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0 An approach to Quantum Conformal Algebra

Carina Boyallian and Vanesa Meinardi∗

Abstract

We aim to explore if inside a quantum vertex algebras, we can find the

right notion of a quantum conformal algebra.

1 Introduction

Since the pioneering papers [BPZ, Bo1], there has been a great deal of work
towards understanding of the algebraic structure underlying the notion of the
operator product expansion (OPE) of chiral fields of a conformal field theory.
The singular part of the OPE encodes the commutation relations of fields, which
leads to the notion of a conformal algebra [K1].

In [BK], they develop foundation of the theory of field algebras, which are a
“non-commutative version” of a vertex algebra. Among other results they show
that inside certain field algebras, more precisely strong field algebras ( where the
n-product axiom holds) we have a conformal algebra and a diferential algebra
toghehter with certain compatibility equations, and conversely, having this two
structures plus those equations we can recover a strong field algebra. One of
these equations is the conformal analog of the Jacobi Identiy. They call a
conformal algebra satisfying this equation Leibnitz conformal algebra.

A definition of a quantum vertex algebra, which is a deformation of a ver-
tex algebra, was introduced by Etingof and Kazhdan in 1998,[EK]. Roughly
speaking, a quantum vertex algebra is a braided state-field correspondence
which satisfies associativity and braided locality axioms. Such braiding is a
one-parameter braiding with coefficients in Laurent series.

Recently in [DGK], they developed a structure theory of quantum vertex al-
gebras, parallel to that of vertex algebras. In particular, they introduce braided
n-products for a braided state-field correspondence and prove for quantum ver-
tex algebras a version of the Borcherds identity.

Following [BK], in this article, we try to determine the quantum analog of
the notion of conformal algebra inside a quantum vertex algebra V . For this
purpose, we introduced new products parametrized by Laurent polinomials f ,
and we showed that all this products are determined by those corresponding
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f = 1 and f = z−1. The case f = 1 coincides with the λ-product defining
a conformal algebra([K1],[BK]). This allows us to deal with the coefficients
of the braiding in V . An important remark is that V together with the λ-
product is no longer a Leibnitz conformal algebra, since due to the braiding,
the analog of the Jacoby identity involves not only the products corresponding
to f = 1 (as in [BK]), but those of f = z−1. We translate to this language the
hexagon axiom, quasi-associativity and associativity relations, and the braided
skew-symmetry in a quantum vertex algebra, and all this allows us to give an
equivalent definition of quantum vertex algebra and present a candidate of a
quantum conformal algebra.

The article is organized as follows. In Section 2 we review all the definitions
and basic notion of field algebras and braided field algebras. In Section 3 we
introduce the (λ, f)-product and prove some of its properties and we finish
the section proving in Theorem 3 that shows that having a strong braided
field algebra is the same of having a conformal algebra, a differential algebra
with unit with some compatibility equations. In Section 4, we translate the
hexagon axiom, quasi-associativity, and associativity relations, and the braided
skew-symmetry in a quantum vertex algebra, we give an equivalent definition
of quantum vertex algebra and present a candidate of a quantum conformal
algebra.

2 Preliminaries

In this section review some basic definitions followig [BK],[DGK]. Throughout
the paper all vector spaces, tensor products,etc are over a fieldK of characteristic
zero, unless otherwise specified.

2.1 Calculus of formal distribution

Given a vector space V , we let V [[z, z−1]] be the space of formal power series
with coefficients in V ; they are called formal distributions. A qauntum field over
V is a formal distribution a(z) ∈ (EndV )[[z, z−1]] with coefficients in EndV, such
that a(z)v ∈ V ((z)) for every v ∈ V. Hereafter V ((z)) = V [[z]][z−1] stands for
the space of Laurent series with coefficients in V.

Throughout the article ιz,w (resp ιw,z) denotes the geometric series expansion
in the domain |z| > |w| (resp |w| > |z|), namely we set for n ∈ Z,

ιz,w(z + w)n =
∑

l∈Z+

(

n

l

)

zn−lwl

where
(

n

l

)

=
n(n− 1) · · · (n− l+ 1)

l!
.

For an arbitrary formal distribution a(z), we have

Resz(a(z)) = a−1, (1)
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which is the coefficient of z−1. Denote by glf(V ) the space of all EndV -valued
fields. We also need the Taylor’s Formula (cf. Proposition 2.4,[K1]), namely,

ιz,wa(z + w) =
∑

j∈Z+

∂j
z

j!
a(z)wj = ew∂za(w). (2)

For each n ∈ Z one defines the n-th product of fields a(z) and b(z) by the
following formula:

a(z)(n)b(z) = Resx(a(x)b(z)ιx,z(x − z)n − b(z)a(x)ιz,x(x− z)n). (3)

Denote by

a(z)+ =
∑

j≤−1

a(j)z
−j−1, a(z)− =

∑

j≥0

a(j)z
−j−1.

2.2 Conformal algebras and Field Algebras

In this subsection we recall the definition of a field algebra, conformal algebras
and its properties following [BK]

A state-field correspondence on a pointed vector space (V, |0〉) is a linear map
Y : V ⊗ V → V ((z)), a⊗ b → Y (z)(a⊗ b) satisfying

(i) (vacuum axioms )Y (z)(|0〉 ⊗ a) = a, Y (z)(a⊗ |0〉) ∈ a+ V [[z]]z;

(ii) (translation covariance)[T, Y (z)](a⊗ b) = ∂zY (z)(a⊗ b),

(iii) Y (z)(Ta⊗ b) = ∂zY (z)(a⊗ b),

where T (a) := ∂z(Y (z)(a⊗ |0〉)) |z=0= a(−2)|0〉, is called the translation opera-
tor.

Note that we will also denote by Y the map Y : V → EndV [[z, z−1]], a 7→
Y (a, z) =

∑

k∈Z
a(k)z

−k−1, such that Y (a, z)b = Y (z)(a⊗ b).
Note that Y (a, z) is a quantum field, i.e Y (a, z)b ∈ V ((z)) for any b ∈ V.
The following results, proved in [BK], will be usefull in the sequel.

Proposition 1. (cf. [BK], Prop.2.7). Given Y : V ⊗ V → V ((z)) satisfaying
conditions (i) and (ii) above, we have:

(a) Y (z)(a⊗ |0〉)) = ezTa;

(b) ewTY (z)(1 ⊗ e−wT ) = ιz,wY (z + w).

If, moreover, Y is a state-field correspondence, then

(c) Y (z)(ewT ⊗ 1) = ιz,wY (z + w).

