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TENSOR PRODUCT OF MODULES OVER A LIE CONFORMAL

ALGEBRA

JOSÉ I. LIBERATI∗

Abstract. We find a necessary and sufficient condition for the existence of the tensor product
of modules over a Lie conformal algebra. We provide two algebraic constructions of the tensor
product. We show the relation between tensor product and conformal linear maps. We prove
commutativity of the tensor product.

1. Introduction

Since the pioneering papers [BPZ] and [Bo], there has been a great deal of work towards
understanding of the algebraic structure underlying the notion of the operator product expansion
(OPE) of chiral fields of a conformal field theory. The singular part of the OPE encodes the
commutation relations of fields, which leads to the notion of a Lie conformal algebra [K].

In the past few years a structure theory [DK], representation theory [CK, CKW] and coho-
mology theory [BKV] of finite Lie conformal algebras has been developed.

In this work we define and construct the tensor product of modules over Lie conformal alge-
bras. We translate the ideas on the tensor product of modules over vertex algebras, presented in
[L1], to the case of Lie conformal algebras. In this way, we answer an open question suggested
by V. Kac during a graduate course at MIT in 1997, where he presented the problem and the
result that should be obtained for the modules over the Virasoro conformal algebra. It has been
a necessary and missing part of the theory in the last 20 years.

We introduce the notion of intertwining operator for the case of modules over Lie conformal
algebras and we define the tensor product by the universal property.

We find a necessary and sufficient condition for the existence of the tensor product of modules
over a Lie conformal algebra. We provide two algebraic constructions of the tensor product. We
show the relation between tensor product and conformal linear maps, and we prove commuta-
tivity of the tensor product.

It is important to point out that Y. Z. Huang communicated that our tensor product presented
in [L1] is not the same as the one defined by Huang and Lepowsky [HL1]-[HL5]. But, we believe
that our definition and construction can be changed in order to obtain an algebraic construction
of their tensor product. The proof of associativity of the tensor product of vertex algebras
presented in [L1], is probably wrong since it is based on the wrong proof given in [DLM].

In [L2], we extend the results in this work to the case of H-pseudoalgebras (see [BDK]).
In section 2, we present the basic definitions and notations. In section 3, we find a necessary

and sufficient condition for the existence of the tensor product of modules over a Lie conformal
algebra, that we called the kernel intertwining operator full equality condition, and we present
the first construction.

In section 4, we present the relation between the tensor product and the conformal analog
of the Hom functor. This relationship obtained in Theorem 4.2, provides the motivation for
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the definition of intertwining operators. In section 5, we prove the commutativity of the tensor
product.

In section 6, we present a second construction, based on the ideas for the tensor product
of modules over a vertex operator algebra in [Li]. The idea is simple, for two finite conformal
R-modules M and N , we take certain finite submodule of Chom(M,N∗c) ≃ M∗c ⊗ N∗c (see
Proposition 4.1), called ∆(M,N∗c). Then, the conformal dual

(
∆(M,N∗c)

)∗c is the tensor
product M

R
⊗N .

In section 7, we try to compute the tensor product of finite irreducible conformal modules
over the Virasoro conformal algebra.

Finally, for me it is important to point out that in 2010, we obtained the second construction.
In 2011 we found the kernel condition, but due to personal problems we abandoned this paper
until January 2014, when we found the first construction of the tensor product. Therefore, it was
basically finished in 2014. In march 2020, we resumed this work, producing this final version.

Unless otherwise specified, all vector spaces, linear maps and tensor products are considered
over C.

2. Definitions and notation

In order to make a self-contained paper, in this section we present the notion of Lie conformal
algebra and their modules, intertwining operators and tensor product.

A Lie conformal algebra R is a C[∂]-module endowed with a C-linear map R⊗R −→ C[λ]⊗R,
a⊗ b 7→ [aλb], called the λ -bracket, satisfying the following axioms (a, b, c ∈ R):

• Sesquilinearity: [(∂a)λb] = −λ[aλb], [aλ(∂b)] = (λ+ ∂)[aλb],

• Skew-commutativity: [aλb] = −[a−∂−λb],

• Jacobi identity: [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]].

In all the expressions in this work, and specially in the skew-commutativity, the powers of
λ, −∂ − λ, etc. are moved to the left. A Lie conformal algebra is called finite if it has finite
rank as C[∂]-module. The notions of homomorphism, ideal and subalgebras of a Lie conformal
algebra are defined in the usual way.

A module M over a Lie conformal algebra R is a C[∂]-module endowed with a C-linear map
R ⊗ M −→ C[[λ]] ⊗ M , a ⊗ v 7→ aMλ v, called the λ -action, satisfying the following axioms
(a, b ∈ R, v ∈M):

• Sesquilinearity: (∂a)Mλ v = −λaMλ v, aMλ (∂Mv) = (λ+ ∂M ) aMλ v,

• Jacobi identity: aMλ (bMµ v) = [aλb]
M
λ+µv + bMµ (aMλ v).

