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MAXIMAL OPERATORS FOR CUBE SKELETONS

ANDREA OLIVO AND PABLO SHMERKIN

Abstract. We study discretized maximal operators associated to averaging
over (neighborhoods of) squares in the plane and, more generally, k-skeletons
in R

n. Although these operators are known not to be bounded on any Lp,
we obtain nearly sharp Lp bounds for every small discretization scale. These
results are motivated by, and partially extend, recent results of T. Keleti, D.
Nagy and P. Shmerkin, and of R. Thornton, on sets that contain a scaled
k-sekeleton of the unit cube with center in every point of Rn.

1. Introduction and main results

1.1. Introduction. One of the most basic operators in analysis is the (centered)
Hardy-Littlewood maximal operator in R

n, defined as

Mf(x) = sup
r>0

1

Ln(B(x, r))

ˆ

B(x,r)

|f(y)| dLn,

for all functions f ∈ L1
loc, where Ln is the n-dimensional Lebesgue measure.

One of the most classical results in Analysis establishes that M is bounded
in Lp for all p ∈ (1,∞]. It is natural to consider similar operators, and study
their boundedness properties, where Lebesgue measure is replaced by some other
measure. In this direction, E. Stein [8] (for n ≥ 3) and J. Bourgain [1] (for
n = 2) studied the case of averages over spheres. More precisely, let Hs be the
s-dimensional Hausdorff measure, denote the (n − 1)-sphere with center x and
radius r by Sn−1(x, r) and define

Msphf(x) = sup
r>0

1

Hn−1(Sn−1(x, r))

ˆ

Sn−1(x,r)

|f(y)| dHn−1,

for f ∈ C(Rn). Stein proved that Msph is bounded in Lp for p > n/n − 1 if
n ≥ 3 and, ten years later, Bourgain proved the (more difficult) case n = 2; both
ranges are sharp, as seen from the indicators of small spherical caps. A simple
consequence of the Stein-Bourgain Theorem is that if a set E ⊂ R

n contains a
sphere with center in every point of Rn, then Ln(E) > 0. In the plane, this result
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was proved independently by Marstrand [6], without using maximal operators.
T. Wolff [10] studied a more general problem where the set of centers is an
arbitrary set (instead of all of Rn). More recently, I.  Laba and M. Pramanik [5]
have considered a similar problem in the line, with circles replaced by certain
Cantor sets. In particular, they proved that sets of fractional dimension can
differentiate some Lp spaces.

A similar geometric problem, in which circles are replaced by k-skeletons of n-
cubes with axes-parallel sides was recently studied by T. Keleti, D. Nagy and the
second author in [4], for the case n = 2, and by R. Thornton in [9] for n ≥ 3. In [4]
it was shown that a set in the plane containing a 1-skeleton with center in every
point of [0, 1]2 can have Lebesgue measure 0, and it was investigated how small
its fractal dimension can be for different notions of dimension. The arguments
from [4, 9] are direct and do not involve any maximal operators. The goal of
this paper is to study a natural k-skeleton maximal operator associated to this
geometric problem. As pointed out in [4], the most direct generalization of the
Stein-Bourgain maximal operator is not of interest, so we consider a more suitable
variant that, however, is not sublinear. Also, such operator cannot be bounded
from Lp to Lq for any finite p, for otherwise a set with a k-skeleton centered at
every point would have positive measure. We study, then, discretized versions
of the operator, and prove nearly sharp Lp bounds for them. As a corollary, we
recover one of the dimension bounds from [4, 9].

1.2. Definitions and notation. Throughout this paper, an n-cube will always
mean an n-dimensional cube with all sides parallel to the axes (unless otherwise
specified), that is, a set of the form

n∏

i=1

[xi − r, xi + r] = x+ [−r, r]n

for some x = (x1, . . . , xn) ∈ R
n, r > 0.

The expression
[
n
k

]
stands for all k-element subsets of {1, . . . , n}. For x ∈ R

n

and I ∈
[
n
k

]
, xI is the vector in R

k formed by taking the entries of x indexed by
I. The k-skeleton of an n-cube x+ [−r, r]n is the set x+

⋃
I∈[nk]

∏n
i=1AI,i where

AI,i = [−r, r] if i ∈ I and {−r, r} otherwise.
We denote the cardinality of E by |E|. If δ > 0, then

Eδ := {x ∈ R
n : d(E, x) < δ}

denotes the open δ-neighborhood of E, where from now on d denotes the distance
induced by the infinity norm.