3



Given a state field correspondence Y, define

Y op(z)(u⊗ v) = ezTY (−z)(v ⊗ u). (4)

Then Y op is also a state-field correspondence, called the opposite to Y. (cf. [BK],
Prop 2.8).

Let (V, |0〉) be a pointed vector space and let Y be a state-field correspon-
dence. Recall that Y satisfies the n-th product axiom if for all a, b ∈ V and
n ∈ Z

Y (z)(a(n)b, z) = Y (z)(n)Y (z)(a⊗ b). (5)

We say that Y satisfies the associativity axiom if for all a, b, c ∈ V , there
exists N ≫ 0 such that

(z − w)NY (−w)((Y (z)⊗ 1))(a⊗ b⊗ c)

= (z − w)N ιz,wY (z − w)(1 ⊗ Y (−w))(a ⊗ b⊗ c).
(6)

Let (V, |0〉) be a pointed vector space. As in [BK], a field algebra (V, |0〉, Y )
is a state-field correspondence Y for (V, |0〉) satisfying the associativity axiom
(6). A strong field algebra (V, |0〉, Y ) is a state-field correspondence Y satisfying
the n-th product axiom (5).

Let (V, |0〉) be a pointed vector space and let Y be a state-field correspon-
cence. For a, b ∈ V, [BK] defined the λ-product given by

aλb = Resze
λzY (z)(a⊗ b) =

∑

n≥0

λn

n!
a(n)b. (7)

and the ·-product on V , which is denote as

a · b = Reszz
−1Y (z)(a⊗ b) = a(−1)b. (8)

The vacuum axioms for Y implies

|0〉 · a = a = a · |0〉, (9)

while the translation invariance axioms imply

T (a · b) = T (a) · b+ a · T (b), (10)

and
T (aλb) = (Ta)λb+ aλ(Tb), (Ta)λb = −λaλb (11)

for all a, b ∈ V. Notice that from these equations we can derive that T (|0〉) = 0
and |0〉λa = 0 = aλ|0〉 for a ∈ V.

Conversely, if we are given a linear operator T, a λ-product and a ·-product
on (V, |0〉), satisfying the above properties (9)-(11), we can reconstruct the state-
field correspondence Y by the formulas

Y (a, z)+b = (ezTa)·b, Y (a, z)−b = (a−∂z
b)(z−1), (12)
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where Y (a, z) = Y (a, z)+ + Y (a, z)−.

A K[T ]-module V, equipped with a linear map V ⊗V → K⊗V, a⊗ b → aλb,
satisfying (11) is called a (K[T ])-conformal algebra. On the other hand with
respect to the ·-product, V is a (K[T ])-differential algebra (i.e an algebra with
derivation T ) with a unit |0〉.

Summarizing, (Cf. [BK], Lemma 4.1), we have that, giving a state-field
correspondence on a pointed vector space (V, |0〉) is equivalent to provide V with
a structure of a K[T]-conformal algebra and a structure of a K[T ]-differential
algebra with a unit |0〉.

Now, recall the following results. Later on, we will prove some analogous
result for the braided environment.

Lemma 1. ([BK], Lemma 4.2) Let (V, |0〉) be a pointed vector space and let
Y be a state-field correspondence. Fix a, b, c ∈ V. Then the collection of n-th
product identities Y (z)(a(n)b ⊗ c, z) = (Y (z)(n)Y (z))(a ⊗ b ⊗ c) (for n ≥ 0)
implies

(aλb)λ+µ = aλ(bµc)− bµ(aλc), (13)

aλ(b·c) = (aλb)·c+ b·(aλc) +

∫ λ

0

(aλb)µc dµ. (14)

The (−1)-st product identity Y (z)(a(−1)b⊗c) = (Y (z)(−1)Y (z))(a⊗b⊗c) implies

(a·b)λc = (eT∂λa)·(bλc) + (eT∂λb)·(aλc) +

∫ λ

0

bµ(aλ−µc) dµ, (15)

(a·b)·c− a·(b·c) =

(

∫ T

0

dλ a

)

·(bλc) +

(

∫ T

0

dλ b

)

·

(aλc). (16)

Identity (13) is called the (left) Jacobi identity. A conformal algebra satis-
fying this identity for all a, b, c ∈ V is called a (left) Leibnitz conformal algebra.
Equation (14) is known as the “non-commutative” Wick formula, while (16) is
called the quasi-associativity formula.

Finally, we also recall the following result.

Theorem 1. ([BK], Theorem 4.4) Giving a strong field algebra structure on
a pointed vector space (V, |0〉) is the same as providing V with a structure of
Leibnitz K[T ]-conformal algebra and a structure of a K[T ]-differential algebra
with a unit |0〉, satisfying (14)-(16).

Recall also the following result.

Theorem 2. ([BK], Theorem 6.3) A vertex algebra is the same as a field algebra
(V, |0〉, Y ) for which Y = Y op.

Therefore we may assume this as a definition of vertex algebra.
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2.3 Braided Field Algebras

We will follow the notation and presentation introduced in [DGK].
Throughout the rest of the paper we shall work over the algebra K[[h]] of

formal series in the variable h, and all the algebraic structures that we will
consider are modules over K[[h]].

A topologically free K[[h]]-module is isomorphic to W [[h]] for some K-vector
space W.

Note that W [[h]] ≇ W ⊗ K[[h]], unless W is finite-dimensional over K, and
that the tensor product U [[h]]⊗K[[h]] W [[h]] of topologically free K[[h]]-modules
is not topologically free, unless one of U and W are finite dimensional. For any
vector space U and W, the completed tensor product by

U [[h]]⊗̂K[[h]]W [[h]] := (U ⊗W )[[h]] (17)

This is a completion in h-adic topology of U [[h]]⊗K[[h]] W [[h]].

Given a topologically free K[[h]]-module V, we let

Vh((z)) =
{

a(z) ∈ V [[z, z−1]] | a(z) ∈ V ((z))mod hM for everyM ∈ Z≥0

}

.
(18)

Namely, expanding a(z) =
∑

n∈Z
a(n)z

−n−1, we ask that

lim
n→+∞

a(n) = 0

in h-adic topology.
Let V be a topologically free K[[h]]-module. Following [DGK], we call
EndK[[h]]V -valued quantum field an EndK[[h]]V -valued formal distribution a(z)
such that a(z)b ∈ Vh((z)) for any b ∈ V.

Later on, we will need the following lemmas, proved in [DGK](cf. Lemma 3.2
and 3.3).

