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Abstract

We analyze the effect of the barrier motion on the Bose-Hubbard Hamiltonian of a ring-shaped

Bose-Einstein condensate interrupted by a pair of Josephson junctions, a configuration which is

the cold atom analog of the well-known dc superconducting quantum interference device (SQUID).

Such an effect is also shown to modify the Heisenberg equation of motion of the boson field operator

in the two-mode approximation, where a hysteretic contribution that could affect the dynamics for

accelerated or overlapping barriers is identified. By studying the energy landscape as a function

of order and control parameters, we determine the diagram with the location of the dc and ac

Josephson regimes, along with the critical points that are shown to depend on the junctions posi-

tion. We analyze the dc to ac Josephson transition for adiabatic barrier trajectories that lead to a

final uniform velocity, or which perform symmetric velocity paths. We show that such symmetric

trajectories may induce, when reaching the critical point, highly hysteretic oscillating return paths

within the dc regime, similar to the underdamped hysteresis loops arising from the action of a

resistive flow in the ac regime. We also consider nonequilibrium initial conditions resulting from

a finite phase difference on either side of the junctions, along with the critical features of such a

parameter. An excellent agreement between the Gross-Pitaevskii simulations and the two-mode

results is found in all cases.
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I. INTRODUCTION

A direct current superconducting quantum interference device (dc-SQUID) basically con-

sists of a ring of superconducting wire interrupted by two non-superconducting barriers

(Josephson junctions). Wire leads connected to each side of the device act as a splitter and

a recombiner, as a steady bias current flowing from the splitter enters the ring and gives

rise to the quantum interference of currents emerging from each Josephson junction (JJ)

at reaching the recombiner [1]. A magnetic field threading the ring causes a phase shift

between both currents, an effect which may be utilized to implement a magnetic flux detec-

tor. As a result, dc-SQUIDs constitute today the most sensitive detectors for magnetic flux

available [1]. On the other hand, in a superfluid, the role of the magnetic field is played by

rotation, and superfluid helium dc-SQUIDs acting as rotation sensors have been experimen-

tally implemented [2]. More recently, a cold atom analog of the dc-SQUID was created on

a toroidal Bose-Einstein condensate (BEC), which works as follows [3–5]. By slowly moving

a pair of JJs circumferentially toward each other, there is an induced atom flow through

the junctions that keeps the density and the chemical potential unchanged at both sides of

the barriers. This is in close analogy to the superconducting dc Josephson effect, where a

direct current may flow across a JJ without a driving potential difference [6–8]. However,

if the speed of the junctions exceeds certain value such that the induced atom flow through

them reaches the Josephson critical current, the condensate dynamics makes a transition to

the ac Josephson regime, where there is an oscillating current through the JJs but no net

current across them. Therefore, under these conditions the moving barriers simply push the

atoms, resulting in compression of atoms in one sector of the condensate and expansion in

the other. Such a difference on densities yields different values of the chemical potential at

both sectors. Again, this dynamics is analog to the ac Josephson effect in superconductors,

where a constant voltage across a JJ produces an alternating current [6–8]. The experimen-

tal demonstration of the dc and ac Josephson effects in a dilute BEC was first proposed

in Ref. [9] and later effectively carried out by utilizing a single JJ in relative motion with

respect to the harmonic trap [10]. The authors also discussed the experimental feasibility of

an atom dc-SQUID, in particular its eventual application as a rotation sensor based on the

dependence of the critical current on the condensate rotation rate [10]. On the other hand, a

similar dc-SQUID-type experimental setup with a pair of counterrotating weak links instead
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of the tunnel junctions was implemented in Ref. [11] to study the microscopic origin of the

resistive flow appearing when the superfluid current reaches the critical value. Previously,

an important variant of these experiments had been carried out for a single rotating weak

link [12], which is essentially analogous to a rf-SQUID. Such a configuration, which also

has the potential to be utilized as a sensitive rotation sensor, was demonstrated to possess

quantized hysteresis, in the first observation of such a phenomenon in a superfluid BEC [13].

In this work, we analyze the dc to ac Josephson transition in an atom dc-SQUID similar

to that of the experimental setup in Ref. [3]. Our theoretical study makes use of Gross-

Pitaevskii (GP) simulations and a two-mode (TM) model, where only the ground state

and the first-excited stationary state of an asymmetric double-well toroidal condensate are

taken into account to build the dynamics [14]. Note that such a model is not expected

to describe accurately a far from equilibrium configuration like that occurring in the ac

Josephson regime, nor an eventual transition from ac to dc. The TM model applied to

an asymmetric double-well toroidal condensate was discussed in Ref. [14], where important

effective interaction effects were incorporated in the model parameters [15, 16]. On the other

hand, the time dependence of the potential barriers (moving JJs), required to recreate the

Josephson dc and ac regimes, should give rise to a time-dependent boson field operator (in

the Schrödinger representation) that would yield extra terms in the Heisenberg and derived

equations of motion (GP, TM). This suggests that the simplest starting point to study this

issue could be to build a Bose-Hubbard (BH) Hamiltonian in a TM approximation. In fact,

we derive extra terms due to the barrier motion in such a Hamiltonian, as well as a hysteretic

additional contribution to the Heisenberg equation of motion of the boson field operator in

the TM approximation. The BH Hamiltonian in the limit of a macroscopic occupation of

states yields a condensate energy depending on an order parameter, represented by the phase

difference and the particle imbalance, and a control parameter, represented by the position

and velocity of the JJs. The study of such an energy landscape allows to find the location

of the regions where the dc and ac Josephson effects are expected to occur, along with the

corresponding critical points.

We have considered two kinds of barrier motion. In the first one, an adiabatic initial

acceleration leads to a final uniform velocity that ultimately yields the dc to ac transition.

The second kind shares the same initial acceleration protocol up to reaching a maximum

velocity, from where there is a symmetric decceleration leading to a final symmetric rest
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position of the barriers. Barrier trajectories of this kind allow to observe the hysteretic effects

that take place when the condensate gets quite close to the dc-ac transition. Such effects

are found to be similar to those occurring for faster barrier trajectories able to drive the

condensate from the dc to the ac regime and, in the subsequent stage of barrier decceleration,

bring it back to the dc regime via the action of a resistive flow. Similar hysteretic processes

are common in superconducting JJs [17, 18] and have been studied within the frame of the

resistively and capacitively shunted junction (RCSJ) model [19]. In our case, taking note

of the close analogy between such a model and a TM model with damping [20], we have

analyzed the hysteresis loops that should take place as a result of the action of ac resistive

flows.

This paper is organized as follows. In the next section, we specify the technical details of

the physical system considered in this study, along with the corresponding GP simulations.

Section III treats the BH model and the TM equations of motion, starting with a review of

the case with barriers at rest in Sec. III A, and next by extending the treatment to the case

of moving barriers in Sec. III B. The energy landscape, which allows to locate the regions

belonging to the dc and ac regimes, is analyzed in Sec. III B 1, while the dc-ac transition

and related hysteresis effects for several adiabatic barrier trajectories are dealt with in Sec.

III B 2. Finally, a comparison between the GP simulations and the TM model results is

performed in Sec. III B 3, while some concluding remarks are gathered in Sec. IV.