A module is called conformal if aMλ v ∈ C[λ] ⊗M . A module is called finite if it has finite
rank as C[∂]-module. The notions of homomorphism, and submodules are defined in the usual
way. From now on, we shall simply use aλv instead of aMλ v, if the situation is clear. Similarly,

we use ∂ instead of ∂M .
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Now, we introduce the notions of intertwining operators and tensor product of conformal
modules. One of the motivation is given by the similar notions for modules over a vertex
algebra presented in [L1] and [Li].

Definition 2.1. Let M,N and W be three conformal R -modules. An intertwining operator of
type

(
W

M ,N

)
is a C-bilinear map

Iλ :M ×N −→ C[λ ]⊗W

(u , v) 7−→ Iλ(u , v) =
∑

n∈Z+

λn

n!
I
(n)

(u , v)

satisfying the following conditions:

• Translation - Derivation: For all u ∈M and v ∈ N

Iλ(∂ u, v) = −λ Iλ(u, v), and ∂ (Iλ(u, v)) = Iλ(∂ u, v) + Iλ(u, ∂ v). (2.1)

• Jacobi identity: For all a ∈ V, u ∈M and v ∈ N

aλIγ(u , v) = Iλ+γ (aλu , v) + Iγ(u , aλv) . (2.2)

Observe that the notion of intertwining operator is a generalization of the notion of conformal
R-module, so that for a conformal R-module (M, Mλ ), the bilinear map M

λ is an intertwining

operator of type
(

M
R,M

)
. We denote by

(
W

M ,N

)
the vector space of all intertwining operators of

the indicated type.

Definition 2.2. LetM and N be two conformal R-modules. A pair (M
R
⊗N,Fλ), which consists

of a conformal R-module M
R
⊗ N and an intertwining operator Fλ of type

(M
R

⊗N

M ,N

)
, is called a

tensor product for the ordered pair (M,N) if the following universal property holds: For any

conformal R-module W and any intertwining operator Iλ of type
(

W
M ,N

)
there exists a unique

R-homomorphism ϕ from M
R
⊗N to W such that Iλ = ϕ ◦ Fλ, where ϕ is extended canonically

to a linear map from C[λ ]⊗ (M
R
⊗N) to C[λ ]⊗W .

Just as in the classical algebra theory, it follows from the universal property that if there exists
a tensor product for the ordered pair (M,N), then it is unique up to an R-module isomorphism.
Namely, the pair (W,Gλ) is another tensor product if and only if there exists an R-module
isomorphism φ :M

R
⊗N →W such that Gλ = φ ◦ Fλ.

3. First construction of the tensor product

First of all, we need some definitions in order to find necessary and sufficient conditions for
the existence of the tensor product.
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Definition 3.1. (a) Let M and N be two conformal R-modules. We define the kernel of the
intertwining operators from the pair (M,N) as follows

Ker

(
·

M,N

)
:=

{
(u, v) ∈M ×N | ∃ lu,v ∈ Z+ such that I

(n)
(u, v) = 0

for all n ≥ lu,v, for all conformal R-modules W , and for all Iλ ∈
(

W
M,N

)}

(b) We say that the pair (M,N) satisfies the kernel intertwining operator full equality condition
if

M ×N = Ker

(
·

M,N

)
.

Proposition 3.2. (Necessary condition) If the tensor product (M
R
⊗N,Fλ) exists, then the pair

(M,N) satisfies the kernel intertwining operator full equality condition.

Proof. Fix (u, v) ∈ M × N and using that Fλ(u, v) ∈ (M
R
⊗ N)[λ ], we have that there exists

N ∈ Z+ (depending on u and v) such that F
(n)

(u, v) = 0 for all n ≥ N . Since for any

conformal R-module W and any intertwining operator Iλ of type
(

W
M ,N

)
there exists a unique

R-homomorphism ϕ from M
R
⊗N to W such that Iλ = ϕ ◦ Fλ, where ϕ is extended canonically

to a linear map from (M
R
⊗N)[λ ] to W [λ ], it follows that I

(n)
(u, v) = 0 for all n ≥ N . �

Theorem 3.3. (Sufficient condition) If the pair (M,N) satisfies the kernel intertwining operator
full equality condition, then the tensor product (M

R
⊗N,Fλ) exists.

We shall do the construction of the tensor product in the rest of this section, and we shall see
that it is also a sufficient condition for the existence of the tensor product.

The essential idea is to consider ”strings over Z+” for each pair (u, v) ∈M ×N and then take
the quotient by all the necessary conditions in order to get an intertwining operator by taking
the generating series of these strings (cf. [Li]).

Therefore, let M and N be two conformal R-modules, and set

F0(M,N) = C[t]⊗M ⊗N.

As usual in conformal algebra theory, it is more clear to work with generating series in order to
manipulate string of vectors. For this reason we introduce the following very important notation
for any u ∈M and v ∈ N (cf. formula (5.2.2) in [Li]):

u
γ
⊗ v :=

∑

n∈Z+

γn

n!
(tn ⊗ u⊗ v).

