is chosen
on the basis of the experimental measurements of ref. [7],
where it was possible to measure the local OTOCs for a
time window ∆t = 5.5 (from a peak value at t = 2.5 to a
maximum time at t = 8). The other time windows have
been chosen to show that, by taking larger intervals, the
results of χ become less noisy, approaching the large time
window limit (∆t � 103, black dashed lines). For all cases,
it can be clearly observed that there is a steep change in χ
as hz increases. The initial value of χ = 0, signalling the
integrable behavior for hz = 0 evolves in a way compatible
with a regime change from integrable to chaotic. For hz ≈
0.5 the parameter χ approaches a constant value. For large
enough hz (≈ 2) the parameter χ decays again to zero.
This behavior is easily understandable since, in the limit
hz ≫ hx, the Hamiltonian Ĥ ≈

∑

i hzσ̂
z
i is integrable.

The results shown in fig. 2 were obtained for two choices of
pairs of operators (for sites (0, 1) and (0, L−1)). However,
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Fig. 2: Parameter χ (defined in (2)) for the experimentally
studied spin-chain model (3), using different temporal windows
and two types of OTOCs: (a) Czx

0,3 , and (b) Czz
0,1. The aver-

aging intervals ∆τ are obtained from the rescaling of ∆t = 5.5
(empty circles), ∆t = 10 (filled crosses), ∆t = 20 (filled cir-
cles), and ∆t = 40 (filled points). The large-time window
result (∆t ≫ 1) is indicated by dashed lines.

we have checked that for all the other possible choices of
operators, corresponding to different sites and Cartesian
directions, the results are qualitatively similar to the ones
presented here (data not shown). The systematic variation
of time windows employed is important in order to verify
that the surprising signatures of the integrable-to-chaos
transition observed in the measurements and simulations
of ref. [7] are not simply a small-size small-time effect.
And thus, that the qualitatively different behavior of the
two regimes persists for relatively long times, despite the
small size of the system.

Having established that the signatures of the integrable-
to-chaotic transition obtained in short chains for short
times survive the consideration of longer times, we now
verify that the results for χ evolve throughout a varia-
tion of the chain length in a way that is consistent with
the phase transition characterizing the infinite chain. In
fig. 3 we show χ as a function of hz, with a fixed hx = 1,
for three chain lengths and different choices of the OTOC
operators, using the longest time window of the previous
analysis. The dashed lines correspond to L = 4 (also pre-
sented in fig. 2), the dotted lines correspond to L = 6 and
the solid lines to L = 8. It can be seen that the qualita-
tive features of χ do not change upon increasing the chain
length.

The appropriateness of the quantity σ for detecting
the chaos-to-integrability transition in very long chains
was tested by benchmarking against other indicators of
quantum chaos [33]. In the same way, we need to test

χ
(C

z
x

0
,3

)

χ(Czz
0,1)

hz

Fig. 3: Parameter χ for different chain lengths and two types
of OTOCs: (a) Czz

0,1, and (b) Czx
0,L−1. The chain lengths are:

L = 4 (dashed line), 6 (dotted line) and 8 (solid line). The
longest temporal window of fig. 2 is used in all cases.

Fig. 4: Signature of the chaos transition from spectral measures
for the spin chain model. The average PR ξ̄E for the spin site
basis (filled circles) and the ratios measure η (empty circles)
for a chain of length L = 12 (D = 4096) where we consider the
even parity subspace (Deven = 2079).

the accuracy of χ to yield the signatures of quantum
chaos. Towards this goal, we will use two standard bench-
marks. The first one, derived from the BGS conjec-
ture and particularly useful in the case of many-body
physics systems, is based on the distribution P (r̃), where
r̃n = min(rn, 1/rn) and rn = (En+1 − En)/(En − En−1)
is the ratio between the two nearest-neighbor spaces of
a given level En [36]. Contrary to other spacing distri-
butions, it does not require an energy unfolding, thus
avoiding an important difficulty encountered in many-
body systems, since the functional form of the level density
is generally unknown. From this distribution we can define
η ≡ (min(1/r, r) − IP )/(IWD − IP ), where IWD ≈ 0.536
(IP ≈ 0.386) are the limiting values of min(r, 1/r) for
Wigner-Dyson (Poisson) statistics. Thus, the limit η → 1
(η → 0) signals chaotic (regular) behavior.

As a complement of the previous spectral analysis, we
consider a measure based on the eigenfunctions. We de-
fine the normalized average participation ratio (PR) ξ̄E =

(Dξdeloc
E )−1

∑D−1
i=0 ξEi

, where ξEi
= (

∑D−1
j=0 |aij |

4)−1 is
the PR of a single energy eigenstate |Ei〉 =

∑

aij |φj〉 writ-
ten in some arbitrary basis {|φj〉}

D−1
j=0 . The PR represents

a measure of localization. Large values of ξ̄E character-
ize a delocalized eigenstate which are typically associated
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with chaos. For chaotic systems |aij |
2 are independent

random variables and ξdeloc
E ≈ D/3 [37,38].

In fig. 4 we show the behavior of the parameters η and
ξ̄E as a function of hz for the Hamiltonian of eq. (3), where
we have fixed hx = 1. The regime change detected through
the parameter χ for all values of ∆t and L is equally
present in the behavior of η and ξ̄E obtained for very
large chains. We remark that these last two parameters
rely on the statistical analysis of the spectrum. Therefore,
in order to obtain valid results from η and ξ̄E , very large
Hilbert spaces need to be considered (in fig. 4 D = 4096).
By the same token, these statistical approaches cannot be
applied to a simple L = 4 chain (with a Hilbert space size
D = 16). The characterization of the OTOC fluctuations
then appear as a privileged tool to address small systems
close to the experimentally studied setups.