II. THE SYSTEM AND GP SIMULATIONS

We describe in what follows the system utilized in our simulations and model applications.

All the trapping parameters and condensate details have been chosen to reproduce the

experimental setting of Ref. [3]. The trapping potential can be written as the sum of a part

that depends only on x and y and a part that is harmonic in the tightly bound direction z:

Vtrap(x, y, z) = V (x, y) + λ2z2/2 (1)

being

V (x, y) = VT(r) + VB (x, y). (2)

The above potential consists of a superposition of a toroidal term VT(r) (r2 = x2 + y2) and

the radial barrier term VB (x, y). The toroidal potential was modeled through the following
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FIG. 1. Particle density isocontours for the ground state of N=3000. The barrier positions corre-

spond to θ = π/8.

Laguerre-Gauss optical potential [21]

VT(r) = V0

[
1−

(
r2

r2
0

)
exp

(
1− r2

r2
0

)]
, (3)

where V0 corresponds to the depth of the potential and r0 the radial position of its minimum.

The barriers were modeled as

VB(x, y) = Vb
2∑

k=1

exp

{
− [y cos θk − x sin θk]

2

λ2
b

}
Θ[y sin θk + x cos θk], (4)

where Θ denotes the Heaviside function with θ1 = θ and θ2 = π − θ. The parameter θ (see

Fig. 1) may depend on time according to the barriers movement, and the following system

parameters were utilized [3]: V0/kB = 70 nK, r0 = 4 µm, Vb/kB = 41.07 nK, λb = 1µm

and N=3000 atoms of 87Rb. We have used in our GP simulations scaled units referenced

to the unit of length L0 = 1 µm, which yields energy and time units given by E0/kB =

h̄2/(kBmL
2
0) = 5.5298 nK and T0 = h̄/E0 =1.3813 ms, respectively, where m denotes the

mass of a condensate atom. We have assumed a high value of λ in Eq. (1), (λL0)2 = 64E0,

yielding a quasi-bidimensional condensate and allowing a simplified numerical treatment

[22]. So, the adimensionalized condensate order parameter is written as the product of a

Gaussian wave function along the z coordinate,
√

λ1/2

π1/2 e
−λz

2

2 , and a two-dimensional (2D)

wave function ψ(x, y, t) normalized to one, for which the corresponding GP equation in
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scaled units reads

i
∂ψ

∂t
= −1

2

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ V (x, y)ψ + gN |ψ|2ψ, (5)

where the effective 2D coupling constant g =
√

λ
2π
g3D is written in terms of the coupling

constant between the atoms g3D = 4πh̄2a/m
E0L3

0
= 4πa/L0, with a = 98.98 a0 the s-wave scat-

tering length of 87Rb and a0 the Bohr radius. Such a GP equation was solved using the

split-step Crank-Nicolson method [23] on a 2D spatial grid of 171×171 points.

III. BH MODEL AND TM EQUATIONS OF MOTION

A. Barriers at rest

We begin by reviewing in this section the TM equations of motion for the toroidal asym-

metric double-well condensate with barriers at rest derived in Ref. [14]. However, in contrast

to the previous treatment, we will start here from a BH model in order to facilitate a gen-

eralization to the case of moving barriers in the next section.

The following BH Hamiltonian arises as usual from the many-body second-quantized

Hamiltonian written in terms of the TM approximation of the boson field operator Ψ̂(x, y) =

ψ1(x, y)â1+ψ2(x, y)â2 [24], where ψk(x, y) denotes the real wave function of a boson localized

in the k-well with a corresponding annihilation operator denoted by âk,

ĤBH = ε1â
†
1â1 + ε2â

†
2â2 +K(â†1â2 + â†2â1) +

U1

2
â†1â

†
1â1â1 +

U2

2
â†2â

†
2â2â2

+ F12(â†1â
†
1â1â2 + â†1â

†
2â1â1) + F21(â†2â

†
2â1â2 + â†1â

†
2â2â2)

+
S

2
(â†1â

†
1â2â2 + â†2â

†
2â1â1 + 4â†1â

†
2â1â2), (6)

where

εk =
∫
d2r ψk(x, y)

[
− h̄2

2m
∇2 + V (x, y)

]
ψk(x, y), (7)

K = −
∫
d2r ψ1(x, y)

[
− h̄2

2m
∇2 + V (x, y)

]
ψ2(x, y), (8)

Uk = g
∫
d2r ψ4

k(x, y), (9)

Fjk = −g
∫
d2r ψ3

j (x, y)ψk(x, y), (10)
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S = g
∫
d2r ψ2

1(x, y)ψ2
2(x, y). (11)

Here it is important to remark that such localized states, characterized by the wave functions

ψk(x, y) and the corresponding operators âk and â†k, may actually depend on the number of

particles at each well. Particularly, as a most significant effect of the repulsive interparticle

interaction, there is a broadening of the wave functions ψk with increased occupation num-

bers [24, 25]. However, since the occupation number variations for our time evolutions in the

dc Josephson regime, including the transition to the ac regime, actually keep small enough,

we will disregard, in principle, such a dependence in the Hamiltonian (6). Nevertheless, in

the following we shall see that the above interaction effects may be taken into account at

the level of the TM equations of motion, in order to get a substantial improvement in the

agreement with the GP simulation results.

The Hamiltonian (6) rules the condensate dynamics according to the Heisenberg equa-

tions,
dâk
dt

=
i

h̄
[ĤBH , âk], (12)

and assuming a macroscopic occupation of states, one may replace the annihilation operators

by complex c-numbers,

âk →
√
Nk exp(iφk), (13)

where φk and Nk represent the phase and particle number in the k-well, respectively. By

performing such a replacement in (12) one may obtain the following equations of motion of

the TM model, where the time evolution of the condensate is described through the particle

imbalance Z = (N2 −N1)/N and the phase difference between both wells φ = φ1 − φ2 (see

Fig. 1),

h̄Ż = − ∆E

(1− Z2
0)3/2

√
1− Z2 (1− 2Z2

0 + Z0Z) sinφ+NS (1− Z2) sin(2φ) (14)

h̄φ̇ = (Z − Z0)

[
N(U1 + U2)/2 +

∆E

(1− Z2
0)3/2

(1 + 2Z0Z)√
1− Z2

cosφ− 2NS

]
+ NS[Z0 − Z cos(2φ)] , (15)

where ∆E = N(F21 − F12)(1− Z2
0)3/2/Z0 denotes the energy-per-particle splitting between

both stationary solutions of the above equations of motion, namely the ground state with

φ = 0 and the first-excited state with φ = ±π, both states having the same imbalance
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Z = Z0, whose value depends on the barrier angle θ. Such states, which correspond to the

stationary solutions of the GP equation (5) yielding the lowest condensate energies, can be

expressed as linear combinations of the localized states,

ψ± = ±
√

1− Z0

2
ψ1 +

√
1 + Z0

2
ψ2, (16)

where ψ+ (ψ−) denotes the wave function of the ground (first-excited) single-particle state.

However, such wave functions are not mutually orthogonal, except for a symmetric configu-

ration (θ = 0 in Fig. 1) [14]. In fact, for a whole population N in the ground (first-excited)

single-particle state, there would be NZ2
0 atoms in the first-excited (ground) single-particle

state.