Lemma 2. Let |0〉 ∈ V and T : V → V be a K[[h]]-linear map such that
T (|0〉) = 0. Then for any EndK[[h]]V -valued quantum field a(z) such that [T, a(z)] =
∂za(z) (translation covariance), we have

a(z)|0〉 = ezTa =
∑

k≥0

T ka

k!
zk, (19)

where a = Reszz
−1a(z)|0〉.

Lemma 3. Let T : V → V be a K[[h]]-linear map and let a(z) be an EndK[[h]]V -
valued quantum field such that [T, a(z)] = ∂za(z). We have

ewTa(z)e−wT = ιz,wa(z + w). (20)

6



Let V be a topologically free K[[h]]-module, with a given non-zero vector
|0〉 ∈ V ( vacuum vector) and a K[[h]]-linear map T : V → V such that T (|0〉) =
0 (translation operator). Again, following [DGK],

(a) A topological state-field correspondence on V is a linear map

Y : V ⊗̂V → Vh((z)), (21)

satisfying

(i) (vacuum axioms) Y (z)(|0〉 ⊗ v) = v and

Y (z)(v ⊗ |0〉) ∈ v + V [[z]]z, for all z ∈ V ;

(ii) (translation covariance)

∂zY (z) = TY (z)− Y (z)(1⊗ T ) = Y (z)(T ⊗ 1), (22)

(b) A braiding on V is a K[[h]]−linear map

S(z) : V ⊗̂V → V ⊗̂V ⊗̂(K((z))[[h]]) (23)

such that S = 1 +O(h).

A braided state-field correspondance is a quintuple (V, |0〉, T, Y,S) where Y
is a topological state-field correspondance and S is a braiding as above.

We will use the following standard notation: given n ≥ 2 and i, j ∈ {1, · · · , n},
we let

Si,j(z) : V ⊗̂n → V ⊗̂n⊗̂(K((z))[[h]]), (24)

act in the i-th and j-th factors (in this order) of V ⊗̂n , leaving the other factors
unchanged.

A braided vertex algebra is a quintuple (V, |0〉, T, Y,S) where Y is a topologi-
cal state-field correspondance and S is a braiding as above, satisfying the follow-
ing S-locality: for every a, b ∈ V and M ∈ Z≥0, there exists N = N(a, b,M) ≥ 0
such that

(z − w)NY (z)(1 ⊗ Y (w))S12(z − w)(a⊗ b⊗ c)

= (z − w)NY (w)(1 ⊗ Y (z))(b ⊗ a⊗ c),
(25)

where this equality holds mod hM , for all c ∈ V.
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Again, given a topological state-field correspondence Y , set

Y op(z)(u⊗ v) = ezTY (−z)(v ⊗ u). (26)

It was shown in [DGK], Lemma 3.6, that in a braided vertex algebra V we
have

Y (z)S(z)(a⊗ b) = Y op(z)(a⊗ b) (27)

for all a, b ∈ V.
After the proof of this result,(cf. Remark 3.7, [DGK]) they point out that

it is enough to have the S-locality (25) holding just for c = |0〉, to prove that
Y S = Y op in a braided vertex algebra. We will use this remark later.

We recall at this point two important Propositions for our sequel.

Proposition 2. ([EK], Prop. 1.1) Let V be a braided vertex algebra. for every
a, b, c ∈ V and M ∈ Z≥0, there exists N ≥ 0 such that

ιz,w((z + w)NY (z + w)(1 ⊗ Y (w))S23(w)S13(z + w)(a⊗ b ⊗ c))

= (z + w)NY (w)S(w)(Y (z)⊗ 1)(a⊗ b⊗ c) mod hM . (28)

Proposition 3. ([DGK], Proposition 3.9) Let (V, |0〉, T, Y,S) be a braided ver-
tex algebra. Extend Y (z) to a map V ⊗̂V ⊗̂(K((z))[[h]]) in the obvious way.
Then, modulo KerY (z), we have

(a) S(|0〉 ⊗ a) ≡ |0〉, and S(z)(|0〉 ⊗ a) ≡ |0〉 ⊗ a;

(b) [T ⊗ 1, S(z)] ≡ −∂zS(z) (left shift condition);

(c) [1⊗ T, S(z)] ≡ ∂zS(z) (right shift condition);

(d) [T ⊗ 1 + 1⊗ T, S(z)] ≡ 0 ;

(e) S(z)S21(−z) = 1(unitary).

Moreover, we have the quantum Yang-Baxter equation:

(f) S12(z1−z2)S
13(z1−z3)S

23(z2−z3) ≡ S23(z2−z3)S
13(z2−z3)S

12(z1−z2),

modulo Ker(Y (z1)(1⊗ Y (z2))(1
⊗2 ⊗ Y (z3)(− ⊗−⊗−⊗ |0〉))).
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3 On the structure of braided state-field corres-

pondence

As in [BK], we aim to show that there are, inside certain braided vertex algebras,
a “braided conformal algebra” and a “differential algebra” satisfying some family
of equation. Conversely, we will show that given such structures under some
nice conditions, we can give some reconstruction theorem.

Let (V, |0〉, T, Y,S) be a braided-state field correspondence. For n ∈ Z, the
quantum n-product Y (z)S(n)Y (z) is defined as

(Y (z)S(n)Y (z))(a⊗ b⊗ c) = Resx(ιx,z(x− z)nY (x)(1 ⊗ Y (z))(a⊗ b⊗ c)

−ιz,x(x− z)nY (z)(1 ⊗ Y (x))S12(z − x)(b ⊗ a⊗ c)).
(29)

Now, we have the following result.

Lemma 4. Given (V, |0〉, T, Y,S) a braided state-field correspondence satisfying
the equations

[T ⊗ 1, S(z)] = −∂zS(z), (30)

[1⊗ T, S(z)] = ∂zS(z). (31)

The quantum n-product (29) satisfies the following equation

∂z(Y (a, z)SnY (b, z)) = (∂zY (a, z))SnY (b, z) + Y (a, z)Sn(∂zY (b, z)). (32)

Proof. Applying the definition of quantum n-product (29), using integration by
parts and translation covariance (22), the LHS becomes

9



Resxιx,z∂z((x − z)nY (x)(1 ⊗ Y (z)))(a⊗ b⊗ c)

−Resxιz,x∂z((x− z)nY (z)(1⊗ Y (x))S12(z − x))(b ⊗ a⊗ c)

= Resxιx,z∂z(x− z)nY (x)(1 ⊗ Y (z))(a⊗ b⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ ∂z)(1⊗ Y (z))(a⊗ b⊗ c)

−Resxιz,x∂z(x− z)nY (z)(1⊗ Y (x))S12(z − x)(b ⊗ a⊗ c)