Now, we want to take the necessary quotients in order to obtain that
γ
⊗ is an intertwining

operator. In particular, it should satisfies the Jacobi identity (2.2), and this is the motivation
for the following λ-action of R on F0(M,N) (for a ∈ R,u ∈M,v ∈ N):

aλ(u
γ
⊗ v) = (aλu)

λ+γ
⊗ v + u

γ
⊗ (aλv). (3.1)

Motivated by the derivation property (2.1), we define the C[∂]-module structure on F0(M,N),
by the linearly extended map given on generators by ∂(u

γ
⊗ v) = ∂u

γ
⊗ v + u

γ
⊗ ∂v.

Recall the standard notation for the λ-action that produce the (n)-operators:



TENSOR PRODUCT OF MODULES OVER A LIE CONFORMAL ALGEBRA 5

aλw :=
∑

n∈Z+

λn

n!
a(n)w.

If we consider the coefficients in λ and γ, the λ-action (3.1), corresponds to:

a(m)(t
n ⊗ u⊗ v) =

m∑

i=0

(
m

i

)
tn+m−i ⊗ a(i)u⊗ v + tn ⊗ u⊗ a(m)v, (3.2)

for m,n ∈ Z+, a ∈ R,u ∈M,v ∈ N , similar to the action in the tensor product of modules over
a vertex algebra [L1].

Proposition 3.4. Under the above defined λ-action, F0(M,N) is an R-module.

Proof. The sesquilinearity follows by straightforward computations. Now, we prove the Jacobi
identity. For a, b ∈ R, u ∈M and v ∈ N , we have

aλ
(
bγ(u

µ
⊗ v)

)
= aλ

(
bγu

µ+γ
⊗ v + u

µ
⊗ bγv

)
= aλ(bγu)

µ+γ+λ
⊗ v + (bγu)

µ+γ
⊗ (aλv)

+ (aλu)
µ+λ
⊗ (bγv) + u

µ
⊗ aλ(bγv),

and

bγ
(
aλ(u

µ
⊗ v)

)
= bγ(aλu)

µ+γ+λ
⊗ v + (aλu)

µ+λ
⊗ (bγv) + (bγu)

µ+γ
⊗ (aλv) + u

µ
⊗ bγ(aλv).

Therefore, we obtain

[aλ, bγ ]
(
u

µ
⊗ v

)
= [aλ, bγ ]u

µ+γ+λ
⊗ v + u

µ
⊗ [aλ, bγ ] v = [aλb]λ+γu

µ+γ+λ
⊗ v + u

µ
⊗ [aλb]λ+γv

= [aλb]λ+γ

(
u

µ
⊗ v

)
,

finishing the proof. �

Let J0 be the R-submodule of F0(M,N) generated by the following subspace:

C−span

{
tn ⊗ u⊗ v ∈ F0(M,N) | I

(n)
(u, v) = 0 for all R-modules W , and for all Iλ ∈

(
W

M,N

)}

Since M × N = Ker
(

·

M,N

)
, then for every (u, v) ∈ M × N , there exists l ∈ N such that

I
(n)

(u, v) = 0 for all n ≥ l, for all R-modules W , and for all Iλ ∈
(

W
M ,N

)
.

Now, we take

F1(M,N) = F0(M,N)/J0.

We will still use the notation u
γ
⊗ v and tn ⊗ u ⊗ v for elements in the quotient space

F1(M,N)[[γ]] and F1(M,N) respectively. We have the following important result:

Proposition 3.5. For any a ∈ R and any tn ⊗ u⊗ v ∈ F1(M,N), we have

(a) aλ(t
n ⊗ u⊗ v) involves only finitely many positive powers of λ.

(b) u
γ
⊗ v involves only finitely many positive powers of γ.

(c) The map ∂ is well defined in F1(M,N), that is ∂(J0) ⊆ J0.
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Proof. (a) We fix a ∈ R and tn ⊗ u⊗ v ∈ F1(M,N). Recall formula (3.2):

a(m)(t
n ⊗ u⊗ v) =

m∑

i=0

(
m

i

)
tm+n−i ⊗ a(i)u⊗ v + tn ⊗ u⊗ a(m)v.

Recall that for a ∈ R and u ∈ M , there exists la,u ∈ N such that a(k)u = 0 for all k ≥ la,u.
Observe that in the second term, a(m)v = 0 for a sufficiently large m, and in the first term, the
finite sum is independent of m for all m ≥ la,u. Then for each element a(i)u⊗ v (with i ≤ la,u),

there exists a power of t such that tl ⊗ a(i)u⊗ v = 0 if l is large enough. Therefore, for a large
enough m the result is proved.

(b) It is immediate from the definition of J0 and the kernel condition that is assume for the
pair (M,N).