The hopping contributions proportional to the energy gap ∆E and the parameter S in

(15), turn out to be quite negligible with respect to the term proportional to the average

on-site interaction energy (U1 +U2)/2, so we may adopt such an approximation in Eq. (15).

In addition, we have seen in Ref. [14] that the agreement between the TM time evolution

results and the GP simulations turns out to be substantially improved by replacing such an

average on-site interaction energy by the following expression,

U +BZ (17)

with

U =
1

2
[(1− α1)U1 + (1− α2)U2)]

(18)

B =
1

2
(α1U1 − α2U2) ,

where the parameters αj arise from the deformation that suffer the condensate densities

at both wells due to the departure of the particle imbalance Z from the stationary value

Z0 during the time evolution. In fact, denoting by ρ
(∆Nj)
j the probability density of the

localized state at site j with N0
j + ∆Nj particles, where N0

j denotes the population of the

j-well corresponding to the imbalance Z0, the parameter αj may be obtained from the

following modified on-site interaction energy parameter [14–16]

U
(∆Nj)
j = g

∫
d2r ρ

(0)
j (x, y) ρ

(∆Nj)
j (x, y)

' (1− 2αj
∆Nj

N
)Uj, (19)
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where ρ
(0)
j = ψ2

j and the second line corresponds to the first-order approximation on ∆Nj/N ,

being 2∆N2/N = −2∆N1/N = Z−Z0. To extract, in practice, the parameter αj, one should

numerically evaluate the above integral with a probability density ρ
(∆Nj)
j (x, y) obtained from

the stationary states of a condensate with N0
j + ∆Nj particles on the site j and a total

number of particles that differs from N [14–16]. The idea behind such calculations is that a

nonequilibrium state should be well aproximated by localized on-site states corresponding to

the instantaneous populations at each well. Thus, the replacement in Eq. (15) of the average

on-site interaction energy (U1 + U2)/2 by the imbalance-dependent parameter U + BZ,

serves to quantitatively taking into account the above density variations. It is important to

remark that the contributions arising from the parameters αj in (18) turn out to be far from

negligible, despite of being originated at the first-order approximation (19). In fact, such

effective interaction corrections were found to substantially improve the agreement with the

time-dependent GP simulation results [14]. Finally, we may rewrite the equation of motion

(15) as,

h̄φ̇ = (Z − Z0)N(U +BZ)

= µ2 − µ1, (20)

where µj denotes the chemical potential of the condensate at the site j. The above equiva-

lence between the time derivative of the phase difference at both sides of a Josephson junction

and the corresponding chemical potential difference has been shown to possess a wide range

of validity [2, 10], and it is analogous to the voltage-phase relation of the Josephson effect

in superconductors [6–8].

The condensate energy in the TM approximation may be obtained from the BH Hamil-

tonian (6) under the replacement (13), yielding

ETM = N
(ε1 + ε2)

2
+N2 (U1 + U2)

4

(
1 + Z2

2
− Z0Z

)

−
√

1− Z2

2(1− Z2
0)3/2

N∆E(1− 2Z2
0 + ZZ0) cosφ

+
N2S

2

[
(1− Z2)

(
1 +

1

2
cos 2φ

)
+ 3Z0Z

]
. (21)

However, it will be more convenient to measure the energy relative to that of the ground-

state (Z = Z0, φ = 0), which yields

∆ETM ≡ ETM − EGS
TM = N2 (U1 + U2)

8
(Z − Z0)2
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+
N

2
∆E

[
1−

√
1− Z2

(1− Z2
0)3/2

(1− 2Z2
0 + ZZ0) cosφ

]

+
N2S

2

{
(1− Z2)

(
1 +

1

2
cos 2φ

)
+

3

2
[2Z0Z − (1 + Z2

0)]
}
, (22)

where it is worthwhile noticing that the first-excited single-particle state (Z = Z0, φ = ±π)

yields the correct energy gap ∆ETM = N∆E in (22). Note also that the equations of motion

(14)-(15) can be written in the Hamiltonian form

h̄Ṅ2 = −∂H
∂φ

; h̄φ̇ =
∂H
∂N2

, (23)

being H = ∆ETM the Hamiltonian and (N2,φ) the canonically conjugate variables. Here

it is instructive to approximate the expression (22) for Z ' Z0, along with neglecting the

term proportional to the second-order hopping parameter S. Thus, taking into account Eq.

(15) without the tunneling contributions, we obtain the following Hamiltonian for a “phase

particle” of coordinate φ

H ' h̄2φ̇2

2(U1 + U2)
+
N∆E

2
(1− cosφ), (24)

where the first and second term should be interpreted as the kinetic and potential energy,

respectively. Note that the minimum and maximum of the potential energy at φ = 0

and φ = ±π, respectively, correspond to the above stationary states, as expected. A sim-

ilar expression is found for the Hamiltonian of a superconducting Josephson junction in

the low damping limit, which may be quantized through a straightforward procedure to

investigate the quantum behavior of the phase difference [26, 27]. However, such quan-

tum effects turn out to be quite negligible in our case, since the frequency ωp of the low

amplitude (plasma) oscillations around the potential minimum, yielding the level spacing

h̄ωp =
√
N∆E(U1 + U2)/2, turns out to be much smaller than the depth of the potential

well N∆E, a result which agrees with the classical picture represented by the Hamilton

equations (23).

B. Moving barriers

If the barriers are set in motion, there are two effects that could modify the Heisenberg

equation for the boson field operator Ψ̂. The first effect stems from the additional con-

tribution to the many-body Hamiltonian arising from the induced particle flux across the
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moving barriers. A second effect should arise from the time dependence of the boson field

operator in the Schrödinger representation due to the barrier motion. Let us first discuss the

additional contribution to the energy. In fact, as barriers are displaced, the change in the

particle number of each localized state causes a local energy change at a rate given by the

corresponding chemical potential µj = ∂Ej/∂Nj. So, taking into account such contributions,

the additional energy may be written,

∫ N1

Nref
1

µ1 dN
′
1 +

∫ N2

Nref
2

µ2 dN
′
2 =

∫ N2

Nref
2

(µ2 − µ1) dN ′2,

where the values N ref
j denote reference (initial) particle numbers. Note that have dropped

the reference energies and have taken into account the constraint N ′1 + N ′2 = N in the last

equality. To proceed with the calculation, we may change variables in the last integral to

the time domain and use (20) to obtain

h̄
∫ t

0

dφ

dt′
I0(t′)dt′,

where I0 ≡ Ṅ0
2 = (N/2)(∂Z0/∂θ) θ̇ will be called the bias current, as it is kinematically

dependent of the barrier motion, to distinguish from the actual particle current I ≡ Ṅ2.