We denote by Sk(x, r) the k-skeleton of an n-cube with center x and side

length 2r. The faces of Sk(x, r) are enumerated as Sjk(x, r), j = 1, . . . ,
(
n
k

)
2n−k

(we recall that if k = 0 then faces correspond to vertices, if k = 1 to edges,
etc). It is easy to see that an n-cube has N(n, k) =

(
n
k

)
2n−k k-faces. In what



MAXIMAL OPERATORS FOR CUBE SKELETONS 3

follows, we denote N = N(n, k) whenever k and n are clear from context. We
also write Sk,δ(x, r) := (Sk(x, r))δ for simplicity. Likewise, by Sjk,δ(x, r) we denote

the respective δ-neighborhood of Sjk(x, r). Observe that

(1.1) Ln(Sjk,δ(x, r)) = 2n(rkδn−k + δn) ≤ 2n+1rkδn−k.

We denote positive constants by C, indicating any parameters they may de-
pend on by subindices. Their values may change from line to line. For example,
Cn,k denotes a positive function of n and k.

1.3. k-skeleton maximal function. Fix 0 ≤ k < n and 0 < δ < 1. A first
attempt at a definition for the k-skeleton maximal function might be the follow-
ing:

Mk
δf(x) = sup

r>0

1

L(Sk,δ(x, r))

ˆ

Sk,δ(x,r)

|f(y)| dy,

However, if we take f to be the indicator of a small neighborhood of V =
[−1, 2]k × {0}n−k, then we see that Mk

δf(x) ≥ 1 for all x ∈ [0, 1]n (just choose r
such that the the cube centered at x has one of these k-faces inside V ). In other
words, we obtain a constant lower bound for a function with small norm from
just one k-face of the full skeleton. This leads to unnatural (and trivial) results.

Following [4, §7], we propose the following as a more interesting maximal
operator:

(1.2) Mk
δf(x) = sup

r>0

N

min
j=1

1

Ln(Sjk,δ(x, r))

ˆ

Sj
k,δ

(x,r)

|f(y)| dy,

This maximal operator takes into consideration all k-faces of an n-cube, but
unlike most other kinds of maximal operators, is not sub-linear. In this article
we focus on the restricted version of this operator, in which the side lengths are
bounded away from 0 and ∞:

Definition 1.1. The k-skeleton maximal operator with width δ is given, for each
f ∈ L1

loc(R
n), by

Mk
δ f(x) = sup

1≤r≤2

N

min
j=1

1

Ln(Sjk,δ(x, r))

ˆ

Sj
k,δ

(x,r)

|f(y)| dy.

See also Section 3 for an unrestricted variant. It is easy to deduce from the
Hardy-Littlewood Theorem that the Mk

δ are bounded in Lp for p ≥ 1 (with
a bound depending on δ). The problem we investigate is the rate at which
‖Mk

δ ‖Lp→Lp increases as δ ↓ 0, where as usual

∥∥Mk
δ

∥∥
Lp→Lq = sup

f 6=0

∥∥Mk
δ f
∥∥
Lq

‖f‖Lp

.
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Note that, since Mk
δ (λf) = λMk

δ (f), for λ ∈ R, it is enough to consider functions
f such that ‖f‖Lp = 1. The problem of finding bounds for

∥∥Mk
δ

∥∥
Lp→Lq for p 6= q

will be addressed in a forthcoming paper.
Our main result is the following:

Theorem 1.2. Given 0 ≤ k < n, 1 ≤ p < ∞ and ε > 0, there exist positive
constants C ′(n, k, ε), C(n, k) such that

C ′(n, k, ε) · δ
k−n
2np

+ε ≤
∥∥Mk

δ

∥∥
Lp→Lp ≤ C(n, k) · δ

k−n
2np .

for all δ ∈ (0, 1).