(c) Suppose tn ⊗ u⊗ v ∈ J0, then ∂(t
n ⊗ u⊗ v) = tn ⊗ ∂u⊗ v + tn ⊗ u⊗ ∂v. Using (2.1), we

have I
(n)

((∂u, v) + (u, ∂v)) = ∂ I
(n)

(u, v) = 0, finishing the proof. �

Now, an easy computation shows that the subspace generated by all the coefficients in the
elements of the form (for u ∈M,v ∈ N)

∂u
γ
⊗ v + γ(u

γ
⊗ v),

is R-invariant, and motivated by the translation property in the definition of intertwining oper-
ators, let J1 be this R-submodule of F1(M,N). By straightforward computations, it is easy to
see that J1 is invariant by ∂. We define

M
R
⊗N = F1(M,N)/J1.

Then, we obtain

Proposition 3.6. The space M
R
⊗N is an R-module, and

γ
⊗ is an intertwining operator of type

(
M

R
⊗N

M,N

)
.

Combining Proposition 3.5, Proposition 3.6 and the definition of M
R
⊗N , we have the following

result:

Theorem 3.7. If the pair (M,N) satisfies the kernel intertwining operator full equality condi-
tion, then the pair (M

R
⊗N,

γ
⊗ ) is a tensor product of the pair (M,N).

4. Relation between Chom and tensor product

In this section we introduce the notion of conformal linear map, producing the ”Hom” functor
for conformal modules over a Lie conformal algebra, called Chom (see [K] and [BKL]). Then,
we show the intimate relationship between Chom and the tensor product.

Given two C[∂]-modules U and V , a conformal linear map from U to V is a C-linear map
a : U → C[λ]⊗ V , denoted by aλ : U → V , such that

aλ ∂
U = (λ+ ∂V ) aλ.

The vector space of all such maps, denoted by Chom(U, V ), is a C[∂]-module with

(∂a)λ := −λaλ.
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Let U and V be two modules over a Lie conformal algebra R. Then, the C[∂]-module
Chom(U, V ) has an R-module structure defined by

(aλϕ)µu = aVλ (ϕµ−λu)− ϕµ−λ(a
U
λ u),

where a ∈ R, ϕ ∈Chom(U, V ) and u ∈ U . It is clear that the R-module Chom(U, V ) is conformal
iff both U and V are finite conformal R-modules. Observe that one can define the conformal
dual of U as the R-module U∗c =Chom(U,C), where C is viewed as the trivial R-module and
C[∂]-module. We also define the tensor product U ⊗ V of R-modules as the ordinary tensor
product over C with C[∂]-module structure (u ∈ U, v ∈ V ):

∂ (u⊗ v) = ∂ u⊗ v + u⊗ ∂ v

and λ -action defined by (r ∈ R):

rλ(u⊗ v) = rλu⊗ v + u⊗ rλv.

Proposition 4.1. [BKL] Let U and V be two R-modules. Suppose that U has finite rank as a
C[∂]-module. Then U∗c ⊗ V ≃ Chom(U, V ) as R-modules, with the identification (f ⊗ v)λ(u) =
fλ+∂V (u) v, f ∈ U∗c , u ∈ U and v ∈ V .

Now, we present the main result of this section. The following theorem provides the motivation
for the definition of intertwining operator.

Theorem 4.2. Let M,N and W be conformal R-modules.

(a) For any intertwining operator Iλ of type
(

W
M ,N

)
, there exists a unique R-homomorphism ψ

form M to Chom(N,W ) such that

Iλ(u, v) =
[
ψ(u)

]
λ
(v),

for u ∈M and v ∈ N .

(b) We have the following linear isomorphisms:

(
W

M , N

)
≃ Hom

R
(M

R
⊗N,W ) ≃ Hom

R
(M,Chom(N,W )).

Proof. (a) First, let us see that ψ(u) ∈Chom(N,W ) iff Iγ(u, ∂ v) = (γ + ∂)Iγ(u, v):

Iγ(u, ∂v) =
[
ψ(u)

]
γ
(∂v) = (γ + ∂)

[
ψ(u)

]
γ
(v) = (γ + ∂)Iγ(u, v). (4.1)

Now, let us see that ψ is a C[∂]-homomorphism iff Iγ satisfies the translation property:
[
ψ(∂u)

]
γ
(v) = Iγ(∂u, v) = −γIγ(u, v) = −γ

[
ψ(u)

]
γ
(v) =

[
∂ · ψ(u)

]
γ
(v).

Combining this with (4.1), we get the derivation property of Iγ . Finally, we prove that ψ is an
R-homomorphism iff Iγ satisfies the Jacobi identity:

Iγ(aλu, v) =
[
ψ(aλu)

]
γ
(v) =

[
aλ

(
ψ(u)

)]
γ
(v) = aλ

([
ψ(u)

]
γ−λ

(v)
)
−

[
ψ(u)

]
γ−λ

(aλv)

= aλ

(
Iγ−λ(u, v)

)
− Iγ−λ(u, aλv),

finishing the proof of (a).

(b) The first isomorphism follows by the universal property the defines the tensor product.