Next, we integrate the above result by parts in order to split it into an ‘instantaneous’

contribution,

h̄I0(t)φ(t), (25)

where we have dropped its initial value, and a hysteretic contribution,

−h̄
∫ t

0
İ0(t′)φ(t′)dt′, (26)

which depends on the previous history of the system. Note that both contributions will be

proportional to the time derivatives of the stationary imbalance Z0(θ(t)),

2
I0

N
= Ż0 =

∂Z0

∂θ
θ̇, (27)

2
İ0

N
= Z̈0 =

∂2Z0

∂θ2
θ̇2 +

∂Z0

∂θ
θ̈. (28)

We depict in Fig. 2 such an imbalance as a function of the barrier angle θ, along with its first

two derivatives. There we may observe that Z0 presents a rather linear behavior, yielding a

constant value for the first derivative and a negligible value for the second, except for barrier

angles approaching 0.4π, where the barriers begin to overlap each other. Particularly, the
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FIG. 2. The stationary imbalance Z0 and its first two derivatives versus the barrier angle θ. The

right scale corresponds to Z0, while the left scale corresponds to its derivatives.

second derivative becomes clearly nonnegligible for such configurations. For instance, in the

simplest situation of a barrier motion with a constant velocity, there would be an initial jump

in velocity from the previous configuration of barriers at rest, which would yield a Dirac

delta acceleration θ̈ ∼ δ(t) in (28) and in the integrand of the expression (26). However,

this contribution to the energy should be irrelevant, since it could be treated as a constant

term. On the other hand, the first term of (28) could become nonnegligible for barrier angles

approaching 0.4π, and this could eventually activate the hysteretic contribution (26) to the

condensate energy.

The additional energy (25) has previously been considered in the context of an analogy

with the RCSJ model, widely applied for superconducting Josephson junctions [6–10, 26–

28]. However, its corresponding counterpart in the quantum many-body Hamiltonian, along

with an eventual effect on the equations of motion, e.g., on the time-dependent GP equation,

seem to be so far undiscussed. Here it is important to recall that experimental results on

similar configurations of ring-shaped condensates with moving barriers, have shown a good

agreement with the corresponding simulation results arising from the GP equation without

any correction, apart from the time dependence of the trapping potential due to the moving

barriers. Such experiments were conducted for different kinds of barrier motion, namely for

adiabatic accelerations up to the final constant velocity [3], as well as for a sudden set into

motion of the barriers at a constant speed [11].
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Now, turning back to the theoretical arena, we should seek for an additional contribution

to the Hamiltonian (6), which in the limit (13) of a macroscopic occupation, would yield

the expression (25). A complete solution of this problem should be closely related to the

long-standing and quite delicate issue of obtaining an acceptable quantum description of

the phase by means of a phase operator [29]. Rather than pursuing such an ambitious goal,

we will content ourselves with restricting our analysis to a limit of high populated localized

states. In fact, let us consider the following operator,

i

2

[
ln(â†1â2)− ln(â†2â1)

]
, (29)

which would yield in the limit (13) just the phase difference φ. However, in defining the

above expression one should take into account that the existence of the logarithm of a given

operator must require that it should be invertible [30]. In particular, the creation and

annihilation operators only partially fulfill such a requirement, since they turn out to be,

similarly to the Susskind-Glogower phase operators [31], one-sided unitary, namely [32]

âkâ
−1
k = â†−1

k â†k = I (30)

â−1
k âk = â†kâ

†−1
k = I− |0〉〈0|, (31)

where â−1
k and â†−1

k are one-sided inverse operators, I is the identity operator and |0〉〈0|

denotes the projection operator on the vacuum of the k-well. Such a projection, however,

should be quite irrelevant in our case, given the limitations we have assumed on the subspace

where the Hamiltonian (6) should be supposed to be acting upon, i.e., limited only to high

occupation configurations. So, we will disregard in what follows the last term in (31), which

in turn leads to a well-defined operator (29) that, combined with expressions (25) and (26),

suggests that the following additional terms to the BH Hamiltonian (6) should be taken into

account:

Ĥ1 =
ih̄I0(t)

2
{ln[â†1(t)â2(t)]− ln[â†2(t)â1(t)]} (32)

Ĥ2 = −ih̄
2

∫ t

0
İ0(t′){ln[â†1(t′)â2(t′)]− ln[â†2(t′)â1(t′)]}dt′. (33)

We may now rewrite the Heisenberg equation (12) in the case of moving barriers as,

dâk
dt

=
i

h̄
[ĤBH + Ĥ1 + Ĥ2, âk] +

∂âk
∂t

, (34)
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where the partial derivative denotes a time derivative of the Schrödinger operator, which

next is time-evolved to reach the Heisenberg picture. To evaluate the commutator [Ĥ1, âk]

in (34), we make use of the following result [33],

[âk, ln â
†
k] =

∂(ln â†k)

∂â†k
= â†−1

k ,

which yields,
i

h̄
[Ĥ1, âk] = −Ṅ

0
k

2
â†−1
k . (35)

On the other hand, to evaluate the partial derivative in (34) it is convenient, at a first

stage, to do it in the limit (13). Then, we have in the Schrödinger picture, (âk)S →√
N0
k (t) exp(iφ0

k), where only the population of the localized states will be time-dependent

as barriers move. Therefore, the time derivative turns out to be,(
∂âk
∂t

)
S

→ Ṅ0
k

2
√
N0
k exp(−iφ0

k)
← Ṅ0

k

2
(â†−1
k )S, (36)

which also turns out to arise from the limit (13) of the above right-hand side expression.

Finally, turning to the Heisenberg representation in (36), we may conclude that the term of

the partial time derivative in (34) and the term (35) cancel each other, yielding the following

Heisenberg equation of motion,

dâk
dt

=
i

h̄
[ĤBH + Ĥ2, âk]. (37)

Here an eventual calculation of the commutator [Ĥ2, âk] in the above expression appears as

a quite difficult task, as it involves the evaluation of commutators of Heisenberg operators at

different times. However, according to (33) and (28), such a hysteretic contribution to the

equation of motion should be negligible, except for accelerated or nearly overlapping barriers.

Moreover, no evidence of a discrepancy between the experimental results for adiabatically

accelerated barriers and the corresponding GP simulations has been reported so far [3, 10].

Thus, we will disregard in what follows any hysteretic contribution stemming from (26)

or (33) to the energy and the equations of motion, both for GP simulations and the TM

model. Finally to summarize, we will assume that the Heisenberg equation of motion remains

formally equivalent to the original expression (12), except for the parameters of the BH

Hamiltonian (6) that now become time-dependent as barriers move. The same occurs with

the TM equations of motion (14) and (15), along with the effective interaction correction

14



(20). On the other hand, given that the energy represented by H in the Hamiltonian

formalism (23) acquires for moving barriers the additional term (25), we may generalize

Eqs. (23) as,

h̄∆Ṅ2 = −∂H
∂φ

; h̄φ̇ =
∂H
∂∆N2

, (38)

where now the Hamiltonian is given by H = ∆ETM + h̄I0φ, and (∆N2,φ) represent the

canonically conjugate variables, with ∆N2 = N2 − N0
2 . In addition, the potential energy

of the “phase particle” in (24) becomes for moving barriers a “tilted washboard” potential

[6–10, 26–28] given by,

h̄Ic

(
1− cosφ+

I0

Ic
φ

)
, (39)

with

Ic =
N∆E

2h̄
(40)

the so-called Josephson critical current. Here it is worthwhile noticing that all the currents

we have defined so far, i.e., the particle current I = Ṅ2, the bias current I0 = Ṅ0
2 and the

critical current Ic, actually are twice the corresponding current across each JJ. The average

slope of the “washboard” in (39) is proportional to the quotient I0/Ic and the local extrema

of such a potential arise from the Josephson current-phase relation [6–8, 34]

I0 = −Ic sinφ. (41)