OTOC chaos measure for non-local operators. –

On the one hand, the OTOC measurement with local op-
erators is an important accomplishment of ref. [7]. On
the other hand, for experimental NMR in solids, non-
local many-particle operators are more commonly treated.
Thus, the possible different behavior of the OTOC for lo-
cal and non-local operators appears as an important ques-
tion, also motivated by the study of settings where the
scrambling in a small system depends on the interaction
with a many-particle environment [39] and by the impor-
tance of non-locality in determining the short-time behav-
ior of the echo dynamics of quantum operators [40].

One important example of a non-local operator is the
total magnetization along the direction µ, σ̂µ =

∑L−1
i=0 σ̂µ

i .
We will refer to the resulting correlators as mixed or global
OTOCs, respectively, when they involve one or two non-
local operators. And we focus on the long time regime.
Let us first consider the mixed OTOC composed of a one-
site Pauli operator σ̂µ

i and a total magnetization operator
σ̂ν . Then eq. (1) can be expanded as

Cµν
i (t) =

L−1
∑

m=0

Cµν
im(t)+

L−1
∑

m �=n

Cµµνν
iimn (t)

≡ Cµν
local
mixed

(t) + Cµν
non−local

mixed

(t). (5)

The first term on the right-hand side corresponds to the lo-
cal contribution and is composed of the OTOC defined in
eq. (4) for one-site operators. We call the second term non-
local OTOC and it is expressed in terms of a four-point
out-of-time ordered correlator for the Pauli spin one-site
operators, which can be written (in the infinite tempera-
ture limit) as

Cµνζδ
ijlm (t) =

1

D
Tr[σ̂µ

i σ̂ν
j σ̂ζ

l (t)σ̂δ
m(t)]

−
1

D
Re{Tr[σ̂µ

i σ̂ζ
l (t)σ̂ν

j σ̂δ
m(t)]}. (6)

In fig. 5(a) we show the results of χ for the mixed OTOC
of operators V̂ = σ̂z

0 and Ŵ = σ̂x with their local and non-
local contribution terms from eq. (5). We can see that the

Fig. 5: Results of χ for the long-time temporal window in two
types of mixed OTOCs. (a) χ for the OTOC Czz

0 (t) (light blue
squares), the local contribution (purple circles) and the the
non-local contribution (green triangles). (b) The same as in
panel (a) applied to the mixed OTOC Czx

0 (t). The calculations
are done for 200000 points separated between t0 = 2.5 and
tf = 5000.

behavior is consistent with what is obtained in fig. 2 for
two local operators, and which is qualitatively equivalent
to the behavior of the spectral chaos indicators (shown in
fig. 4, computed using much larger Hilbert spaces). It is
clear that the general behavior is dominated by the local
contribution Czx

local
mixed

(t) (as was expected from the previous

analysis). Although the non-local contributions introduce
noise the whole χ still roughly pinpoints the transition.

Following the same procedure, we now consider the
global OTOC for two total magnetization operators σ̂µ

and σ̂ν . In this case eq. (1) can be expressed as

Cµν(t) =
∑

i,l

Cµν
il (t)+

∀(i�=j∧l �=m)
∑

i

∑

j

∑

l

∑

m

Cµνµν
ijlm (t)

≡ Cµν
local

(t) + Cµν
non-local(t). (7)

In fig. 5(b) we show the same analysis that was previ-
ously done for the mixed OTOC but applied to the global
OTOC. The results of χ are presented for V̂ = σ̂z and
Ŵ = σ̂x as well as their local and non-local contribution
terms from eq. (7). Once again, a transition in accordance
with the quantum chaos transition in the spectra of the
system is recovered for the local contribution to the OTOC
Czx

local
, but not for the non-local part Czx

local
. The effect of

the non-local term is more significant than it was for the
mixed OTOC, yielding a result for χ that does not resem-
ble the behavior of the spectral chaos measures (fig. 4)
at all. This result could impose limitations in the use of
the OTOC as chaos indicator in experiments where only
global magnetization measurements are available.
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Conclusions. – The OTOC is a widespread quantity
used to characterize quantum chaos, delocalization and er-
godic behavior. There are, by now, a few experiments al-
lowing to measure the OTOC as a function of time. In this
work we have focused on one experiment which simulates a
spin chain. Spin chains are interesting many-body systems
because they are examples of systems which are considered
chaotic but might not have an initial exponential growth
of the OTOC. A way to circumvent this problem is to an-
alyze the amplitude of the OTOC fluctuations for large
times (larger than the scrambling time if the system is
chaotic). The method of fluctuations has previously been
shown to work for very large time-windows and Hilbert
space sizes, or many particles. Here we show that the
method is surprisingly robust and can pinpoint the transi-
tion to chaos even in very small systems corresponding to
the regimes attainable by experiments. We have demon-
strated in this work that, for particle numbers and time
windows that are reachable by NMR experiments, the fluc-
tuations of the OTOC are able to detect the memory of the
chaotic nature characteristic of the infinite system. The
resulting signatures of the chaos-to-integrable transition
are qualitatively similar to the ones obtained with spec-
tral statistics measures that require a much larger number
of particles to be implemented.

Another important point that we have addressed is how
the local nature of the operators considered influences the
OTOC behavior. We have shown that in the OTOC for
total magnetization operators, only the local part seems
to have the information about the chaotic nature of the
dynamics. The non-local part contributes crucially mak-
ing the measure unreliable for these types of observables.
This is an important result, taking into account that in
most NMR experiments, the total magnetization observ-
ables are the easiest ones to measure.
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