Finally, the isomorphism
(

W
M ,N

)
≃ Hom

R
(M,Chom(N,W )) is given by part (a). �
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5. Commutativity of the tensor product

For any interwining operator Iγ of type
(

W
M ,N

)
, the transpose of Iγ is defined as

(I t)γ(v, u) := I−γ−∂(u, v),

for any u ∈M,v ∈ N .

Theorem 5.1. Let M,N and W be conformal R-modules.

(a) The transpose of an intertwining operator of type
(

W
M ,N

)
is an intertwining operator of type(

W
N ,M

)
.

(b) If (M
R
⊗N,

γ
⊗ ) is a tensor product of the pair (M,N), then (M

R
⊗N, (

γ
⊗)t) is a tensor product

of the pair (N,M).

(c) The map

τ :M
R
⊗N −→ N

R
⊗M

u
γ
⊗ v 7−→ v

−γ−∂
⊗ u

is an R-isomorphism.

Proof. (a) First, we prove the translation-derivation properties:

(I t)γ(∂v, u) = I−γ−∂(u, ∂v) = −γ I−γ−∂(u, v) = −γ (I t)γ(v, u),

and

∂ ((I t)γ(v, u)) = ∂ (I−γ−∂(u, v)) = I−γ−∂(∂u, v) + I−γ−∂(u, ∂v) = (I t)γ(v, ∂u) + (I t)γ(∂v, u).

And now, the Jacobi identity (recall that the powers of (−γ − ∂) must be moved to the left):

aλ
(
(I t)γ(v, u)

)
= aλ

(
I−γ−∂(u, v)

)
= I−γ−∂(aλu, v) + I−λ−γ−∂(u, aλv)

= (I t)γ(v, aλu) + (I t)λ+γ(aλv, u).

(b) Let W be any conformal R-module, and Iλ ∈
(

W
N ,M

)
. Then, it is easy to see that there is

an R-homomorphism ψ form M
R
⊗N to W such that Iλ = ψ ◦ (

λ
⊗)t if and only if (I t)λ = ψ ◦

λ
⊗,

finishing (b).

(c) Let Fγ :M×N → C[γ]⊗(N
R
⊗M) be given by Fγ(u, v) = v

−γ−∂
⊗ u, for u ∈M and v ∈ N . Since

Fγ = (
γ
⊗)t, using (a), we get that Fγ is an intertwining operator of type

(N
R
⊗M

M ,N

)
. Then, there is

a unique R-homomorphism τ :M
R
⊗N → N

R
⊗M , with τ(u

γ
⊗ v) = Fγ(u, v) = v

−γ−∂
⊗ u. Similarly,

interchanging the roles of M and N , we obtain an R-homomorphism τ̃ : N
R
⊗M →M

R
⊗N , with

τ̃(v
γ
⊗ u) = u

−γ−∂
⊗ v. Both composite of these maps are obviously identity maps, and so τ is an

R-isomorphism. �
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6. Second construction of the tensor product

If we restrict the definition of tensor product to finite conformal modules, there exists an
alternative construction that follows the ideas for the tensor product of modules over a vertex
operator algebra in Chapter 7 of [Li] (similar to the ideas in [HL1]-[HL5]). In our case, the idea
is very simple: for two finite conformal R-modules M and N , we suppose that there exists a
unique nontrivial finite submodule of Chom(M,N∗c) ≃M∗c ⊗N∗c (see Proposition 4.1), called
∆(M,N∗c). Then, the conformal dual

(
∆(M,N∗c)

)∗c is the tensor product M
R
⊗N .

In the construction of the tensor product of modules over a vertex operator algebra in
Chapter 7 of [Li], Haisheng Li takes (what in our case is) the maximal (finite) submodule
of Chom(M,N∗c).

We shall need the following basic result.

Proposition 6.1. Let M and N be finite conformal R-modules.

(a) Let T :M −→ N be an R-homomorphism. The map T ∗c : N∗c −→M∗c defined by

[
T ∗c(f)

]
λ
(u) = fλ(T (u))

for u ∈M and f ∈ N∗c, is an R-homomorphism.

(b) The map ϕ :M −→ (M∗c)∗c defined by

[
ϕ(u)

]
λ
(f) = f−λ(u)

for u ∈M and f ∈M∗c, is an R-isomorphism.

Proof. (a) First, we prove that T ∗c is well defined:

[
T ∗c(f)

]
λ
(∂ u) = fλ(T (∂ u)) = fλ(∂ T (u)) = λ fλ(T (u)) = λ

[
T ∗c(f)

]
λ
(u).

Now, we prove that T ∗c is an R-homomorphism, using

[
T ∗c(aγf)

]

λ
(u) = (aγf)λ(T (u)) = −fλ−γ(aγ(T (u))) = −fλ−γ(T (aγu)),

and [
aγ

(
T ∗c(f)

)]
λ
(u) = −

[
T ∗c(f)

]
λ−γ

(aγu) = −fλ−γ(T (aγu)).