Particularly, the stationary states for barriers at rest (I0 = 0) located at φ = 0 (minimum)

and φ = ±π (maximum) turn out to be displaced for moving barriers to the following

locations,

φm = − sin−1

(
I0

Ic

)
, (42)

and

φM = sin−1

(
I0

Ic

)
− I0

|I0|
π, (43)

where φm and φM denote the phase differences of the minimum and maximum of the wash-

board potential within the interval −π < φ < π, respectively. The above results can

equivalently be expressed in terms of the barrier speed by means of Eq. (27),

I0

Ic
=
f

fc
, (44)

where f = θ̇/(2π) denotes the barrier rotation frequency and

fc =
∆E

h(∂Z0/∂θ)
, (45)
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represents the critical rotation frequency corresponding to the Josephson critical current

(40). We may see from (42) and (44) that the phase particle can remain “trapped” around

the potential minimum provided the bias current does not exceed the critical value Ic, or

equivalently, the barrier speed remains below the critical frequency fc. Such a dynamics,

characterized by a bounded phase difference, vanishing average values for φ̇ and µ2 − µ1

(20), and a particle current that matches the bias current, corresponds to the so-called dc

Josephson regime (analogous to the superconducting zero-voltage state [6–8]). Otherwise, for

a bias current or a barrier speed above the critical values, the local extrema of the washboard

potential disappear and the particle will “fall down” indefinitely, yielding a dynamics of

running phase (nonvanishing values for 〈φ̇〉 and 〈µ2−µ1〉) and an alternating particle current.

Such characteristics define the so-called ac Josephson regime, which is analogous to the

superconducting nonzero-voltage state [6–8]. This regime can also be accessed from below

the critical values, provided the energy of the particle H exceeds the maximum value of

the potential to escape over the top of the barrier and propagate down the washboard.

We disregard here any additional way of escaping, such as, by thermal activation at finite

temperatures, or by a macroscopic quantum tunneling process [26, 27], given the small

relative value of the plasma frequency ωp in our case.

1. Energy landscape

Although the above heuristic model of a fictitious particle moving in the washboard po-

tential may be useful to understand the dynamics of the phase within the different Josephson

regimes, such a model is based on several approximations that eventually could lead to in-

accuracies with respect to the GP simulation results. For instance, the term corresponding

to the kinetic energy in (24) was derived from the equation (15), instead of the more accu-

rate expression (20), in addition, the parameters of the kinetic energy and the washboard

potential (39) may depend on the barrier position (see, e.g., Eqs. (27), (40) and Fig. 4),

leading to a nonconserved energy that could eventually invalidate such a model. So, to avoid

such shortcomings, we may utilize a more formal treatment which consists in studying the

condensate energy landscape as a functional of the order parameter [35]. This in our case

amounts to study the energy H = ∆ETM + h̄I0φ as a function of the phase difference and

the particle imbalance. Previously we have seen that the condensate energy with barriers at
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rest (22) presents a minimum for the ground-state φ = 0 and a maximum (saddle) for the

excited state φ = ±π, both for Z = Z0. Now, by canceling the partial derivatives in (38),

we may easily find such extrema for a general case of moving barriers. Thus, we encounter

that the energy should present local extrema for Z = Z0 = 2N0
2/N −1 and phase differences

fulfilling the following equation,

I0 = −Ic sinφ+ (2NSN0
2/h̄)(1−N0

2/N) sin 2φ, (46)

which, taking into account that the second harmonic contribution of the last term [28, 34]

can be safely neglected for our condensate, becomes equivalent to the previously considered

simple sinusoidal current-phase relation (41). Therefore, according to the sign of the second

derivatives of H(∆N2, φ), there must be a minimum of the energy at Z = Z0 and φ = φm

given by Eq. (42), and a saddle (minimum for Z and maximum for φ) at Z = Z0 and

φ = φM given by Eq. (43). Particularly, the Z-dependence of the energy turns out to

be quite simple since it is dominated by the harmonic term ∼ (Z − Z0)2 in (22). So, we

can obtain a full picture of the energy landscape by setting Z = Z0 and analyzing the

remaining dependence on the phase difference and the bias current, as depicted in Fig. 3.

A typical system trajectory in the dc regime will reside in the vicinity of the dashed line,

which corresponds to the phase difference at the energy minimum for each value of the bias

current. On the other hand, the ac regime will be attained when exceeding the critical

value of the bias current (or the barrier speed), as well as if the system acquires enough

energy to overcome the saddle (solid) lines. We note that Fig. 3 can also be regarded as

an energy landscape depending on the order parameter φ and the control parameter [35]

I0/Ic = f/fc (see Eqs. (44) and (45)), where the latter actually embodies two independent

control parameters, the barrier position and its velocity. However, it will be seen in Fig.

4 that the dependence on the barrier position of Ic and fc turns out to be very weak for

θ <∼ 0.3π, so the problem within such an interval becomes reduced to the simplest one of a

single control parameter (bias current I0, or rotation frequency f). In fact, we display in

Fig. 4 the Josephson critical current and the corresponding critical frequency as functions

of the barrier position, where we may observe that they remain practically constant until

the barriers begin to overlap each other, a process which eventually may cause them to drop

toward vanishing values. On the other hand, the inset of such a figure shows the domains

of the dc and ac Josephson regimes on a phase versus bias current (or rotation frequency)

17



-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 5.2

-1.8

 

 

-1.800
-1.600
-1.400
-1.200
-1.000
-0.8000
-0.6000
-0.4000
-0.2000
-2.776E-16
0.2000
0.4000
0.6000
0.8000
1.000
1.200
1.400
1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000
4.200
4.400
4.600
4.800
5.000
5.200
5.400

I
0

/ I
c
= f / f

c


/

FIG. 3. Energy landscape for Z = Z0. The color scale corresponds to the adimensionalized energy

(∆ETM + h̄I0φ)/h̄Ic, while the dashed (solid) line locates its minimum (saddle) for each value of

the bias current or barrier rotation frequency. The yellow stars indicate the critical points where

minimum and saddle coalesce.

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-1.0

-0.5

0.0

0.5

1.0


M


m

ac

dc

 
 

I
0
/ I

c
= f / f

c


/

 f
c
 (

H
z
)

 

/

0

1

2

3

I c 
(m

s
-1
)

 

FIG. 4. Josephson critical current Ic (Eq. (40), solid line) and critical frequency fc (Eq. (45),

dotted line) versus the barrier position θ. Inset: the dc (ac) Josephson regime corresponds to

bias currents or barrier frequencies below (above) the critical values. Particularly, the ac domain

extends below the critical values for phase differences beyond that of the energy saddle φM (Eq.

(43)). On the other hand, the phase difference φm (Eq. (42)) of the energy minimum is depicted

as a dashed line.
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diagram. We note that according to Fig. 3 a straightforward extension of such a diagram

to negative abscissas could be easily depicted.