−Resxιz,x(x− z)n∂zY (z)(1⊗ Y (x))S12(z − x)(b ⊗ a⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))∂zS
12(z − x)(b ⊗ a⊗ c)

= −Resxιx,z∂x(x− z)nY (x)(1 ⊗ Y (z))(a⊗ b⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ Y (z))(1⊗ T ⊗ 1)(a⊗ b ⊗ c)

+Resxιz,x∂x(x − z)nY (z)(1⊗ Y (x))S12(z − x)(b ⊗ a⊗ c)

−Resxιz,x(x− z)nY (z)(T ⊗ 1)(1⊗ Y (x))S12(z − x)(b ⊗ a⊗ c)

+Resxιz,x(x− z)nY (z)(1⊗ Y (x))∂xS
12(z − x)(b ⊗ a⊗ c)

= Resxιx,z(x− z)nY (x)(T ⊗ 1)(1⊗ Y (z))(a⊗ b⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ Y (z)(1⊗ T ⊗ 1)(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(1 ⊗ T ⊗ 1)S12(z − x)(b ⊗ a⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(T ⊗ 1⊗ 1)S12(z − x)(b ⊗ a⊗ c).

(33)

On the other hand using translation covariance, RHS becomes

Resxιx,z(x− z)nY (x)(T ⊗ 1)(1⊗ Y (z))(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))S12(z − x)(1 ⊗ T ⊗ 1)(b⊗ a⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ Y (z))(1⊗ T ⊗ 1)(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))S12(z − x)(T ⊗ 1⊗ 1)(b⊗ a⊗ c).

(34)

Due to equations (30) and (31) we get

(T ⊗ 1⊗ 1)S12(z − x)(b ⊗ a⊗ c) =

S12(z − x)(T ⊗ 1⊗ 1)(b⊗ a⊗ c) + ∂xS
12(z − x)(b ⊗ a⊗ c),

(35)

and

(1⊗ T ⊗ 1)S12(z − x)(b ⊗ a⊗ c) =

S12(z − x)(1 ⊗ T ⊗ 1)(b⊗ a⊗ c)− ∂xS
12(z − x)(b ⊗ a⊗ c).

(36)
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Applying equations (35) and (36) to RHS, we get

Resxιx,z(x− z)nY (x)(T ⊗ 1)(1⊗ Y (z))(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(1 ⊗ T ⊗ 1)S12(z − x)(b ⊗ a⊗ c)

+Resxιz,x(x− z)nY (z)(1⊗ Y (x))∂xS
12(z − x)(b ⊗ a⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ Y (z))(1⊗ T ⊗ 1)(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(T ⊗ 1⊗ 1)S12(z − x)(b ⊗ a⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))∂xS
12(z − x)(b ⊗ a⊗ c)

= Resxιx,z(x− z)nY (x)(T ⊗ 1)(1⊗ Y (z))(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(1 ⊗ T ⊗ 1)S12(z − x)(b ⊗ a⊗ c)

+Resxιx,z(x− z)nY (x)(1 ⊗ Y (z))(1⊗ T ⊗ 1)(a⊗ b⊗ c)

−Resxιz,x(x− z)nY (z)(1⊗ Y (x))(T ⊗ 1⊗ 1)S12(z − x)(b ⊗ a⊗ c).

(37)

Then equations (33) and (37) are equal, therefore the claim follows.

Remark 1. Recall that, as we quote in Proposition 3, it was shown by [DGK]
that in a braided vertex algebra, equations (30) and (31) hold mod KerY . In
[EK], condition (30) is asked as part of the definition of a braided vertex operator
algebra. In this context, asking (31) is equivalent to ask T to be a derivation of
a braided vertex operator algebra. It is shown in [Li], that if in addition we ask
the undelying field algebra to be non-degenerate (cf. definition 5.12, [Li]), we
have that (31) holds in a braided vertex algebra where the associativity relation
(6) holds (cf. [EK]).

Let (V, |0〉, T, Y,S) be a braided-state field correspondence. Y satisfies the
quantum n-th product identities if for all a, b, c ∈ V and n ∈ Z

Y (z)S(n)Y (z)(a⊗ b⊗ c) = Y (z)(aS(n)b⊗ c), (38)

where
aS(n)b = Res(znY (z)S(z)(a⊗ b)). (39)

Y satisfies the associativity relation if for any a, b, c ∈ V and M ∈ Z≥0 there
exists N ∈ Z≥0 such that

ιz,w(z + w)NY (z + w)((1 ⊗ Y (w)))(a ⊗ b⊗ c)

= (z + w)NY (w)(Y (z)⊗ 1)(a⊗ b⊗ c)modhM , (40)

Let (V, |0〉) be a pointed vector space. We define a braided field algebra
(V, |0〉, Y, T,S) is a braided state-field correspondence Y satisfying the associa-
tivity relation (6). We also introduce a strong braided field algebra (V, |0〉, Y, T,S)
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as a state-field correspondence Y satisfying the quantum n-th product identi-
ties (38). This are the braided versions of field algebra and strong field algebra
introduced by [BK].

Let (V, |0〉, T,S) be a braided-state field correspondence. For a, b ∈ V, f ∈
K((z))[[h]], we define the (λ, f)-product by the

a(λ,f)b = Resze
λzf(z)Y (z)(a⊗b) =

∑

n∈Z≥0,finite

∑

i∈Z

fi(h) a(n+i)b
λn

n!
∈ V⊗K[λ][[h]]

(41)
where f(z) =

∑

i∈Z
fi(h)z

i, fi(h) ∈ K[[h]]. Note that fi(h) = 0 for i << 0.

Remark 2. If in adition we ask V to have a structure of K((z))-module structure,
more precisely zk(a(n)b) = a(n+k)b, this (λ, f)-product resembles the operations
introduced in [GKK]. Instead, we are asking V to have a braiding that involves
some elements of K((z))[[h]].

We have the following useful Lemma.

Lemma 5. Given (V, |0〉, T,S) be a braided-state field correspondence, we have

(a) a(λ,zmf)b = ∂m
λ a(λ,f)b for m ≥ 0, and f ∈ K((z))[[h]]. In particular,

a(λ,zm)b = ∂m
λ a(λ,1)b for m ≥ 0,

(b) a(λ,z−k)b = ((λ+ T )(k−1)a)(λ,z−1)b, for k ≥ 1,

Proof. Let f(z) =
∑

i fi(h)z
i, item (a) follows from the definition of (λ, f)-

product:

a(λ,zmf)b = Resze
λzzmf(z)Y (z)(a⊗ b)

=
∑

i

fi(h)Resz
∑

k≥0

λk/k!
∑

j∈Z

a(j)b z
−j−1+k+m+i

=
∑

i

fi(h)
∑

k≥0

λk−m/(k −m)! a(k+i)b

= ∂m
λ a(λ,f)b.