(b) First, we prove that ϕ is well defined:

[
ϕ(u)

]

λ
(∂ f) = (∂ f)−λ(u) = λ f−λ(u) = λ

[
ϕ(u)

]

λ
(f).

Now, we prove that ϕ is an R-homomorphism, using

[
ϕ(aγu)

]
λ
(f) = f−λ(aγu),

and

[
aγϕ(u)

]
λ
(f) = −

[
ϕ(u)

]
λ−γ

(aγf) = −(aγf)γ−λ(u) = f−λ(aγu).
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Suppose thatM = ⊕n
i=1C[∂]ui, thenM

∗c = ⊕n
i=1C[∂]u

∗

i with (u∗i )λ(uj) = δij , and (M∗c)∗c =
⊕n

i=1C[∂] (u
∗
i )

∗ with [(u∗i )
∗]λ(u

∗
j ) = δij . Observe that ϕ satisfies

[
ϕ(ui)

]
λ
(u∗j ) = (u∗j )−λ(ui) = δij ,

proving the isomorphism. �

For any interwining operator Iλ of type
(

W
M ,N

)
, the adjoint of Iλ is defined by

[
(I∗)λ(u, f)

]
µ
(v) := −fµ−λ

(
Iλ(u, v)

)
,

for any u ∈M,v ∈ N and f ∈W ∗c .

Proposition 6.2. Let M,N and W be conformal R-modules. The transpose of an intertwining
operator of type

(
W

M ,N

)
is an intertwining operator of type

(
N∗c

M ,W∗c

)
.

Proof. The translation-derivation properties are obtained by the following identities:
[
(I∗)λ(∂u, f)

]

µ
(v) = −fµ−λ

(
Iλ(∂u, v)

)
=

[
− λ

(
(I∗)λ(u, f)

)]

µ
(v),

and [
(I∗)λ(u, ∂f)

]

µ
(v) = −(∂f)µ−λ

(
Iλ(u, v)

)
= −(λ− µ) fµ−λ

(
Iλ(u, v)

)

=
[
(λ− µ) (I∗)λ(u, f)

]

µ
(v) =

[
(λ+ ∂)

(
(I∗)λ(u, f)

)]

µ
(v).

The Jacobi identity is obtained by the following identities:

[
aγ

(
(I∗)λ(u, f)

)]
µ
(v) = −

[
(I∗)λ(u, f)

]
µ−γ

(a γv) = fµ−γ−λ

(
Iλ(u, a γv)

)
,

[
(I∗)γ+λ(a γu, f)

]
µ
(v) = −fµ−γ−λ

(
Iγ+λ(a γu, v)

)
,

[
(I∗)λ(u, a γf)

]
µ
(v) = −(a γf)µ−λ

(
Iλ(u, v)

)
= fµ−λ−γ

(
a γ

(
Iλ(u, v)

))
.

�

Now, we restrict the definition of tensor product to the category of finite conformal modules.
Let M and N be two finite conformal R-modules. Suppose that there exists a unique

nontrivial finite submodule of Chom(M,N∗c) ≃ M∗c ⊗ N∗c (see Proposition 4.1), and
denote it as ∆(M,N∗c). Observe that ∆(M,N∗c) must satisfy a non trivial property, that could
probably be improved. Now, we define F as the natural intertwining operator of type

(
N∗c

∆(M,N∗c) , M

)
= Hom

R

(
∆(M,N∗c),Chom(M,N∗c)

)

given by the inclusion, that is
Fλ(f, u) = fλ(u).

Theorem 6.3.
((

∆(M,N∗c)
)∗c , (F t)∗

)
is a tensor product for the pair (M,N).

Proof. Observe that F t is an intertwining operator of type
(

N∗c

M,∆(M,N∗c)

)
and (F t)∗ is an inter-

twining operator of type
((∆(M,N∗c))∗c

M , N

)
, using Proposition 6.1(b).

Let W be any finite conformal R-module, and let I be any intertwining operator of type(
W

M ,N

)
. It follows by Theorem 5.1 (a) and Proposition 6.2, that (I∗)t is an intertwining operator

of type (
N∗c

W ∗c , M

)
= Hom

R

(
W ∗c,Chom(M,N∗c)

)
.
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Then, there exists a (unique) R-homomorphism ψ from W ∗c to Chom(M,N∗c) such that

[
(I∗)t

]
λ
(g, u) =

[
ψ(g)

]
λ
(u), (6.1)

for any u ∈ M and g ∈ W ∗c. It follows from the definition of ∆(M,N∗c) that ψ is an R-
homomorphism from W ∗c to ∆(M,N∗c). Therefore, using Proposition 6.1(a), we obtain an
R-homomorphism ψ∗c from (∆(M,N∗c))∗c to W (using that W ≃ (W ∗c)∗c , see Proposition
6.1(b)). Now, we have to prove that this map satisfies the universal property, that is

Iλ(u, v) =
[
ψ∗c ◦ (F t)∗

]
λ
(u, v),

for any u ∈M and v ∈ N .
First, we compute (F t)∗. Observe that

(F t)λ(u, f) = F
−λ−∂N∗c (f, u) = f

−λ−∂N∗c (u),

for u ∈ M and f ∈ ∆(M,N∗c). Then, for u ∈ M , v ∈ N ≃ (N∗c)∗c , and g ∈ ∆(M,N∗c), we
have

[[
(F t)∗

]
λ
(u, v)

]
µ
(g) = −vµ−λ

(
(F t)λ(u, g)

)
= −

[
(F t)λ(u, g)

]
λ−µ

(v) (6.2)

= −
(
g
−λ−∂N∗c (u)

)

λ−µ
(v) = −

(
g−µ(u)

)

λ−µ
(v).