We deduce the lower bound from a construction from [4, 9]. For the proof
of the upper bound, we follow the standard strategy of reducing the problem
to one of geometric intersections via a procedure that involves discretization,
linearization and duality. However, the fact that we are taking the minimum
over all k-faces in the definition of Mk

δ requires us to introduce several variants
in the argument. Namely, we apply a combinatorial lemma from [4, 9] to fix one
face in each k-skeleton in such a a way that once we come to the problem of
estimating intersections we are able to get the correct bound. This extra layer
in the argument requires us to take extra care in the order in which each step is
applied.

2. Proof of Theorem 1.2

2.1. The lower bound. We start by proving the lower bound in Theorem 1.2:

Proposition 2.1. For any p ∈ (1,∞) we have the estimate
∥∥Mk

δ

∥∥
Lp→Lp ≥ C ′(n, k, ε) · δ

k−n
2np

+ε.

Proof. By [9, Theorem 5.3], there exists a compact set B ⊂ R
n containing the

k-skeleton of an n-cube around every point of [0, 1]n, such that dimB(B) =

k + (n−k)(2n−1)
2n

.
We cannot directly apply our operator to the indicator function of a neighbor-

hood of B because we do not know that the side lengths are between 1 and 2, but
this is easily dealt with by pigeonholing and rescaling. Let h : [0, 1]n → (0,+∞)
be the function defined as h(x) = rx if x is the center of Sk(x, rx) ⊂ B and define
the sets Hm := h−1(2m, 2m+1], m ∈ Z. Following the construction of B (see [9,
Theorem 5.3]), it is easy to see that h is a measurable function. Since [0, 1]n is
the disjoint union of the sets Hm, there exists m such that L(Hm) > 0; we work
with this m for the rest of the proof.

Consider the bi-Lipschitz function g : Rn → R
n defined as g(x) = 2−mx, then

B̃ := g(B) contains k-skeletons with center in every point of Hm and side length
1 < r ≤ 2. Moreover, by the bi-Lipschitz stability of box dimension (see [2,

Chapter 3.1]), dimB B̃ = dimBB.
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Let f be the indicator function of B̃δ. Then Mk
δ f(x) ≥ 1 for all x ∈ Hm, so that

L(Hm)1/p ≤
∥∥Mk

δ f
∥∥
Lp . On the other hand, ‖f‖Lp = L(B̃δ)

1/p. By the definition

of box dimension (see [2, Proposition 3.2]) we have L(B̃δ) ≤ C ′′
Hm,εδ

(n−k)/2n−pε

and this yields the claim. �

2.2. Discretization and linearization. In this section we introduce a suitable
linearization of the operator Mk

δ . As remarked in the introduction, this requires
additional work compared to similar problems in the literature.

We denote the half-open unit cube by Q0, i.e. Q0 = [0, 1)n. For 0 < δ < 1,
we define Q∗

0 := Q0 ∩ δZ
n. From now on we assume that 1/δ is an integer. Note

that it is enough to prove the upper bound in Theorem 1.2 in this case.
Our next goal is to extract, given a finite set of k-skeletons, one face from each

skeleton in such a way that the overlaps are controlled. For this, the next result
plays a crucial role.

Theorem 2.2. [9, (n, ℓ)-Dimensional Main Lemma (Theorem 2.7)] If A ⊆
R
ℓ, X ⊆ R

n are any finite sets such that

∀x ∈ X ∃r ∈ R
+ ∀I ∈

[
n

ℓ

]
∀σ ∈ {−1, 1}ℓ : xI + rσ ∈ A,

then |A| ≥ cn,ℓ|X|ℓ(2n−1)/(2n2), where cn,ℓ > 0 depends only on n, ℓ and not on the
sets A,X.

Lemma 2.3. There is a constant Cn,k < ∞, depending only on n, k, such that
the following holds. Let {Sk(xi, ri)}

u
i=1 be a finite collection of k-skeletons in

R
n. Then it is possible to choose one k-face of each skeleton with the following

property: If V is an affine k-plane which is a translate of a coordinate k-plane,
then V contains at most

Cn,ku
1− (n−k)(2n−1)

2n2

of the chosen k-faces.

Proof. Given an affine k-plane V in R
n, let z(V ) ∈ R

n−k denote the intersection
point of V with the subspace orthogonal to V . Now consider a k-skeleton of an
n-cube with center y and side length 2r. Each of its k-faces belongs to a k-plane
V with

z(V ) = yI + rσ,

where σ ∈ {−1, 1}n−k and I ∈
[
n

n−k

]
.