2. Adiabatic barrier motion: dc-ac transition and hysteretic phenomena

Starting from an initial condition with the barriers at rest and the condensate in the

ground state, any barrier motion will trigger an oscillation of the order parameter, in partic-

ular, the particle current and the phase difference, which for small amplitudes will be ruled

by the plasma frequency ωp. However, since we are interested in the dc to ac transition

driven by a current bias, and being the departure of the actual current from the bias cur-

rent one of the main signatures of such a transition, one should try to suppress, or at least

minimize, such oscillations, as they could certainly interfere with our observations. To this

aim, we have assumed the following barrier trajectory that preserves the continuity of the

acceleration θ̈ along the whole path,

θ(t) = −θ(0)

π
[sin(ωt+ π) + ωt− π], ω = −π

2fmax

θ(0)
, (47)

where fmax denotes the maximum value of the rotation frequency f = θ̇/(2π) that may be

regarded as a control parameter of the approach to the dc-ac transition. For instance, for

fmax > fc we have that such a transition will certainly be reached during the trajectory. On

the other hand, in order to reduce the angular frequency ω in (47), increasing the adiabaticity,

we will assume a large value of the initial angle |θ(0)| compatible with nonoverlapping

barriers, namely θ(0) = −0.394π. We depict in Fig. 5 the rotation frequency f = θ̇/(2π)

versus time, as well as its dependence on the barrier position itself. We have considered two

kinds of trajectories. In the first one, the barriers are adiabatically accelerated according

to (47) until reaching the maximum velocity with f = f(θ = 0) = fmax at ωt = π (Fig.

5), from where they maintain such a velocity. Such trajectories are primarily intended to

study the behavior of the condensate under a uniform barrier velocity. Note that according

to (27) we have I0 = Nπ(∂Z0/∂θ)f , so a uniform barrier velocity will keep the current

bias also uniform, except for nearly overlapping barriers (see Fig. 2). Moreover, under such

conditions we could approximate I0(θ)/I0(θ = 0) ' f(θ)/f(θ = 0), from which we may

conclude that the ordinate of Fig. 5 can also be regarded as the bias current I0/I0
max. We

depict in Fig. 6 the GP simulation results for the time evolution of the particle current for a
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FIG. 5. Adiabatic barrier motion. Time evolution of the barrier rotation frequency f = θ̇/(2π)

arising from Eq. (47) in units of its maximum value fmax = f(θ = 0) (dashed line), and the same

quantity versus the barrier position θ (solid line).
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FIG. 6. GP simulation results for the time evolution of the particle current for the barrier trajectory

(47) with fmax = 0.38 Hz and maintaining the maximum barrier speed for ωt > π. The main plot

shows the dc to ac transition that occurs when fc(θ(t)) drops below fmax (cf Fig. 4), with θ(t)

given in the top abscissa. The inset shows the particle current for the complete barrier trajectory.
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FIG. 7. Left panel: GP simulation results for the particle current versus bias current (I vs I0)

paths for the symmetric barrier trajectories of Fig. 5. The non-hysteretic path corresponding to

fmax = 0.3 Hz is depicted by the thick (red) solid line, while the hysteresis loop corresponding to

fmax = 0.3815 Hz is represented by the thin (black) solid line. Right panel: same paths for the

energy H = ∆ETM + h̄I0φ, where the blue arrows indicate the path directions.

barrier trajectory of this kind with fmax = 0.38 Hz. We may observe the dc to ac transition,

which occurs, despite of the fixed value of the bias current (plateau of the inset in Fig. 6),

due to the dependence of the critical current on the barrier angle, as shown in Fig. 4.

The other kind of barrier trajectories, corresponding to the symmetric curves of Fig. 5,

turns out to be particularly useful to observe hysteresis. We first note that the maximum

bias current for such trajectories (maximum barrier speed in Fig. 5) occurs for θ = 0, with

a critical current slightly below 3 ms−1 and a critical rotation frequency obtained from GP

simulations of about 0.382 Hz (Fig. 4). Hysteretic and non-hysteretic evolutions are clearly

represented in the particle current versus bias current graph shown in Fig. 7. In fact, we

may see that for a barrier trajectory with fmax = 0.3 Hz, well below the critical value,

the particle current follows exactly the bias current for the whole path, except for the low

amplitude (plasma) oscillations. On the other hand, for fmax = 0.3815 Hz, although the

particle current matches again the bias current for the first half of the path, once the bias
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current reaches its maximum close to the critical current, it gives rise to a quite hysteretic

loop with large amplitude oscillations of the particle current. In the right panel of Fig. 7,

we may see a similar behavior for the energy, since for the barrier trajectory with fmax = 0.3

Hz, we have fully overlapped paths for increasing and decreasing bias currents, while for

fmax = 0.3815 Hz, such energy paths become split, yielding a way back with a higher energy,

which stems from the above oscillations of the particle current. However, such hysteretic

effects may be difficult to observe in practice due to the requirement of an extremely fine

tuning of the barrier velocity close to the critical value. A more favorable scenario for the

hysteresis observation could take place for a barrier trajectory (47) with fmax > fc, along

with the presence of a resistive flow in the ac regime able to bring the condensate back to

the dc domain. In addition to the effect of noncondensed atoms in a thermal component,

such resistive flows may arise from quantum phase slips corresponding to vortices created

within the barrier and shed into the superfluid [11, 36]. In any case, we may analyze such

a scenario by considering a suitable circuit analogy. It is worth mentioning in this respect,

that as a basic representation of the wide interrelation between electronics and atomtronics

[37], simple models of electronic circuitry have been shown to capture the essential physics

of superfluid transport in ultracold gases [38–40]. Particularly, the RCSJ model [19], which

consists in a very simple equivalent circuit proven to be exceptionally successful in modeling

the dynamics of superconducting Josephson devices [6–8, 26, 27], has also been shown to yield

similarly good results for the dc and ac Josephson effects in ultracold gases [9, 10, 28]. The

RCSJ equivalent circuit for a JJ is composed of three parallel elements: a shunt resistance R,

a shunt capacitance C and a pure Josephson element that works as a nonlinear inductance

[8, 41]. Thus, Kirchhoff’s law corresponds in our case to I0 = Is + In + Id, where the bias

current I0 yields the three parallel currents: the superfluid current Is = −Ic sinφ, the normal

ohmic current In = −G∆µ and the displacement current Id = −Cd(∆µ)/dt, being G = 1/R

the conductance and

∆µ = h̄dφ/dt

= ∆N2/C, (48)

where the first line (cf. Eq. (20)) corresponds to the general voltage-phase relation of the

Josephson effect and the second line corresponds to the definition of the capacitance C as

the ratio of the particle number difference from the equilibrium value ∆N2 = N2 − N0
2 =
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N(Z − Z0)/2 and the chemical potential difference ∆µ = µ2 − µ1. Now, replacing the

displacement current according to (48) in Kirchhoff’s law we obtain,

I = Is + In, (49)

where I = NŻ/2 = Ṅ2 denotes the particle current flowing from well ‘1’ to well ‘2’ (Fig. 1).

Equation (49) tells us that such a particle current consists of a superfluid component Is and

a normal component In = −∆µ/R, which will only be nonnegligible for the finite chemical

potential differences of the ac regime. As regards the superfluid current Is = −Ic sinφ, we

may obtain the expression of the Josephson inductance LJ from the time derivative dIs/dt =

−Ic cosφ∆µ/h̄ = −∆µ/LJ , which yields the phase-dependent expression LJ = h̄/(Ic cosφ)

[8, 41].