Applying definition of (λ, f)-product and using integration by parts and trans-
lation covariance we get item (b), namely:

a(λ,z−k)b = a
(λ, (−∂)

(k−1)
z z−1)

b

= Resze
λz(−∂)(k−1)

z z−1Y (z)(a⊗ b)

= Reszz
−1∂(k−1)

z eλzY (z)(a⊗ b)

= Reszz
−1eλz

k−1
∑

r=0

λ(r)Y (z)(T (k−1−r)a⊗ b)

= Reszz
−1eλzY (z)((λ + T )(k−1)a⊗ b)

= ((λ+ T )(k−1)a)(λ,z−1)b.

12



Note that if f = 1 in (41), we recover the λ-product introduced in (7) for
a state-field correspondence. We will denote a(λ,1) = aλb. Observe also that,
due to the Lemma above, any (λ, f)-product can be written in terms of the
λ-product and the (λ, z−1)-product.

The vacuum axioms for Y imply that,

|0〉(λ,z−1)a = a = a(λ,z−1)|0〉, (42)

while the translation invariance axioms show that,

T (a(λ,f)b) = T (a)(λ,f)b+ a(λ,f)T (b) (43)

and
T (a)(λ,f)b = −λa(λ,f)b− a(λ,f ′)b (44)

for all a, b ∈ V and f ∈ K((z)). Note that, when f = 1 in (43) and (44), we
recover equation (11).

Conversely, if we are given a pointed topologically free K[[h]]-module (V, |0〉),
togheter with a K[[h]]- linear map T , a braiding S, a (λ, 1)-product and a
(λ, z−1)-product on V satisfying the properties (42)-(44), we can reconstruct
the braided state-field correspondence Y by the formulas:

Y (a, z)+b = (ezT a)(λ,z−1)b|λ=0, Y (a, z)−b = (a(−∂z , 1)b)(z
−1)), (45)

where Y (a, z) = Y (a, z)+ + Y (a, z)−.

We will need the following Lemma.

Lemma 6. We have that

a(λ,f(l))b = ((−λ− T )la)(λ,f)b,

for all a and b ∈ V and l ≥ 0. Here and further f (l)(z) = ∂l
zf(z).

Proof. Straightforward using (44).

For the following Proposition it will be useful to introduce the following
notation:

a(·,f)b := a(λ,z−1f)b|λ=0 = Reszz
−1f(z)Y (z)(a⊗ b) =

∑

i∈Z

fi(h) a(i−1)b, (46)

for a, b ∈ V, f ∈ K((z))[[h]], f(z) =
∑

i∈Z
fi(h)z

i, fi(h) ∈ K[[h]]. Note that in
the case f = 1 we obtain the ·−product in [BK], ( cf. (8)), namely

13



a(·,1)b = a(λ,z−1)b|λ=0 = a · b,

since it is easy to show that

a(λ,z−1)b = a·b+

∫ λ

0

aµb dµ (47)

.
Whith all this, we can state the following result.

Proposition 4. Let (V, |0〉, T, Y,S) be a braided state field correspondence such
S-locality holds for c = |0〉 . Then the collection of the n-th quantum product
identities (29) for n ≥ −1 implies:

(a−α−T b)α+βc = −bα(a(β)c) +
r
∑

i=1

∑

l≥0

(−1)lai(β,(fi(z))(l))(b
i
(α,xl)c), (48)

(a−λb)·c = −b(λ−T )(a·c) +

r
∑

i=1

∑

l≥0

(−1)lai(·,(fi(z))(l))(b
i
(λ−T,xl)c)

+

∫ T−λ

0

(a−λb)µc dµ, (49)

(a·b)λc = (eT∂λb)·(aλc)−

∫ −T

0

(a−µ−T b)λc dµ+

r
∑

i=1

[(eT∂λai)(·,fi(z))(b
i
λc)

−
∑

l≥0

∫ λ

0

ai(µ,(fi(z))(l))(b
i
(λ−µ,xl)c )dµ], (50)

(a · b)·c = b·(a·c) + Resz

(

∫ T

0

dλb

)

·

(bλc)−

∫ −T

0

(aµ−T b)·c dµ

+

r
∑

i=1

∑

l≥0

(

∫ T

0

dλa
i

)

·

(biλ,Dlfi(z)
c)

+

r
∑

i=1

∑

m, l≥0

(−1)lai(·,zm+1)(b
i
(.,Dl(fi(z))z−m)c), (51)

where Dl = zl∂
(l)
z and S(x)(a ⊗ b) =

∑r
i=0 fi(z)a

i ⊗ bi.
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Proof. Recall that the fact that the S-locality holds for c = |0〉, implies that
Y (z)S(z) = Y op(z). Applying definitions of λ-product and the definition of
Y op, due to Lemma 27 we get

aλb = Resze
λzY (z)(a⊗ b)

= Resze
(λ+T )zY op(−z)(b⊗ a)

= −Resze
−(λ+T )zY (z)S(z)(b⊗ a)

:= −bS−(λ+T )a. (52)

The collection of n-th product identities (38) together (52) are equivalent to:

Y (a−λb, z)c = −Y (bS(λ−T )a, z)c

= −
∑

n≥0

Y (z)(bS(n)a⊗ c)
(λ− T )n

n!

= −
∑

n≥0

Y (z)S(n)Y (z)(b⊗ a⊗ c)
(λ− T )n

n!

= −
∑

n≥0

[Resxιx,z(x− z)nY (x)(1 ⊗ Y (z))(b⊗ a⊗ c)

+ ιz,x(x− z)nY (z)(1⊗ Y (x))S12(z − x)(a⊗ b⊗ c)]
(λ− T )n

n!

= −Resxe
(λ−T )(x−z)Y (x)(1 ⊗ Y (z))(b ⊗ a⊗ c)

+ Resxe
(λ−T )(x−z)

r
∑

i=1

e−x∂z(fi(z))Y (z)(1⊗ Y (x))(ai ⊗ bi ⊗ c)

= −e(−λ+T )z[b(λ−T )(Y (a, z)c)

+

r
∑

i=1

∑

l≥0

(−∂z)
(l)(fi(z))Y (ai, z)(bi(λ−T,xl)c)]. (53)

Taking Resze
(λ+µ)z , and changing λ− T by α and µ+ T by β, we obtain (48).