Let A be the set of all affine k-planes containing some k-face of some of the
Sk(xi, ri), and write

A′ = {z(V ) : V ∈ A}

=

{
(xj)I + rjσ : I ∈

[
n

n− k

]
, σ ∈ {−1, 1}n−k, 1 ≤ j ≤ u

}
.
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Applying the (n, ℓ)-Dimensional Main Lemma with ℓ = n − k to A′ and X =
{x1, . . . , xu}, and using the trivial bound |A| ≥ |A′|, we get a lower bound for
|A| in terms of u:

|A| ≥ cn,ku
(n−k)(2n−1)/2n2

.

Let V1, . . . , V|A| be the different k-planes in A, and let nj the number of k-
skeletons with some face contained in Vj . Then

|A|∑

j=1

nj = uN ⇒ ∃ j0 such that nj0 ≤
uN

|A|
≤ c−1

n,kNu
1−

(n−k)(2n−1)

2n2 .

For this value of j0, choose the face of each of the nj0 k-skeletons which is
contained in Vj0.

Now, we inductively apply the same procedure for the remaining u1 := u−nj0

skeletons, and we continue for as long as up > u1−
(n−k)(2n−1)

2n2 (here u is the original

number of k-skeletons). If up ≤ u1−
(n−k)(2n−1)

2n2 , then we choose an arbitrary face
from each of the remaining k skeletons.

�

We will now define several convenient discretizations. Given x ∈ Q0, we will
denote by x∗ the center of the half-open n-cube with vertices in Q∗

0 and side
length δ containing x.

Definition 2.4. Let Γ denote the family of all functions ρ : Q∗
0 → [1, 2] ∩ δZ.

Enumerate Q∗
0 = {x1, . . . , xs}. Fix also ρ ∈ Γ. For simplicity, let us write

Sk,i = Sk(xi, ri), where ri = ρ(xi) and 1 ≤ i ≤ s.
For this family of k-skeletons, we define the function Φρ:

Φρ(Sk(xi, ri)) = ℓji

where ℓji denotes the face of Sk,i chosen as in Lemma 2.3.

Definition 2.5. Given a function ρ ∈ Γ and 0 < δ < 1, if f ∈ L1
loc(R

n) we
define the (ρ, k)-skeleton maximal function with width δ,

M̃k
ρ,δf : Q0 → R,

M̃k
ρ,δf(x) =

1

L(ℓx,δ)

ˆ

ℓx,δ

f(y) dy,

where ℓx,δ is the δ-neighborhood of ℓx := Φρ(Sk(x
∗, ρ(x∗))).

By definition, M̃k
ρ,δ is a linear operator. We shall see that it is enough to

control its behavior in order to control Mk
δ over the domain Q0. Let CQ0 denote

the n-cube with the same center as Q0 and side length C. Since r is bounded
by 2, in the previous definition it is enough to consider functions f supported on
7Q0, because if x ∈ Q0 then Sk,δ(x, r) ⊆ 7Q0.
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Lemma 2.6. There exists a constant Cn,k > 0 such that if 0 < δ < 1,

∥∥Mk
δ

∥∥
Lp→Lp(Q0)

≤ Cn,k sup
ρ∈Γ

∥∥∥M̃k
ρ,3δ

∥∥∥
Lp→Lp(Q0)

.

Proof. Given ε > 0, pick f ∈ Lp with f ≥ 0 and ‖f‖p = 1 such that
∥∥Mk

δ

∥∥
Lp→Lp(Q0)

≤
∥∥Mk

δ f
∥∥
p

+ ε.

We claim that there exists a function ρ ∈ Γ (depending on f) for which

(2.1) Mk
δ f(x) ≤ 3n−kM̃k

ρ,3δf(x) + ε for all x ∈ Q0.

Indeed, if x ∈ Q0 it is easy to see that Sjk,δ(x, r) ⊂ Sjk,2δ(x
∗, r) for all r ∈ [1, 2]

and all 1 ≤ j ≤ N and therefore

Mk
δ f(x) ≤ 2n−kMk

2δf(x∗).