Although the RCSJ model accurately describes the experimental results in cold gases,

some parameters of the model are obtained by fitting the data and lack of a rigorous deriva-

tion. So, a detailed comparison with the more fundamental TM model should be relevant

in this respect. To this aim, we first compare Eq. (48) with the TM equation (20), from

which we may immediately obtain the following expression for the capacitance

C =
1

2(U +BZ)
, (50)

which jointly with the Josephson inductance LJ constitute an LC oscillator at the frequency

1/
√
LJC, whose low amplitude limit (φ ' 0 and Z ' Z0) yields the more accurate expression

ωp =
√

2Ic(U +BZ0)/h̄ for the plasma frequency than that given at the end of Sec. III A.

On the other hand, if one approximates the TM equation (14) for Z ' Z0 and neglects the

term proportional to the second order hopping parameter S, one obtains NŻ/2 = −Ic sinφ,

which just corresponds to the Eq. (49) in the dc regime. As regards the normal component

In, it is absent from our TM model, since it stems from a formalism without any assumption

about dissipative channels. The simplest way of including such dissipative effects would

consist in adding to the right-hand side of Eq. (14) a term proportional to the RCSJ normal

current −G∆µ, along with a phenomenological value of the conductance G [20]. More

elaborate procedures that quantitatively take into account the effect of damping at a finite

temperature could be carried out by resorting to a stochastic projected GP equation [42].

We depict in Fig. 8 the results of the above simple version of a damped TM model for a

symmetric barrier trajectory with fmax = 0.42 Hz above the critical value and two values
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FIG. 8. Same as Fig. 7 for the results arising from a damped TM model with fmax = 0.42 Hz and

two values of the conductance G (in units of h̄−1).

of the conductance. We observe that the particle current follows the increasing values of

the bias current up to the critical point, from where it begins to display oscillations of a

higher amplitude than those observed in Fig. 7. Such oscillations, which correspond to

a dynamics within the ac regime, persist with the decreasing bias current up to a value

which marks the reentrance to the dc regime. This behavior turns out to be analogous

to the phenomenon of a return or ‘retrapping’ current in a hysteretic superconducting JJ,

occurring when the junction switches back from the voltage state to the zero-voltage state

[17, 18]. Although such an ac to dc transition is common in superconducting systems, we

are not aware of any observation of this kind in a BEC. As depicted in Fig. 8, such a

return current grows with the conductance, leading for high values of G to an overdamped
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and quasi-non-hysteretic motion. In contrast, low conductances with small return currents

yield longer evolutions within the ac regime and, hence, quite hysteretic processes. It is

interesting to relate hysteresis with the energy evolutions depicted in Figs. 7 and 8. On the

one hand, the system dynamics driven by the barrier trajectory with fmax = 0.3815 Hz in

Fig. 7, which entirely takes place within the dc regime, develops by performing a round trip

that travels twice the same line of minima of the energy landscape (Figs. 3 and 4), with

hysteretic effects stemming from the oscillations around such minima developed during the

return path. In contrast, the evolutions depicted in Fig. 8 correspond to the more common

hysteresis scenario which involves more than a single minimum of the energy landscape [35].

In fact, for increasing bias currents up to the critical value, the system travels the above line

of energy minima ending at the critical point I0 = Ic in Fig. 3. Then, the system leaves

the dc regime and entering the ac domain, there is an onset of a ‘running down hill’ process

due to the absence of any local energy minimum. Next, following the subsequent barrier

trajectory, the decreasing bias current falls again below the critical value with a reappearance

of local energy minima and the possibility for the system to be ‘retrapped’ and thus able to

return to the dc domain and travel a different line of minima than that left after entering

the ac regime. We depict in the lower panel of Fig. 8 the hysteresis loops performed by

the energy versus bias current trajectories for two values of the conductance G. Note that

the smaller the conductance, the deeper energy fall occurring as the system remains in the

ac regime. However, for conductance values below certain threshold, the return to the dc

domain does not occur, and in the final configuration of a vanishing bias current (barriers

at rest), the system ends in a high-energy nonequilibrium self-trapped state, with a quite

compressed condensate at site 1 (Fig. 1) [3, 11, 14]. Finally, we remark that it would be

interesting to generate experimental results about the return transition from ac to dc, which

would allow to test the validity of the above predictions of the damped TM model.

3. GP simulations and comparison to TM model results

We have studied the transition from the dc to the ac regime for different barrier trajecto-

ries and initial states of the system. Unless stated, we will assume an initial condensate in

equilibrium at the ground state. First we will consider the evolution for a uniform barrier

velocity after the initial adiabatic acceleration. We depict in Fig. 9 the phase difference
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FIG. 9. Phase difference versus bias current from GP simulation results for three barrier trajectories

(47) with constant values of 0.3, 0.37 and 0.38 Hz of the barrier rotation frequency from the

corresponding red dots.

versus bias current for three values of the final barrier velocity. We may observe that the

system travels quite closely the line of energy minima (Fig. 4, inset) up to reaching the

uniform rotation frequency (red dots). Then, the subsequent evolution in the dc regime is

represented by the red dots in Fig. 9, since the condensate stays with a constant phase

difference and a uniform particle/bias current. Finally, a sudden transition to the ac regime

occurs when the Josephson critical current becomes smaller than the particle/bias current

for the increasing barrier angles (Fig. 4). In fact, the top panel of Fig. 10 displays such a

behavior for the particle currents corresponding to the barrier trajectories with fmax = 0.3

Hz and fmax = 0.37 Hz, while the bottom panel also shows that the critical condition for the

barrier rotation frequency f = fc happens quite simultaneously with the critical crossings

I = Ic in the top panel. On the other hand, the case fmax = 0.38 Hz shows important

differences with respect to those of the lower rotation frequencies. We notice in Fig. 10

that the steady particle current for θ > 0 obtained from the GP simulation, as well as the

rotation frequency 0.38 Hz, practically coincide with the critical values arising from the TM

model for θ/π <∼ 0.2. Thus, it is easy to understand that under such conditions the model

should not be expected to yield accurate results for the barrier angle at which the transition

should occur.

In Fig. 11, we may appreciate the way in which such a transition is reflected on the
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FIG. 10. Top panel: critical current Ic versus the barrier angle θ (solid line) and particle currents

arising from GP simulations (dotted lines) for the barrier trajectories of Fig. 9 with the uniform

rotation frequencies 0.38, 0.37 and 0.3 Hz attained from θ = 0 with, respectively, top to bottom

intersections with the ordinate and left to right intersections with the abscissa. The flow oscillations

of the ac regime have not been displayed for clarity. Bottom panel: same as top panel for the critical

rotation frequency fc (solid line) as compared to the rotation frequencies 0.38, 0.37 and 0.3 Hz

(dotted lines) from top to bottom, respectively.

condensate evolution with the highest rotation frequency fmax = 0.38 Hz of Fig. 9. In

addition to the plain dc-ac current transition already shown in Fig. 6, we may observe that

the remaining condensate observables show quite sharp variations at the transition. In fact,

the sudden compression undergone by the condensate at site 1, along with the corresponding

expansion at site 2, becomes reflected in the top panel of Fig. 11 through the sharp decrease
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FIG. 11. Time evolution of the imbalance departure from the equilibrium value Z − Z0, chemical

potencial difference µ1 − µ2, particle current I (inset), phase difference φ, and energy H from GP

simulation results (black solid lines) for the barrier motion with a maximum rotation frequency

fmax = 0.38 Hz referred to in Figs. 6, 9 and 10. The blue solid lines represent the corresponding

TM model results with a best fit value of fmax = 0.37862 Hz.