Taking Reszz
−1 in (53) and using e(−λ+T )zz−1 = z−1 +

∫ −λ+T

0 eµzdµ, we get

(a−λb)·c = −b(λ−T )(a·c)−

∫ T−λ

0

b(λ−T )(aµc) dµ

+

r
∑

i=1

∑

l≥0

(−1)l[ai(·,(fi(z))(l))(b
i
(λ−T,xl)c)

+

∫ T−λ

0

ai(µ,(fi(z))(l))(b
i
(λ−T,xl)c) dµ]. (54)

This, together with (48), implies (49) (after the substitution µ′ = λ+ µ− T ).
Applying definitions of (−1)-st product and Y op, due to (27) we get
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a·b = Reszz
−1Y (z)(a⊗ b)

= Reszz
−1ezTY op(−z)(b⊗ a)

= Reszz
−1e−zTY (z)S(z)(b⊗ a)

= Reszz
−1Y (z)S(z)(b⊗ a) +

∫ −T

0

eµzY (z)S(z)(b⊗ a)dµ

= bS· a+

∫ −T

0

bSµa dµ. (55)

Then this equation together the quantum (−1)- product we get

Y (a · b, z)c = Y (z)(bS(−1)a⊗ c) +

∫ −T

0

Y (z)(bSµa⊗ c) dµ

= (Y (z)S(−1)Y (z))(b⊗ a⊗ c) +

∫ −T

0

Y (z)(bSµa⊗ c) dµ

= Y (b, z)+Y (a, z)c+
r
∑

i=1

Y (ai, z)(bi−∂z
c)(z−1fi(z))

+

∫ −T

0

Y (bSµa, z)c dµ. (56)

Taking Resze
λz and using integration by parts, we get:

(a·b)λ = Resz(e
T∂λeλzb)·(aλc) + Resz

r
∑

i=1

Y (ai, z)(biλ−∂z
c(eλzz−1fi(z)))

+

∫ −T

0

(bSµa)λc dµ

= (eT∂λb)·(aλc) + Resz

r
∑

i=1

Y (ai, z)(biλ−∂z
c(z−1fi(z) +

∫ λ

0

fi(z)e
µz dµ)

−

∫ −T

0

(a−µ−T b)λc dµ

= (eT∂λb)·(aλc)−

∫ −T

0

(a−µ−T b)λc dµ+

r
∑

i=1

[(eT∂λai)(·,fi(z))(b
i
λc)

+
∑

l≥0

∫ λ

0

ai(µ,(fi(z))(l))(b
i
(λ−µ,xl)c )dµ]. (57)
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Due to (56) and taking Reszz
−1, we get

(a·b)·c = Reszz
−1Y (b, z)+Y (a, z)+c+Reszz

−1Y (b, z)+Y (a, z)−c

+ Reszz
−1

∫ −T

0

Y (bSµa, z)c dµ

+

r
∑

i=1

∑

l≥0

(−1)lReszz
−1Y (ai, z)(fi(z))

(l)(∂z)
lY (bi, z)−c

= b·(a·c) + Reszz
−1)((ezT − 1)b)·(Y (a, z)−c) +

∫ −T

0

(bSµa)·c dµ

+

r
∑

i=1

∑

l≥0

Reszz
−1((ezT − 1)ai)·((fi(z))

(l)(∂z)
lY (bi, z)−c)

+
r
∑

i=1

∑

l≥0

Reszz
−1Y (ai, z)−((fi(z))

(l)(∂z)
lY (bi, z)−c)

= b·(a·c) + Resz

(

∫ T

0

eλzdλb

)

·

(Y (b, z)−c)−

∫ −T

0

(aµ−T b)·c dµ

+

r
∑

i=1

∑

l≥0

Resz

(

∫ T

0

eλzdλa
i

)

·

(fi(z))
(l)(∂z)

lY (bi, z)−c)

+
r
∑

i=1

∑

m,l≥0

(−1)lai(·,zm+1)(b
i
(.,Dl(fi(z))z−m)c), (58)

which proves (51).

Note that V together with the λ-product is what [BK] called conformal
algebra, and V with (λ, z−1)-product is also a K[T ]-differential algebra with
unit due to (42) and (43).

An important remark is that V togheter with the λ-product is no longer a
Leibnitz conformal algebra, since due to the braiding, the analog of the Jacoby
identity involves (λ, z−1)-products.

With this in mind, we can prove the following

Theorem 3. Giving a braided state field correspondence (V, |0〉, Y,S), satisfying
the S-locality for |0〉 and the axiom of quantum (n)-product (29) implies to
provide V with a structure of a conformal algebra and a structure of a K[T ]-
differential algebra with a unit |0〉, satisfying (48)-(51).

Conversely, given V a topologically free K[[h]]-module, a K[[h]]- linear map
T and a braiding S. Assume that V has a structure of conformal algebra and
a structure of a K[T ]-differential algebra with a unit |0〉, satisfying (48)-(51)
and S satisfies (30)- (31), then (V, |0〉, Y,S), is a braided state field correspon-
dence satisfying the axiom of quantum (n)-product, namely a strong braided field
algebra.

17



Proof. If (V, |0〉, Y,S) is a braided state field algebra satisfying the axiom of
quantum n-product, then by the above discussion we can define a (λ, f)-product
on V satisfying all the requirement. Conversely, given a (λ, f)-product we define
a braided state field correspondence Y by (45). In the proof of Lemma 4, we
have seen that the equations (48)-(49) are equivalent to the identities

Resz(Y (bSna, z)− Y (b, z)S(n)Y (a, z))F = 0, a, b ∈ V, n ≥ 0, F = eλz or z−1,
(59)

while the equations (50)-(51) are equivalent to the identities

Resz
∑

k≥0

[(−∂z)
(k)Y (bS(k−1)a, z)−

k
∑

j=0

(−1)k∂(k−j)
z Y (b, z)S(k−1)∂

(j)
z Y (a, z)]F = 0,

(60)
for a, b ∈ V and F = eλz or z−1.

Due to Lemma 4 and using translation invariance of Y , this identity is equiv-
alent to

Resz
∑

k≥0

[Y (bS(k−1)a, z)− Y (b, z)S(k−1)Y (a, z)](∂z)
(k)F = 0, (61)

a, b ∈ V, F = eλz or z−1.
Using the translation invariance of Y and integration by parts, we see that

identity (59) holds also with F replaced with ∂zF. Hence equations (59) and
(61) hold for all F = zl, l < 0. For F = eλz, taking coefficients at power of
λ shows that they are satisfied also for F = zl, l ≤ 0. This implies the n-th
quantum product axioms for n ≥ −1. The the proof remains the same that
proof of Theorem 4.4 [BK].