Now, given ε > 0 as above, for each x∗ there exists r′ = r′(x∗) ∈ [1, 2] such
that

Mk
2δf(x∗) ≤

N

min
j=1

1

L(Sjk,2δ(x
∗, r′))

ˆ

Sj
k,2δ(x

∗,r′)

f(y) dy + ε.

Let r = r(x∗) ∈ [1, 2] ∩ δZ be the closest point to r′ (if there are two, pick
the leftmost one) and define the function x → ρ(x∗) = r. Since Sjk,2δ(x

∗, r′) ⊂

Sjk,3δ(x
∗, r) for all j,

Mk
2δf(x∗) ≤ (3/2)n−k

N

min
j=1

1

L(Sjk,3δ(x
∗, r))

ˆ

Sj
k,3δ(x

∗,r)

f(y) dy + ε/2

≤ (3/2)n−kM̃k
ρ,3δf(x) + ε,

We have shown that (2.1) holds. We conclude that

∥∥Mk
δ f
∥∥
Lp(Q0)

≤ 3n−k
∥∥∥M̃k

ρ,3δf
∥∥∥
Lp(Q0)

+ ε,

so that, recalling the choice of f and letting ε→ 0, we obtain the claim. �

2.3. bounds for the (ρ, k)-skeleton maximal operator. In this section we
will obtain bounds for the (ρ, k)-skeleton maximal operator on Lp for certain
values of p using duality. For this, we use some ideas from [7, Chapter 22].

The n canonical vectors e1, . . . , en in R
n determine

(
n
k

)
coordinate k-planes.

We will denote these k-planes as π1, . . . , π(n
k)
. Each k-face of a k-skeleton of

an n-cube is contained in an affine k-plane which is a translate of some πω,
1 ≤ ω ≤

(
n
k

)
; in this case we say that this k-face is parallel to πω (In the case

k = 0, the origin is the 0-plane determined by the axes).
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Definition 2.7. Let ρ ∈ Γ and let x1, . . . , xs be an enumeration of Q∗
0. Consider

the k-skeletons Sk,i = Sk(xi, ρ(xi)), i = 1, . . . , s. We define the sets

Eπω := {xi ∈ Q∗
0 : Φ(Sk,i) = ℓik is parallel to πω},

In the case k = 0, we just consider the whole space Q∗
0.

For notational convenience, we write ψ : Q0 → Q∗
0, x 7→ x∗. Observe that

{ψ−1(Eπω)} is a Borel partition of Q0.

Proposition 2.8. Let 1 < p < ∞, q = p
p−1

, 0 < δ < 1, 0 < K < ∞, and

let ρ ∈ Γ be given. Fix a k-plane π determined by the canonical vectors, let
u = |Eπ| and enumerate Eπ = {x1, . . . , xu}. Write ℓik,δ for the δ-neighborhood of
Φ(Sk(xi, ρ(xi))). Assume that

∥∥∥∥∥

u∑

i=1

ti1ℓi
k,δ

∥∥∥∥∥
Lq(7Q0)

≤ K

whenever t1, . . . , tu are positive numbers with

δn−kq
u∑

i=1

tqi ≤ 1.

Then ∥∥∥M̃k
ρ,δf
∥∥∥
Lp(ψ−1(Eπ))

≤ K ‖f‖Lp(Q0)
for all f ∈ Lp(7Q0).

Proof. Fix f ∈ Lp(7Q0). To begin, we estimate

ˆ

ψ−1(Eπ)

|M̃k
ρ,δf(x)|p dx =

u∑

i=1

ˆ

ψ−1(xi)

|M̃k
ρ,δf(x)|p dx

≤

u∑

i=1

Ln(ψ−1(xi))|M̃
k
ρ,δf(xi)|

p

= δn
u∑

i=1

|M̃k
ρ,δf(xi)|

p.