Now, for u ∈M and v ∈ N , we have that
[
ψ∗c ◦ (F t)∗

]
λ
(u, v) ∈ (W ∗c)∗c ≃W . Then, using the

definition of ψ∗c in Proposition 6.1(a), (6.2) and (6.1), for f ∈W ∗c , we have

[[
ψ∗c ◦ (F t)∗

]
λ
(u, v)

]
µ
(f) =

[
ψ∗c

([
(F t)∗

]
λ
(u, v)

)]
µ
(f) =

[[
(F t)∗

]
λ
(u, v)

)]
µ
(ψ(f))

= −
(
(ψ(f))−µ(u)

)
λ−µ

(v) = −
([

(I∗)t
]
−µ

(f, u)
)
λ−µ

(v)

= −
[
(I∗)µ−∂N∗c (u, f)

]
λ−µ

(v) = −
[
(I∗)λ(u, f)

]
λ−µ

(v)

= f−µ

(
Iλ(u, v)

)
=

[
Iλ(u, v)

]
µ
(f),

finishing the proof. �

Recall that Chom(M,N∗c) ≃M∗c⊗N∗c . Now, we take generators of them: M∗c = C[∂]⊗M∗c
0

and N∗c = C[∂] ⊗ N∗c
0 . If the submodule generated by M∗c

0 ⊗ N∗c
0 is a finite submodule of

M∗c ⊗N∗c , then we conjecture that the conformal dual of it should be the tensor product of M
and N .

We think that there should be a simpler construction of the tensor product of finite modules.

7. Tensor product of modules over the Virasoro conformal algebra

In this section, we try to compute the tensor product of irreducible conformal modules over
the Virasoro conformal algebra.
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Let us consider the example of the Virasoro conformal algebra: we define V ir = C[∂]L, with
λ-bracket defined on generator, by [LλL] = (2λ+ ∂)L. There exists a family of finite conformal
modules over the Virasoro algebra given by M∆,α = C[∂]m∆,α, where ∆, α ∈ C, with λ-action

Lλm∆,α = (∆λ+ ∂ + α)m∆,α.

It was proved in [CK] (see [K]), that all the finite irreducible conformal modules over V ir are
given by M∆,α with ∆ 6= 0, and (∂ + α)M0,α is a nontrivial submodule of M0,α.

In 1997, during a graduate course at MIT, Victor Kac explained that there should be a tensor
product of conformal modules, that should be closed for finite modules, and for the modules
M∆,α over the Virasoro conformal algebra, it should be:

M∆,α
V ir
⊗ M∆′,α′ =M∆+∆′−1, α+α′ . (7.1)

A simple computation shows that

Hom
V ir

(
M∆,α,Chom

(
M∆′,α′ ,M

∆̃,α̃

))
= { f | [f(m∆,α)]µ(m∆′,α′) = c m∆+∆′−1, α+α′ with c ∈ C}

if ∆̃ = ∆+∆′ − 1 and α̃ = α+α′; and it is zero otherwise. On the other hand, it is easy to see
that

Hom
V ir

(
M∆̄,ᾱ,M∆̃,α̃

)
=

{
0 if ∆̄ 6= ∆̃ or ᾱ 6= α̃

{ f | f(m∆̄,ᾱ) = c m∆̃, α̃
with c ∈ C} if ∆̄ = ∆̃ and ᾱ = α̃.

Therefore, we obtain

Hom
V ir

(
M∆,α

V ir
⊗ M∆′,α′ ,M∆̃,α̃

)
≃ Hom

V ir

(
M∆+∆′−1, α+α′ ,M∆̃,α̃

)
,

and this shows that M∆+∆′−1, α+α′ satisfies the universal property of the tensor product
M∆,α

V ir
⊗ M∆′,α′ in the special case when ”W” is M∆̃,α̃

.

We were not able to describe

Hom
V ir

(
M∆,α,Chom

(
M∆′,α′ ,W

))

for all finite conformal V ir-module W . But, we will show how to apply the first construction in
this case, under certain strong assumption, to prove (7.1).