4 Quantum conformal algebra

In this section, based on what we have seen in Section 3, we aim to give a
definition of braided conformal algebra. Until now, we didn’t ask any furhter
structure for the braiding S besides (30) and (31). We have the following results.

Proposition 5. If the hexagon relation

S(x)(Y (z)⊗ 1) = (Y (z)⊗ 1)S23(x)ιx,zS
13(x+ z) (62)

holds in a braided state field correspondence, then we have that:

S(x)(a(λ,f)b⊗ c) =
∑

l≥0

∂l
λ((·(λ,f)·)⊗ 1)S23(x)∂(l)

x S13(x)(a ⊗ b⊗ c) (63)

= e∂λ∂x1 ((·(λ,f)·)⊗ 1)S23(x)S13(x1)(a⊗ b⊗ c)|x1=x(64)

for all a, b, c ∈ V .
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Proof. Applying the definition of (λ, f)-product and using the hexagon relation
(62), definition of S, Taylor expansion and change of variables we get,

S(x)(a(λ,f)b ⊗ c) = S(x)Resze
λzf(z)(Y (z)⊗ 1)(a⊗ b⊗ c)

= Resze
λzf(z)S(x)(Y (z)⊗ 1)(a⊗ b⊗ c)

= Resze
λzf(z)(Y (z)⊗ 1)S23(x)ιx,zS

13(x+ z)(a⊗ b⊗ c)

=
∑

i,j∈Z

Resze
λzf(z)(Y (z)⊗ 1)hi(x)ιx,zgj(x+ z)(a(j) ⊗ b(i) ⊗ (c(j))(i))

=
∑

i,j∈Z

hi(x)Resze
λzf(z)(ez∂xgj(x))(Y (a(j), z)b(i) ⊗ (c(j))(i))

=
∑

i,j,m,r∈Z

∑

k,l∈Z≥0

hi(x)λ
(k)fr Reszg

(l)
j (x)a

(j)
(m)b

(i) ⊗ (c(j))(i)z−m−1+k+l+r

=
∑

i,j,r∈Z

∑

k,l∈Z≥0

hi(x)λ
(k)frg

(l)
j (x)a

(j)
(k+l+r)b

(i) ⊗ (c(j))(i)

=
∑

i,j,r∈Z

∑

k≥l∈Z≥0

hi(x)λ
(k−l)frg

(l)
j (x)a

(j)
(k+r)b

(i) ⊗ (c(j))(i)

=
∑

l≥0

∂l
λ(·(λ,f)·)S

23(x)∂(l)
x S13(x)(a ⊗ b⊗ c), (65)

where S23(x)(a ⊗ b ⊗ c) =
∑

i hi(x)a ⊗ bi ⊗ ci and S13(x)(a ⊗ b ⊗ c) =
∑

j gj(x)a
j ⊗ b⊗ cj .

Similarly, we have the following results.

Proposition 6. If the associativity relation holds, namely, there exists N ∈ Z≥0

such that

ιz,w(z+w)NY (z+w)((1⊗Y (w)))(a⊗b⊗c) = (z+w)NY (w)(Y (z)⊗1)(a⊗b⊗c)

modhM , for any a, b, c ∈ V and M ∈ Z≥0 in a (braided) state field correspon-
dence, then

∂N
λ aλ(bµc) = ∂N

λ (aλb)λ+µc, (66)

modhM , for all a, b, c ∈ V.

Proof. Changing z + w by x in the associativity relation we have

xNY (x)(1 ⊗ Y (w))(a ⊗ b⊗ c) = xNY (w)ιx,w(Y (x− w)⊗ 1)(a⊗ b⊗ c). (67)

Taking ResxReswe
λxeµw to the LHS of (67) and using Lemma 5 (a), we have

ResxReswe
λxeµw xNY (x)((1 ⊗ Y (w)))(a ⊗ b⊗ c)

= (a(λ,xN )(bµc)) = ∂N
λ (aλ(bµc)).

(68)

Now, taking ResxReswe
λxeµw to the RHS of (67), using Taylor’s formula

(2), translation covariance and Lemma 5 (a),
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ResxReswe
λxeµw xNY (w)ιx,w(Y (x− w) ⊗ 1)(a⊗ b⊗ c)

= ResxReswe
λxeµw xNY (w)e−w∂x(Y (x)⊗ 1)(a⊗ b⊗ c)

= ResxReswe
λxeµw xNY (w)(Y (x) ⊗ 1)((e−wTa)⊗ b⊗ c)

= Reswe
µwY ((e−wTa)(λ,xN )b, w)c

= Reswe
µw∂N

λ Y ((e−wTa)λb, w)c

= ∂N
λ Reswe

µwewλY (aλb, w)c

= ∂N
λ (aλb)λ+µc.

(69)

Equating (68) and (69), we finish the proof.

Now, we will show a similar resut but for the quasi-associativity (70).

Proposition 7. Let V be a braided state field correspondance. Suppose that for
every a, b, c ∈ V and M ∈ Z≥0 there exists N ≥ 0 such that

ιz,w((z + w)NY (z + w)(1 ⊗ Y (w))S23(w)S13(z + w)(a⊗ b ⊗ c))

= (z + w)NY (w)S(w)(Y (z)⊗ 1)(a⊗ b⊗ c) mod hM . (70)

holds modhM . Then

∑

i,j

∂N
σ aj(σ,gj)(b

i
(−λ+µ,hi)

(cj)i)|σ=λ = (∂λ + ∂µ)
N
∑

r

(aλb)
r
(µ,fr)

cr modhM ,

(71)
where

S(x)(aλb)⊗ c =
∑

r

fr(x)(aλb)
r ⊗ cr),

S13(x)(a ⊗ b⊗ c) =
∑

j

gj(x)(a
j ⊗ b⊗ cj),

S23(x)(aj ⊗ b⊗ cj) =
∑

i

hi(x)(a
j ⊗ bi ⊗ (cj)i).

Proof. Taking ResxReswe
λzeµw to the LHS of (70), using Taylor’s formula (2)

and integration by parts, we have

ReszReswe
λzeµwιz,w((z + w)NY (z + w)(1 ⊗ Y (w))S23(w)S13(z + w)(a⊗ b⊗ c)) =

= ReszReswe
λzeµw(z + w)New∂z(Y (z))(1⊗ Y (w))S23(w)ew∂z (S13(z))(a⊗ b⊗ c))

=
∑

i,j

ReszReswe
−w∂z(eλz(z + w)N )eµwY (z))(1⊗ Y (w))gj(z)hi(w)(a

j ⊗ bi ⊗ (cj)i).