By duality, for any ai ≥ 0, i = 1, . . . , u,

(
u∑

i=1

ai
p

)1/p

= max

{
u∑

i=1

aibi : bi ≥ 0,

u∑

i=1

bi
q ≤ 1

}
.
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Applying this to ai = |M̃k
ρ,δf(xi)|δ

n/p, we get

∥∥∥M̃k
ρ,δf
∥∥∥
Lp(ψ−1(Eπ))

≤

(
u∑

i=1

(
|M̃k

ρ,δf(xi)|δ
n/p
)p
)1/p

= max

{
u∑

i=1

δn/pbi|M̃
k
ρ,δf(xi)| : bi ≥ 0,

u∑

i=1

bqi ≤ 1

}

= δn−k max

{
u∑

i=1

ti|M̃
k
ρ,δf(xi)| : δn−kq

u∑

i=1

tqi ≤ 1

}
,

making the change of variable ti = δ
n
p
−(n−k)bi.

Therefore there exist ti ≥ 0 with δn−kq
∑u

i=1 t
q
i ≤ 1 such that

∥∥∥M̃k
ρ,δf
∥∥∥
Lp(ψ−1(Eπ))

≤ δn−k
u∑

i=1

ti|M̃
k
ρ,δf(xi)|

≤ δn−k
u∑

i=1

ti
1

L(ℓik,δ)

ˆ

ℓi
k,δ

|f(y)| dy

≤ 2−n
u∑

i=1

ti

ˆ

ℓi
k,δ

|f(y)| dy,

using (1.1) and that ρ(xi) ≥ 1 for all i.
Finally, by Hölder’s inequality (and bounding 2−n ≤ 1)

∥∥∥M̃k
ρ,δf
∥∥∥
Lp(ψ−1(Eπ))

≤

ˆ

7Q0

(
u∑

i=1

ti1ℓi
k,4δ

)
|f(y)| dy

≤

∥∥∥∥∥

u∑

i=1

ti1ℓi
k,δ

∥∥∥∥∥
Lq

‖f‖Lp(7Q0)

≤ K ‖f‖Lp(7Q0)
.

This finishes the proof. �

Let m′ = m
m−1

, with 2 ≤ m ∈ N.

Proposition 2.9. For all 0 < δ < 1, ρ ∈ Γ, 2 ≤ m ∈ N and f ∈ Lm
′

(7Q0),

(2.2)
∥∥∥M̃k

ρ,δf
∥∥∥
Lm′ (Q0)

≤ Cn,kδ
k−n
2n

. 1
m′ ‖f‖Lm′ (7Q0)

,

where Cn,k > 0 depends on n, k only (in particular, it is independent of ρ and
m).

Proof. In the course of the proof Cn,k denote positive constants that depend on
n and k only; their value can change from line to line.
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Let f ∈ Lm
′

(7Q0) and consider the coordinate k-planes π1, . . . , π(n
k)

. It is

enough to bound the Lm
′

-norm of M̃k
ρ,δf over each set ψ−1(Eπω). Hence we fix

ω and we work with πω for the rest of the proof. Let x1, . . . , xu be the points in
ψ−1(Eπω) and let ℓ1k,δ . . . , ℓ

u
k,δ be as in Proposition 2.8. By this proposition, it is

enough to show that

(2.3)

∥∥∥∥∥

u∑

i=1

ti1ℓi
k,δ

∥∥∥∥∥
Lm(7Q0)

≤ Cn,kδ
k−n
2n

. 1
m′ ,

whenever t1, . . . , tu are positive real numbers with δn−mk
u∑

i=1

tmi ≤ 1. Fix, then

t1, . . . , tu satisfying this. Let

I :=

∥∥∥∥∥

u∑

i=1

ti1ℓi
k,δ

∥∥∥∥∥

m

Lm(7Q0)

=

u∑

i1,...,im=1

ti1 . . . timLn(ℓi1k,δ ∩ . . . ∩ ℓ
im
k,δ).

The sum in I involves the measures of the intersections of δ-neighborhoods of
parallel k-faces taken from m different k-skeletons. We note that this measure
will often be 0 and, by (1.1), is always bounded above by 2n+k+1δn−k.

For simplicity, let us write

Li1...im = Ln
(
ℓi1k,δ ∩ . . . ∩ ℓ

im
k,δ

)
.

Using Hölder’s inequality, we estimate

I =

u∑

i1,...,im=1

ti1 · · · timL
1/m
i1...im

· · ·L
1/m
i1...im

≤

(
u∑

i1,...,im=1

tmi1Li1...im

)1/m

. . .