(increase) of the imbalance departure from the equilibrium value Z−Z0 (chemical potential

difference µ1 − µ2) at the transition from the almost vanishing values shown in the dc

regime. On the other hand, the bottom panel of Fig. 11 shows that after the adiabatic

barrier acceleration (below 1000 ms), the phase difference and the energy remain constant

up to the transition to the ac regime, which is characterized by a running downwards phase

difference and an energy jump stemming from the sudden compression/expansion of the

condensate that triggers the term ∼ (Z − Z0)2 in (22). Here it is important to remark the

excellent agreement that show in Fig. 11 the GP simulation results and the corresponding
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FIG. 12. GP simulation results for the phase difference versus bias current for two symmetric

barrier trajectories (Fig. 5) with fmax = 0.3815 Hz and fmax = 0.382 Hz.

TM results for a slightly modified best fit value of the maximum rotation frequency (less

than 0.4%), with respect to that of the GP simulation.

The condensate evolution for two slightly different symmetric trajectories of the barriers

is depicted in Fig. 12. Here the faster trajectory with fmax = 0.382 Hz provokes the

condensate transition to the ac regime, while the slower trajectory (fmax = 0.3815 Hz)

yields the hysteretic loop within the dc domain, already seen in Fig. 7. It is interesting to

observe in Fig. 12 that both trajectories in the phase difference versus bias current plane

share the first part of the path, as they travel the line of energy minima up to the critical

point, where minimum and saddle coalesce. At this point the condensate driven by the

faster barriers ‘drops’ to the ac domain, while that driven by the slower barriers go a little

further along the line of energy saddles. Note in Fig. 12 that this is precisely the fact that

makes the return path (decreasing bias currents) oscillate around the line of energy minima.

In other words, such a ‘tour’ beyond the critical point should be regarded as the source

of the hysteretic behavior. To pursue with the study of this case, we depict in Fig. 13

time evolutions of the phase difference, particle current and energy that complement what

represented in Figs. 7 and 12. Again, an excellent agreement between GP simulation and

TM results is obtained with a slightly less best fit value of the maximum rotation frequency

for the TM model (0.5%).

Finally, we will consider a different initial condition from that previously assumed of the
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FIG. 13. Time evolution of the phase difference φ, particle current I and energy H from GP

simulation results (black solid lines) and TM model results (blue solid lines) for symmetric barrier

trajectories (Fig. 5) almost touching the critical point, with fmax = 0.3815 Hz (GP simulation)

and fmax = 0.37958 Hz (TM model).

ground state of the condensate. In fact, we will assume an initial order parameter of the form

ψ1e
iφ + ψ2, with ψj denoting the wavefunction of the localized state on the j-well and the

parameter φ serving to introduce an initial phase difference between both wells. Note that

φ = 0 corresponds to the ground-state order parameter. Then, assuming again symmetric

barrier trajectories, with fmax < fc in this case, there will be a nonvanishing critical value of

the initial phase difference above which the system will make the transition to the ac regime.

In fact, we depict in Fig. 14 the GP simulation results for two initial phase differences just

above and below such a critical value for a barrier trajectory with fmax = 0.3 Hz. Thus, we

may see overlapping phase differences for both initial conditions at increasing bias currents,

yielding a trajectory of oscillations around the line of energy minima up to reaching the

maximum rotation frequency (bias current). Next, the trajectories split into a returning
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FIG. 14. Phase difference versus bias current from GP simulation results for two symmetric barrier

trajectories (Fig. 5) with fmax = 0.3 Hz and nonvanishing initial phase differences of 0.6161π and

0.616155π. Both curves turn out to be undistinguishable within the plot scale up to the maximum

bias current, from where the return path for the former is depicted with the red solid line, while

the latter conserves the original trace. The dashed line corresponds to the phase difference φm of

the energy minimum.

oscillating path, similar to that developed for increasing bias currents (except for a phase

displacement of π, approximately), and, for the higher initial phase difference, a trajectory

that makes the transition to ac across the line of energy saddles. In Fig. 15, we depict the

time evolution of the phase difference and the imbalance departure from the equilibrium

value for the above configurations, where a very good agreement is observed between the

GP simulation results and the TM model results with slightly higher best fit values of the

initial phase differences (∼ 1%).

IV. CONCLUSION

We have analized the effects of the barrier motion on the BH Hamiltonian and the equa-

tions of motion of an atom dc-SQUID. We have found that a couple of terms arising from

the additional particle flow induced by the barriers displacement should be added to the

condensate energy. In fact, in addition to the well-known contribution proportional to the

bias current and the phase difference, which yields the tilting of the washboard potential,
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FIG. 15. Same as Fig. 14 for the time evolution of the phase difference φ and the imbalance

departure from the equilibrium value Z − Z0 (black solid lines). The blue solid lines depict the

corresponding TM model results for initial phase differences of 0.6245π and 0.6248π, while the black

(red) dashed line corresponds to the phase difference φm (φM ) of the energy minimum (saddle).

we have identified a hysteretic term that should be considered for accelerated or overlapping

barriers. Based on such energies, we have proposed two corresponding additional contribu-

tions to the BH Hamiltonian and have analyzed their effects on the Heisenberg equation

of motion for the boson field operator in the TM approximation. Thus, we have found

that the nonhysteretic additional contribution to the Heisenberg equation does cancel with

that arising from the time derivative of the boson field operator in the Schrödinger repre-

sentation, whereas the hysteretic contribution seems to be negligible in the present case of

adiabatic barrier accelerations, according to the experimental results. So, we have utilized
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formally the same GP and TM model equations derived for barriers at rest, except for the

time dependence of parameters due to the barrier motion. By deriving the expression of

the condensate energy from the BH Hamiltonian, we have studied the energy landscape as

a function of an order parameter (phase difference) and a control parameter (bias current),

determining the diagram with the location of dc and ac regimes. In addition, we have found

that the Josephson critical current, and correspondingly the critical barrier speed, depend on

the barrier position, a fact that makes that a dc to ac transition could always be reached for

any uniform barrier velocity attained after the initial adiabatic acceleration. On the other

hand, we have studied the condensate evolution driven by barrier trajectories symmetric

with respect to the symmetric configuration of the dc-SQUID. Particularly, we analyzed

the hysteretic effects stemming from a trajectory that almost reaches the critical point and

develops an oscillating return within the dc domain, as compared to a sligthly faster tra-

jectory that yields the condensate transition to the ac regime. In addition, we discussed

an easier to detect hysteresis scenario that could arise for a sufficiently resistive flow in the

ac regime. We have also seen that when the initial condensate presents a phase difference

between both wells, instead of the ground state, there exists a critical value of such a phase

difference above which the dc-SQUID makes a transition to the ac regime, irrespective of the

maximum value of the barrier velocity attained at the symmetric trajectory. To conclude,

we may remark that the excellent agreement between the GP simulation results and the TM

model results found in all cases, leaves a good open window to further apply such a model

and its corresponding BH Hamiltonian in order to gain better insights about this kind of

critical phenomena.
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