(72)
It is straightforward that e−w∂z(z + w)N = zN and e−w∂zeλz = e−wλeλz,

thus
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∑

i,j

ReszReswe
−w∂z

(

eλz(z + w)N
)

eµwY (z)(1⊗ Y (w))gj(z)hi(w)(a
j ⊗ bi ⊗ (cj)i)

=
∑

i,j

ReszReswe
−wλeλz(z)NeµwY (z)(1⊗ Y (w))gj(z)hi(w)(a

j ⊗ bi ⊗ (cj)i)

=
∑

i,j

aj
(λ,xNgj)

(bi(−λ+µ,hi)
(cj)i)

=
∑

i,j

∂N
σ aj(σ,gj)(b

i
(−λ+µ,hi)

(cj)i)|σ=λ.

(73)
In the last equality we used Lemma 5(a). Now, lets take residues in the RHS

of (70) and use Lemma 5(a)again. Thus

ReszReswe
λzeµw(z + w)NY (w)S(w)(Y (z)⊗ 1)(a⊗ b⊗ c)

=
∑

r

N
∑

k=0

(

N

k

)

Reswe
µwfr(w)w

N−k(a(λ,zk)b)
r ⊗ cr

=
∑

r

N
∑

k=0

(

N

k

)

(a(λ,zk)b)
r
(µ,fr(w)wN−k) ⊗ cr

= (∂λ + ∂µ)
N
∑

r

(aλb)
r
(µ,fr)

cr.

(74)

Equating modhM , we have the desired result.

Finaly, let us translate the condition Y (z)S(z) = Y op(z) to the (λ, f)-
product.

Proposition 8. Suppose we have a state-field correspondance V where Y (z)S(z) =
Y op(z) holds. Then, for a and b ∈ V ,

− b−λ−T a =
∑

i

ai(λ,fi)b
i, (75)

where S(z)(a⊗ b) =
∑

i fi(z)a
i ⊗ bi

Proof. We have that

Resze
λzY (z)S(z)(a⊗ b) =

∑

i

Resze
λzfi(z)Y (ai, z)bi

=
∑

i

ai(λ,fi)b
i.

(76)
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On the other hand, using Y (z)S(z) = Y op(z),

Resze
λzY (z)S(z)(a⊗ b) = Resze

λzY op(z)(a⊗ b)

= Resze
λzeTzY (−z)(b⊗ a)

= −Resze
(−λ−T )zY (z)(b⊗ a)

= −b−λ−T a,

(77)

finishing the proof.

A braided vertex algebra where the associativity relation holds, is called
quantum vertex algebra. (Cf. Definition 3.12, [DGK]). In the Characterization
Theorem (cf. Theorem 5.13,[DGK]) they proved, among other equivalences,
that a quantum vertex algebra is a braided state field correspondence such
that the associativity relation and Y S = Y op holds. We have shown in the
discussion before Lemma 6, combined with the fact that all (λ, f) products can
be rewritten in terms of λ-products and (λ, z−1)-products, that having a braided
state field correspondence is the same of having topologically free K[[h]]-module
V, together with a K[[h]]-linear map T : V → V , a distinguished vector |0〉, a
braiding S on V and linear maps (λ, f) : V ⊗ V → K[λ][[h]], a⊗ b → a(λ,f)b for
f ∈ K((Z))[[h]], such that

|0〉(λ,z−1)a = a = a(λ,z−1)|0〉, (78)

T (a(λ,f)b) = T (a)(λ,f)b+ a(λ,f)T (b) (79)

and
T (a)(λ,f)b = −λa(λ,f)b− a(λ,f ′)b (80)

for all a, b ∈ V . Combining this with Porposition 6 and Proposition 8 we have
the following.

Theorem 4. Let V be topologically free K[[h]]-module, together with a K[[h]]-
linear map T : V → V , a distinguished vector |0〉, a braiding S on V . Define in
V linear maps (λ, f) : V ⊗V → K[λ][[h]], a⊗b → a(λ,f)b for f ∈ K((z))[[h]], such
that the equation above hold. Let Y be a topological state-field correspondence.

The following statements are equivalent:
(i) (V, T, |0〉, Y,S) is a quantum vertex algebra.
(ii)(V, T, |0〉, (·(λ,f)·),S) satisfies the equations:

|0〉(λ,z−1)a = a = a(λ,z−1)|0〉, (81)

T (a(λ,f)b) = T (a)(λ,f)b+ a(λ,f)T (b) (82)

and
T (a)(λ,f)b = −λa(λ,f)b− a(λ,f ′)b (83)

for all a, b ∈ V , and

− b−λ−T a =
∑

i

ai(λ,fi)b
i, (84)
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where S(z)(a⊗ b) =
∑

i fi(z)a
i ⊗ bi, and there exists N >> 0 such that

∂N
λ aλ(bµc) = ∂N

λ (aλb)λ+µc, (85)

modhM , for all a, b, c ∈ V.

If was proved in Proposition 3.13 in [DGK] that if a braided vertex algebra
satisfies the hexagon relation then the associativity relation holds.

Assume that we have a braided vertex algebra V and the hexagon relation
holds, thus we have a quantum vertex algebra. I we also ask in V the condition

[T ⊗ 1,S(x)] = −∂xS(x) and [1⊗ T,S(x)] = ∂xS(x),

(which hold, for instance, in what [EK] called non-degenerate quantum vertex
algebra), and consider here the λ-product above, we showed that (V, T, S) to-
gether with the λ-product is a conformal algebra ( in the sense of [BK]), sitting
inside our quantum vertex algebra such that (64) holds. All these, leads us to
the following definition.

Definition 1. A quantum conformal algebra is a topologically free K[[h]]-
module V, together with a K[[h]]-linear map T : V → V , a braiding S on
V and a linear map λ : V ⊗ V → K[λ], a⊗ b → aλb such that:(a, b, c ∈ V )

(i) [T ⊗ 1,S(x)] = −∂xS(x) (left shift condition);

(ii) [1⊗ T,S(x)] = ∂xS(x) (right shift condition);

(iii) T (aλb) = (Ta)λb+ aλ(Tb), (Ta)λb = −λaλb;

(iv) S(x)(aλb⊗ c) = e∂λ∂x1 ((·λ·)⊗ 1)S23(x)S13(x1)(a⊗ b ⊗ c)|x1=x, (hexagon
relation).

Moreover if we ask

(iv) aλ(bµc) = (aλb)λ+µc,

we call V associative quantum conformal algebra.
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