(
u∑

i1,...,im=1

tmimLi1...im

)1/m

=

u∑

i1=1

tmi1

u∑

i2,...,im=1

Li1...im ,(2.4)

since all the factors in the second line are equal.
Recall that the faces were selected according to Lemma 2.3, and that any two

faces which are not contained in the same plane are δ-separated. It follows that
if we fix the value of i1, there are at most

Cm−1
n,k u

(m−1)

(

1−
(n−k)(2n−1)

2n2

)
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tuples (i2, . . . , im) such that ℓi1k,δ ∩ . . . ∩ ℓ
im
k,δ 6= ∅. Since u = |Eπ| ≤ δ−n, for each

fixed i1 we estimate
u∑

i2,...,im=1

Li1...im ≤ 2n+k+1δn−kCm−1
n,k

(
δ−n+

(n−k)(2n−1)
2n

)m−1

.

Combining this with (2.4), and then using that
∑u

i=1 t
m
i ≤ δmk−n, after some

algebra we get

I ≤ Cm
n,k

(
δ−n+

(n−k)(2n−1)
2n

)m−1
u∑

i1=1

tmi1

≤ Cm
n,kδ

(k−n)(m−1)
2n .

This establishes (2.3) and finishes the proof.
�

By letting m→ ∞ in Proposition 2.9, we obtain the following corollary:

Corollary 2.10. For all 0 < δ < 1, ρ ∈ Γ and f ∈ L1(7Q0),∥∥∥M̃k
ρ,δf
∥∥∥
L1(Q0)

≤ Cn,kδ
k−n
2n ‖f‖L1(7Q0)

.

Proof. Fix f ∈ L∞(7Q0). We have ‖f‖m′ → ‖f‖1 when m→ ∞. Likewise, since

M̃k
ρ,δ f is bounded, we have

∥∥∥M̃k
ρ,δ f

∥∥∥
m′

→
∥∥∥M̃k

ρ,δ f
∥∥∥
1

as m→ ∞. The claim then

follows from Proposition 2.9 by letting m→ ∞. �

2.4. Conclusion of the proof. We are now able to conclude the proof of The-
orem 1.2.

Proof of Theorem 1.2. In light of Proposition 2.1, we only need to establish the
upper bound.

It follows from Corollary 2.10, the trivial bound
∥∥∥M̃k

ρ,3δf
∥∥∥
L∞(Q0)

≤ ‖f‖L∞(7Q0)

and the Riesz-Thorin Theorem (see e.g. [3, Theorem 1.3.4]) that
∥∥∥M̃k

ρ,3δf
∥∥∥
Lp(Q0)

≤ Cn,kδ
k−n
2np ‖f‖Lp(7Q0)

,

for all f ∈ Lp(7Q0), 1 ≤ p ≤ ∞.
Since this bound is independent of ρ ∈ Γ, it follows from Lemma 2.6 that

(2.5)
∥∥Mk

δ f
∥∥
Lp(Q0)

≤ Cn,kδ
k−n
2np ‖f‖Lp(7Q0)

.

For each z = (z1, . . . , zn) ∈ Z
n we denote

Qz = [z1, z1 + 1) × · · · × [zn, zn + 1).
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By translation invariance, (2.5) continues to hold if we replace Q0 by Qz on both
sides of the inequality. This allows us to extend the bound to all of Rn. Given
f ∈ Lp(Rn), we have

ˆ

Rn

|Mk
δ f(x)|pdx =

∑

z∈Zn

ˆ

1Qz
|Mk

δ f(x)|p dx

≤ Cp
n,kδ

k−n
2n

∑

z∈Zn

ˆ

7Qz

|f(x)|p dx

= Cp
n,kδ

k−n
2n

ˆ

(
∑

z∈Zn

17Qz
(x)

)
|f(x)|p dx

≤ C ′Cp
n,kδ

k−n
2n ‖f‖pLp(Rn) ,

where C ′ =
∥∥∑

z∈Zn 17Qz

∥∥
∞

. �

3. An extension and an application

3.1. An unrestricted extension. In this section we extend Theorem 1.2 to
the following unrestricted version:

Definition 3.1. For f ∈ L1
loc

(Rn) we define:

Mk
δf(x) = sup

r:R2→(δ,2]

Akr,δf(x),

where

Akr,δf(x) =
N

min
j=1

1

L(Sjk,δ(x, r(x)))

ˆ

Sj
k,δ

(x,r(x))

|f(y)|dy.