Suppose that I(n)(m∆,α,m∆′,α′) = 0 for all n ≥ 1, and all intertwining operators I of type(
W

M∆̄,ᾱ,M∆̃,α̃

)
. Therefore, lm∆,α,m∆′,α′ = 1 in the definition of the kernel of intertwining operators,

producing that in the quotient by J0 we have

tn ⊗m∆,α⊗m∆′,α′ = 0 for all n ≥ 1. (7.2)

The second quotient by J1 corresponds to the identity

tn ⊗ ∂u⊗ v = −n tn−1 ⊗ u⊗ v, (7.3)

for all n ≥ 0, u ∈M∆,α and v ∈M∆′,α′ . Combining (7.2) and (7.3), we obtain that

tk ⊗ ∂ lm∆,α⊗m∆′,α′ = δk,l (−1)k k! (t0 ⊗m∆,α⊗m∆′,α′),

for all k, l ≥ 0. And, in general:

tn ⊗ ∂ km∆,α⊗ ∂ lm∆′,α′ =

{
0 if n < k

(−1)k k! (tn−k ⊗m∆,α⊗ ∂ lm∆′,α′) if n ≥ k.
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Therefore, it is enough to consider elements of the form tn ⊗m∆,α⊗ ∂ lm∆′,α′ . Now, using the
C[∂]-module structure, we have that

tn ⊗ m∆,α⊗ ∂ lm∆′,α′ = (∂⊗ − 1⊗ ∂ ⊗ 1)l(tn ⊗m∆,α⊗m∆′,α′)

=
l∑

i=0

(
l

i

)
(∂⊗)l−i(−1)i(tn ⊗ ∂ im∆,α⊗m∆′,α′),

where ∂⊗ = 1⊗ ∂⊗ 1+1⊗ 1⊗ ∂. Hence, we obtain that tn⊗ m∆,α⊗ ∂ lm∆′,α′ = 0 if n > l, and

tn ⊗ m∆,α⊗ ∂ lm∆′,α′ = l!
(l−n)!(∂

⊗)l−n(t0 ⊗m∆,α⊗m∆′,α′),

for all 0 ≤ n ≤ l, or equivalently

tn ⊗ m∆,α⊗ ∂ n+im∆′,α′ = (n+i)!
i! (∂⊗)i(t0 ⊗m∆,α⊗m∆′,α′),

for all n, i ≥ 0. Therefore, we have proved that M∆,α
V ir
⊗ M∆′,α′ is generated over C by the

elements of the form (∂⊗)i(t0 ⊗m∆,α⊗m∆′,α′), with i ≥ 0. Finally, using (3.2), we have that

Lλ(t
0 ⊗m∆,α⊗m∆′,α′) =

(
(∆ +∆′ − 1)λ+ ∂⊗ + α+ α′

)
(t0 ⊗m∆,α⊗m∆′,α′).

proving (under a strong assumption) that

M∆,α
V ir
⊗ M∆′,α′ =M∆+∆′−1, α+α′ .

Now, we will try to apply the second construction to prove (7.1). We shall need the following
result.

Proposition 7.1.
(
M∆,α

)∗c ≃ M 1−∆,−α.

Proof. We take (M∆,α)
∗c = C[∂]m∗

∆,α, with m
∗

∆,α defined by (m∗

∆,α)µ(p(∂)m∆,α) = p(µ). Then
[
Lλm

∗

∆,α

]
µ
(m∆,α) = −(m∗

∆,α)µ−λ(Lλm∆,α) = −(m∗

∆,α)µ−λ

(
(∆λ+ ∂ + α)m∆,α

)

= −(∆λ+ µ− λ+ α)(m∗

∆,α)µ−λ(m∆,α) = (1−∆)λ− µ− α

=
[(
(1−∆)λ+ ∂ − α

)
m∗

∆,α

]
µ
(m∆,α),

finishing the proof. �

Observe that in general C[∂] (m∆,α ⊗ m∆′,α′) is a finite submodule of M∆,α ⊗M∆′,α′ , and

using that Lλ(m∆,α ⊗ m∆′,α′) =
(
(∆ +∆′)λ+ ∂⊗ + α+ α′

)
(m∆,α ⊗ m∆′,α′), we have that

M∆+∆′,α+α′ ≃ C[∂] (m∆,α ⊗ m∆′,α′). (7.4)

Using Proposition 7.1, we obtain

(
M∆,α

)∗c ⊗
(
M∆′,α′

)∗c ≃ M 1−∆,−α ⊗M 1−∆′,−α′

We conjecture that for certain values of ∆ and ∆′, the module C[∂] (m 1−∆,−α ⊗ m 1−∆′,−α′) is
the unique finite submodule of M 1−∆,−α ⊗M 1−∆′,−α′ . Now, using (7.4), we have

M 2−∆−∆′,−α−α′ ≃ C[∂] (m 1−∆,−α ⊗ m 1−∆′,−α′).

Therefore, using Theorem 6.3 and Proposition 7.1, the conformal dual

(M 2−∆−∆′,−α−α′)∗c ≃M∆+∆′−1,α+α′

is the tensor product M∆,α
V ir
⊗ M∆′,α′ , obtaining (7.1).
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