Theorem 3.2. Given 0 ≤ k < n, p ∈ [1,∞), there exist a positive constant Cn,k
such that

∥∥Mk
δf
∥∥
Lp(Rn)

≤ Cn,kδ
k−n
2np ‖f‖Lp(Rn) for all f ∈ Lp(Rn).

We begin by considering the case where the side lengths are between 2t and
2t+1.

Definition 3.3. Given 0 < δ < 1 and f ∈ L1
loc(R

n), define

Mk
δ,tf(x) = sup

2t≤r≤2t+1

N

min
j=1

1

L(Sjk,δ(x, r))

ˆ

Sj
k,δ

(x,r)

|f(y)|dy,

where t ∈ Z is fixed.

Lemma 3.4. ∥∥Mk
δ,t

∥∥
Lp→Lp =

∥∥Mk
2−tδ

∥∥
Lp→Lp .
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Proof. Let 2t ≤ r ≤ 2t+1. We use the usual shorthand
ffl

A
f = Ln(A)−1

´

A
f . Let

f ∈ Lp(Rn) and let g(·) = f(2t·). Changing variables one can check that

 

Sj
δ
(x,r)

|f(y)|dy =

 

Sj

2−tδ
(2−tx,r̃)

|f(2ty)| dy.

Therefore Mk
2−tδg(2−tx) = Mk

δ,tf(x) and hence

‖Mk
2−tδg‖p/‖g‖p = ‖Mk

δ,tf‖p/‖f‖p,

giving the claim. �

Remark 3.1. Lemma 3.4 together with Theorem 1.2 show that if we allow k-
skeletons of cubes with arbitrarily large side lengths then the corresponding max-
imal operator cannot be bounded.

On the other hand, if we allow side lengths smaller than δ, then Sδ,k(x, r)
becomes an n-cube with center x and side length ≈ δ, so we are back to averaging
over full cubes, similar to the classical Hardy-Littlewood maximal operator. For
this reason in Definition 3.1 we restrict ourselves to cubes of sides between δ and
2.

Proof of Theorem 3.2. Fix a function r : R2 → (δ, 2] and define the level sets

Ωt := {x ∈ R
n : 2t ≤ r(x) < 2t+1}.

Letting log be the base 2 logarithm, we have

ˆ

Rn

(Akr,δf(x))p dx =

0∑

t=⌊log(δ)⌋

ˆ

Ωt

(Akr,δf(x))p dx

≤
0∑

t=⌊log δ⌋

ˆ

Rn

(Mk
δ,tf(x))p dx

≤

0∑

t=⌊log δ⌋

∥∥Mk
2−tδf

∥∥p
p

≤ Cn,kδ
k−n
2n ‖f‖pp

0∑

t=−∞

2t
n−k
2n

= Cn,kδ
k−n
2n ‖f‖pp .

Since this holds for every function r, we obtain the desired result. �
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3.2. A geometric corollary. The following corollary of Theorem 3.2 recovers
the special case of [9, Theorem 1.1(2)] in which dimB(S) = n.

Corollary 3.5. For any 0 ≤ k < n and bounded sets A,B ⊆ R
n such that

dimB(A) = n and B contains the k-skeleton of a n-cube around every point of
A,

dimB(B) ≥ n−
1

2
+

k

2n
.

Proof. Since B is bounded, by rescaling we may assume that all the cubes have
side lengths ≤ 2. Fix a small δ > 0. Note that for each x ∈ Aδ there is r ∈ [δ, 2]
such that Sk,δ(x, r) ⊂ B2δ. It follows that

Mk
δ1B2δ

(x) = 1 for all x ∈ Aδ.

Then, by Theorem 3.2 applied with p = 1,

Ln(Aδ) ≤ Cn,kδ
k−n
2n Ln(B2δ).

The corollary now follows from the definition of box dimension in terms of vol-
umes of neighborhoods, see [2, Proposition 3.2]. �

Remark 3.2. The proof yields a lower bound for dimB(B) in terms of dimB(A)
for any values of the latter, but these bounds are worse than the sharp ones
obtained in [4, 9] unless dimB(A) = n.
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